Skip to main content
Log in

Microlite orientation in obsidian flow measured by synchrotron X-ray diffraction

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Clinopyroxene and plagioclase (andesine) microlites in an obsidian flow from Glass Mountain (NE California, USA) display strong alignment. Synchrotron X-ray diffraction, coupled with Rietveld analysis, was used to quantify crystallographic-preferred orientation (CPO). Clinopyroxene, with a rod-shaped morphology, shows a strong alignment of [001] in the flow direction and (010) aligned parallel to the inferred flow plane. Andesine, with a platy morphology, displays an alignment of (010) platelets in the flow plane. Some pole densities exceed 90 multiples of random distribution. Applying a model of rigid ellipsoidal inclusions in a viscous matrix, the local pure shear strains are between 2 and 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arzilli F, Mancini L, Voltolini M, Cicconi MR, Mohammadi S, Giuli G, Mainprice D, Paris E, Barou F, Carroll MR (2015) Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications in crystallization mechanisms. Lithos 16:93–105

    Article  Google Scholar 

  • Befus KS, Zinke RW, Jordan JS, Manga M, Gardner JE (2014) Pre-eruptive storage conditions and eruption dynamics of a small rhyolite dome: Douglas Knob, Yellowstone volcanic field, USA. Bull Volcanol 76(3):1–12. https://doi.org/10.1007/s00445-014-0808-8

    Article  Google Scholar 

  • Befus KS, Manga M, Gardner JE, Williams M (2015) Ascent and emplacement dynamics of obsidian lavas inferred from microlite textures. Bull Volcanol 77(10):88. https://doi.org/10.1007/s00445-015-0971-6

    Article  Google Scholar 

  • Buisson C, Merle O (2002) Experiments on internal strain in lava dome cross sections. Bull Volcanol 64(6):363–371. https://doi.org/10.1007/s00445-002-0213-6

    Article  Google Scholar 

  • Castro J, Cashman KV (1999) Constraints on rheology of obsidian lavas based on mesoscopic folds. J Struct Geol 21(7):807–819. https://doi.org/10.1016/S0191-8141(99)00070-X

    Article  Google Scholar 

  • Castro J, Manga M, Cashman K (2002) Dynamics of obsidian flows inferred from microstructures: insights from microlite preferred orientations. Earth Planet Sci Lett 199:211–226. https://doi.org/10.1016/S0012-821X(02)00559-9

    Article  Google Scholar 

  • Castro JM, Cashman KV, Manga M (2004) A technique for measuring 3D crystal-size distributions of prismatic microlites in obsidian. Am Miner 88(8–9):1230–1240

    Article  Google Scholar 

  • Clark J, Appleman D, Papike J (1969) Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements. Miner Soc Am Spec Pap 2:31–50

    Google Scholar 

  • Donnelly-Nolan JM, Champion DE, Grove TL (2016) Late Holocene volcanism at Medicine Lake volcano, northern California Cascades. US Geol Surv Prof Pap 1822:59

    Google Scholar 

  • Fink JH (1983) Structure and emplacement of a rhyolitic obsidian flow: Little Glass Mountain, Medicine Lake Highland, northern California. GSA Bull 94(3):362–380

    Article  Google Scholar 

  • Fitzgerald JD, Parise JB, Mackinnon IDR (1986) Average structure of an An48 plagioclase from the Hogarth Ranges. Am Miner 71:1399–1408

    Google Scholar 

  • Gardner JE, Llewellin EW, Watkins JM, Befus KS (2017) Formation of obsidian pyroclasts by sintering of ash particles in the volcanic conduit. Earth Planet Sci Lett 459:252–263. https://doi.org/10.1016/j.epsl.2016.11.037

    Article  Google Scholar 

  • Giachetti T, Gonnermann HM, Gardner JE, Shea T, Gouldstone A (2015) Discriminating secondary from magmatic water in rhyolitic matrix-glass of volcanic pyroclasts using thermogravimetric analysis. Geochim Cosmochim Acta 148:457–476. https://doi.org/10.1016/j.gca.2014.10.017

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271(1–4):123–134. https://doi.org/10.1016/j.epsl.2008.03.038

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2003) Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature 426(6965):432–435

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2005) Flow banding in obsidian: a record of evolving textural heterogeneity during magma deformation. Earth Planet Sci Lett 236:135–147. https://doi.org/10.1016/j.epsl.2005.04.031

    Article  Google Scholar 

  • Grove TL, Donnelly-Nolan JM, Housh T (1997) Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California. Contrib Miner Pet 127(3):205–223. https://doi.org/10.1007/s004100050276

    Article  Google Scholar 

  • Haerinck T, Wenk H-R, Debacker TN, Sintubin M (2015) Preferred mineral orientation of a chloritoid-bearing slate in relation to its magnetic fabric. J Struct Geol 71:125–135. https://doi.org/10.1016/j.jsg.2014.09.013

    Article  Google Scholar 

  • Hosemann R, Hindeleh AM, Brückner R (1991) Paracrystalline lattice structure of silica glass, α- and β-crystobalite. Phys Stat Sol A 126:313–324

    Article  Google Scholar 

  • Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond Ser A 102:169–179

    Article  Google Scholar 

  • Kanitpanyacharoen W, Parkinson DY, de Carlo F, Marone F, Wenk H-R, MacDowell A, Mokso R, Stampanoni M (2013) A comparative study of X-ray microtomography on shales at different synchrotron facilities: ALS, APS and SLS. J Synchrotron Radiat 20:1–9. https://doi.org/10.1107/S0909049512044354

    Article  Google Scholar 

  • Le Bail A (1995) Modelling the silica glass structure by the Rietveld method. J Non-Cryst Solids 183:39–42

    Article  Google Scholar 

  • Lutterotti L, Ceccato R, Dal Maschio R, Pagani E (1998) Quantitative analysis of silicate glass in ceramic materials by the Rietveld method. Mater Sci Forum 278–281:87–92

    Article  Google Scholar 

  • Lutterotti L, Vasin R, Wenk H-R (2014) Rietveld texture analysis from synchrotron diffraction images: I. Basic analysis. Powder Diffr 29:76–84. https://doi.org/10.1017/S0885715613001346

    Article  Google Scholar 

  • Manga M (1998) Orientation distribution of microlites in obsidian. J Volcanol Geotherm Res 86:107–115. https://doi.org/10.1016/S0377-0273(98)00084-5

    Article  Google Scholar 

  • Manga M (2005) Deformation of flow bands by bubbles and crystals. Geol Soc Am Spec Pap 396:47–53

    Google Scholar 

  • Manley CR, Fink JH (1987) Internal textures on rhyolite flows as revealed by research drilling. Geology 15:549–552

    Article  Google Scholar 

  • March A (1932) Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation. Z Kristallog 81:285–297

    Google Scholar 

  • Matthies S, Wenk H-R (2009) Transformations for monoclinic crystal symmetry in texture analysis. J Appl Cryst 42:564–571. https://doi.org/10.1107/S0021889809018172

    Article  Google Scholar 

  • Miao J, Ercius P, Billinge SJL (2016) Atomic electron tomography: 3D structures without crystals. Science 353:1380. https://doi.org/10.1126/science.aaf2157

    Article  Google Scholar 

  • Midgley PA, Ward EPW, Hungria AB, Thomas JM (2007) Nanotomography in the chemical, biological and materials science. Chem Soc Rev 36:1477–1494. https://doi.org/10.1039/b701569k

    Article  Google Scholar 

  • Oertel G (1983) The relationship of strain and preferred orientation of phyllosilicate grains in rocks—a review. Tectonophysics 100:413–447

    Article  Google Scholar 

  • Oertel G (1985) Reorientation due to grain shape. In: Wenk HR (ed) Chapter 12 in preferred orientation in deformed metals and rocks: an introduction to modern texture analysis. Academic Press, Orlando, pp 259–265

    Chapter  Google Scholar 

  • Popa NC (1998) The hkl dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J Appl Cryst 31:176–180

    Article  Google Scholar 

  • Rahnama M, Koch DL, Shaqfeh ES (1995) The effect of hydrodynamic interactions on the orientation distribution in a fiber suspension subject to simple shear flow. Phys Fluids 7(3):487–506

    Article  Google Scholar 

  • Rust AC, Manga M, Cashman KV (2003) Determining flow type, shear rate and shear stress in magmas from bubble shapes and orientations. J Volcanol Geoth Res 122(1–2):111–132. https://doi.org/10.1016/S0377-0273(02)00487-0

    Article  Google Scholar 

  • Sander B (1950) Einführung in die Gefügekunde der Geologischen Körper. Zweiter Teil: Die Korngefüge. Springer, Wien, pp 409

    Book  Google Scholar 

  • Smith JV (2002) Structural analysis of flow-related textures in lavas. Earth Sci Rev 57(3–4):279–297

    Article  Google Scholar 

  • Soda Y, Wenk H-R (2014) Antigorite crystallographic preferred orientations in serpentinites from Japan. Tectonophysics 615–616:199–212. https://doi.org/10.1016/j.tecto.2013.12.016

    Article  Google Scholar 

  • Stampanoni M, Mokso R, Marone F, Vila-Comamala J, Gorelick S, Trtik P, Jefimovs K, David C (2010) Phase-contrast tomography at the nanoscale using hard X rays. Phys Rev B 81(R):140105. https://doi.org/10.1103/PhysRevB.81.140105

    Article  Google Scholar 

  • Tatlock DB, Flanagan FJ, Bastron H, Berman S, Sutton AL Jr (1976) Rhyolite, RGM-1, from Glass Mountain, California. In: Flanagan FJ (ed) Descriptions and analyses of eight new USGS rock standards. USGS Professional Paper 840, pp 11–14

  • Tuffen H, Dingwell DB, Pinkerton H (2003) Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31(12):1089–1092

    Article  Google Scholar 

  • Ventura G (2004) The strain path and kinematics of lava domes: an example from Lipari (Aeolian Islands, Southern Tyrrhenian Sea, Italy). J Geophys Res Solid Earth. https://doi.org/10.1029/2003JB002740

    Google Scholar 

  • Voltolini M, Zandomeneghi D, Mancini L, Polacci M (2011) Texture analysis of volcanic rock samples: quantitative study of crystals and vesicles shape preferred orientation from X-ray microtomography data. J Volcanol Geotherm Res 202(1–2):83–95

    Article  Google Scholar 

  • Waters LE, Andrews BJ, Lange RA (2015) Rapid crystallization of plagioclase phenocrysts in silicic melts during fluid-saturated ascent: phase equilibrium and decompression experiments. J Petrol 56:981–1006. https://doi.org/10.1093/petrology/egv025

    Article  Google Scholar 

  • Wenk H-R, Matthies S, Donovan J, Chateigner D (1998) BEARTEX: a Windows-based program system for quantitative texture analysis. J Appl Crystallogr 31:262–269

    Article  Google Scholar 

  • Wenk H-R, Kanitpanyacharoen W, Voltolini M (2010) Preferred orientations of phyllosilicates: comparison of fault gouge shale and schist. J Struct Geol 32:478–481. https://doi.org/10.1016/j.jsg.2010.02.003

    Article  Google Scholar 

  • Wenk H-R, Lutterotti L, Kaercher P, Kanitpanyacharoen W, Miyagi L, Vasin RN (2014) Rietveld texture analysis from synchrotron diffraction images: II. Complex multiphase materials and diamond anvil cell experiments. Powder Diffr 29:172–192. https://doi.org/10.1017/S0885715614000360

    Article  Google Scholar 

  • Wu L, Agnew SR, Ren Y, Brown DW, Clausen B, Stoica GM, Wenk H-R, Liaw PK (2010) The effects of texture and extension twinningon the low-cycle fatigue behavior of a rolled magnesium alloy, AZ31B. Mater Sci Eng A 527:7057–7067. https://doi.org/10.1016/j.msea.2010.07.047

    Article  Google Scholar 

Download references

Acknowledgements

HRW acknowledges support from NSF (EAR-1343908) and DOE (DE-FG02-05ER15637) and access to beamline 11-ID-C at the Advanced Photon Source (APS) of Argonne National Laboratory. MM is supported by NSF 1724469. We appreciate help from Yang Ren at beamline ID-11 ID-C of APS and Tim Teague for sample preparation. Part of this research was done during a research leave at the University of Trento/Mesiano and HRW is grateful to Luca Lutterotti for the hospitality and guidance in data analysis, and also for access to the SEM and help from Lorena Maines. The authors thank the editor, J. Donnelly-Nolan, and an anonymous reviewer for constructive comments and suggestions. Authors are listed in alphabetical order.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Rudolf Wenk.

Additional information

Communicated by Timothy L. Grove.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manga, M., Voltolini, M. & Wenk, HR. Microlite orientation in obsidian flow measured by synchrotron X-ray diffraction. Contrib Mineral Petrol 173, 58 (2018). https://doi.org/10.1007/s00410-018-1479-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-018-1479-9

Keywords

Navigation