Skip to main content

Advertisement

Log in

Settling and compaction of chromite cumulates employing a centrifuging piston cylinder and application to layered mafic intrusions

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The time scales and mechanics of gravitationally driven crystal settling and compaction is investigated through high temperature (1,280–1,500 °C) centrifuge-assisted experiments on a chromite-basalt melt system at 100–1,500g (0.5 GPa). Subsequently, the feasibility of this process for the formation of dense chromite cumulate layers in large layered mafic intrusions (LMIs) is assessed. Centrifugation leads to a single cumulate layer formed at the gravitational bottom of the capsule. The experimentally observed mechanical settling velocity of a suspension of ~24 vol% chromite is calculated to be about half (~0.53) of the Stokes settling velocity, with a sedimentation exponent n of 2.35 (3). Gravitational settling leads to an orthocumulate layer with a porosity of 0.52 (all porosities as fraction). Formation times for such a layer from a magma with initial chromite contents of 0.1–1 vol% are 140–3.5 days, equal to a growth rate of 0.007–0.3 m/day for grain sizes of 1–2 mm. More compacted chromite layers form with increasing centrifugation time and acceleration through chemical compaction: An increase of grain contact areas and grain sizes together with a decrease in porosity is best explained by pressure dissolution at grain contacts, reprecipitation and grain growth into the intergranular space and a concomitant expulsion of intergranular melt. The relation between the porosity in the cumulate pile and effective pressure integrated over time (Δρ · h · a · t) is best fit with a logarithmic function, in fact confirming that a (pressure) dissolution–reprecipitation process is the dominant mechanism of compaction. The experimentally derived equation allows calculating compaction times: 70–80 % chromite at the bottom of a 1-m-thick chromite layer are reached after 9–250 years, whereas equivalent compaction times are 0.2–0.9 years for olivine (both for 2 mm grain size). The experiments allow to determine the bulk viscosities of chromite and olivine cumulates to be of magnitude 109 Pa s, much lower than previously reported. As long as melt escape from the compacting cumulate remains homogeneous, fluidization does not play any role; however, channelized melt flow may lead to suspension and upward movement of cumulate crystals. In LMIs, chromitite layers are typically part of a sequence with layers of mafic minerals, compaction occurs under the additional weight of the overlying layers and can be achieved in a few years to decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bachrach R (2011) Mechanical compaction in heterogenous clastic formations from plastic–poroelastic deformation principles: theory and modeling results. Paper presented at the SEG Annual Meeting, San Antonio

  • Baldock TE, Tomkins MR, Nielsen P, Hughes MG (2004) Settling velocity of sediments at high concentrations. Coast Eng 51:91–100. doi:10.1016/j.coastaleng.2003.12.004

    Article  Google Scholar 

  • Barnes SJ, Maier WD, Curl EA (2010) Composition of the marginal rocks and sills of the Rustenburg layered suite. Bushveld Complex, South Africa: implications for the formation of the platinum-group element deposits. Econ Geol 105:1491–1511. doi:10.2113/econgeo.105.8.1491

    Article  Google Scholar 

  • Bohlen SR, Boettcher AL, Dollase WA, Essene EJ (1980) The effect of manganese on olivine–quartz–orthopyroxene stability. Earth Planet Sci Lett 47:11–20. doi:10.1016/0012-821X(80)90099-0

    Article  Google Scholar 

  • Boorman S, McGuire J, Boudreau A, Kruger J (2003) Fluid overpressure in layered intrusions: formation of a breccia pipe in the Eastern Bushveld complex, Republic of South Africa. Miner Depos 38:356–369. doi:10.1007/s00126-002-0312-5

    Google Scholar 

  • Boorman S, Boudreau A, Kruger FJ (2004) The lower zone-critical zone transition of the bushveld complex: a quantitative textural study. J Petrol 45:1209–1235. doi:10.1093/petrology/egh011

    Article  Google Scholar 

  • Bose K, Ganguly J (1995) Quartz–coesite transition revisited; reversed experimental determination at 500–1200 °C and retrieved thermochemical properties. Am Mineral 80:231–238

    Google Scholar 

  • Botto L, Narayanan C, Fulgosi M, Lakehal D (2005) Effect of near-wall turbulence enhancement on the mechanisms of particle deposition. Int J Multiphase Flow 31:940–956. doi:10.1016/j.ijmultiphaseflow.2005.05.003

    Article  Google Scholar 

  • Boudreau AE (1992) Volatile fluid overpressure in layered intrusions and the formation of potholes. Aust J Earth Sci 39:277–287. doi:10.1080/08120099208728023

    Article  Google Scholar 

  • Boudreau AE, McCallum IS (1992) Concentration of platinum-group elements by magmatic fluids in layered intrusions. Econ Geol 87:1830–1848. doi:10.2113/gsecongeo.87.7.1830

    Article  Google Scholar 

  • Boudreau A, Philpotts A (2002) Quantitative modeling of compaction in the Holyoke flood basalt flow, Hartford Basin, Connecticut. Contrib Mineral Petrol 144:176–184. doi:10.1007/s00410-002-0391-4

    Article  Google Scholar 

  • Cabane H, Laporte D, Provost A (2001) Experimental investigation of the kinetics of Ostwald ripening of quartz in silicic melts. Contrib Miner Petrol 142:361–373

    Article  Google Scholar 

  • Cabane H, Laporte D, Provost A (2005) An experimental study of Ostwald ripening of olivine and plagioclase in silicate melts: implications for the growth and size of crystals in magmas. Contrib Mineral Petrol 150:37–53. doi:10.1007/s00410-005-0002-2

    Article  Google Scholar 

  • Campbell IH (1978) Some problems with the cumulus theory. Lithos 11:311–323. doi:10.1016/0024-4937(78)90038-5

    Article  Google Scholar 

  • Campbell IH (1996) Fluid dynamic processes in basaltic magma chambers. In: Richard Grant C (ed) Developments in petrology, vol 15. Elsevier, Amsterdam, pp 45–76. doi:10.1016/S0167-2894(96)80004-2

    Google Scholar 

  • Cawthorn RG, Davies G (1983) Experimental data at 3 kbars pressure on parental magma to the Bushveld Complex. Contrib Miner Petrol 83:128–135. doi:10.1007/BF00373085

    Article  Google Scholar 

  • Cawthorn RG, Walraven F (1998) Emplacement and crystallization time for the Bushveld complex. J Petrol 39:1669–1687. doi:10.1093/petroj/39.9.1669

    Article  Google Scholar 

  • Connolly JAD, Podladchikov YY (2000) Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins. Tectonophysics 324:137–168. doi:10.1016/S0040-1951(00)00084-6

    Article  Google Scholar 

  • Connolly JAD, Schmidt MW, Solferino G, Bagdassarov N (2009) Permeability of asthenospheric mantle and melt extraction rates at mid-ocean ridges. Nature 462:209–212. doi:http://www.nature.com/nature/journal/v462/n7270/suppinfo/nature08517_S1.html

  • Deer WA, Howie RA, Zussman J (1992) An introduction to rock forming minerals. Pearson Prentice Hall, England

    Google Scholar 

  • Eales HV (2000) Implications of the chromium budget of the Western Limb of the Bushveld complex. S Afr J Geol 103:141–150

    Article  Google Scholar 

  • Evans B, Renner J, Hirth G (2001) A few remarks on the kinetics of static grain growth in rocks. Int J Earth Sci 90:88–103

    Article  Google Scholar 

  • Faul UH, Scott D (2006) Grain growth in partially molten olivine aggregates. Contrib Miner Petrol 151:101–111. doi:10.1007/s00410-005-0048-1

    Article  Google Scholar 

  • Fowler AC, Yang X (1999) Pressure solution and viscous compaction in sedimentary basins. J Geophys Res Solid Earth 104:12989–12997. doi:10.1029/1998JB900029

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134. doi:10.1016/j.epsl.2008.03.038

    Article  Google Scholar 

  • Hatton CJ, von Gruenewaldt G (1987) Evolution of chromium ore fields. Van Nostrand Reihnhold Co., New York

    Google Scholar 

  • Herwegh M, Linckens J, Ebert A, Berger A, Brodhag SH (2011) The role of second phases for controlling microstructural evolution in polymineralic rocks: a review. J Struct Geol 33:1728–1750. doi:10.1016/j.jsg.2011.08.011

    Article  Google Scholar 

  • Higgins MD (1994) Numerical modeling of crystal shapes in thin sections; estimation of crystal habit and true size. Am Mineral 79:113–119

    Google Scholar 

  • Higgins MD (2000) Measurement of crystal size distributions. Am Mineral 85:1105–1116

    Google Scholar 

  • Higgins MD (2006) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Higgins MD (2010) Textural coarsening in igneous rocks. Int Geol Rev 53:354–376. doi:10.1080/00206814.2010.496177

    Article  Google Scholar 

  • Hoshide T, Obata M, Akatsuka T (2006) Crystal settling and crystal growth of olivine in magmatic differentiation—the Murotomisaki Gabbroic complex, Shikoku. Jpn J Mineral Petrolog Sci 101:223–239. doi:10.2465/jmps.101.223

    Article  Google Scholar 

  • Hulbert LJ, Von Gruenewaldt G (1985) Textural and compositional features of chromite in the lower and critical zones of the Bushveld complex south of Potgietersrus. Econ Geol 80:872–895. doi:10.2113/gsecongeo.80.4.872

    Article  Google Scholar 

  • Hunter RH (1996a) Texture development in cumulate rocks. In: Cawthorn RG (ed) Layered intrusions developments in petrology, vol 15. Elsevier Science B. V., Netherlands, pp 77–101

    Chapter  Google Scholar 

  • Hunter RH (1996b) Texture development in cumulate rocks. In: Richard Grant C (ed) Developments in petrology, vol 15. Elsevier, Amsterdam, pp 77–101. doi:10.1016/S0167-2894(96)80005-4

    Google Scholar 

  • Irvine T (1970) Heat transfer during solidification of layered intrusions. I. Sheets sills. Can J Earth Sci 7:1031–1061

    Article  Google Scholar 

  • Irvine TN (1982) Terminology for layered intrusions. J Petrol 23:127–162. doi:10.1093/petrology/23.2.127

    Article  Google Scholar 

  • Irvine TN (1987) Layering and related structures in the Duke Island and Skaergaard intrusion: similarities, differences, and origins. In: Parsons I (ed) Origins of igneous layering, vol NATO ASI Series C. Doldrecht: D. Reidel, pp 185–246

  • Jackson ED (1967) Ultramafic cumulates in the Stillwater, Great Dyke and Bushveld intrusions. In: Wyllie PJ (ed) Ultramafic and related rocks. Wiley, New York, pp 20–38

    Google Scholar 

  • Lesher CE, Walker D (1988) Cumulate maturation and melt migration in a temperature-gradient. J Geophys Res Solid Earth Planets 93:10295–10311. doi:10.1029/JB093iB09p10295

    Article  Google Scholar 

  • Maier WD, Barnes SJ, Groves DI (2013) The Bushveld complex, South Africa: formation of platinum–palladium, chrome- and vanadium-rich layers via hydrodynamic sorting of a mobilized cumulate slurry in a large, relatively slowly cooling, subsiding magma chamber. Miner Depos 48:1–56. doi:10.1007/s00126-012-0436-1

    Article  Google Scholar 

  • Marsh B (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. Contrib Miner Petrol 99:277–291. doi:10.1007/BF00375362

    Article  Google Scholar 

  • Mathez EA, Mey JL (2005) Character of the UG2 chromitite and host rocks and petrogenesis of its Pegmatoidal Footwall, Northeastern Bushveld complex. Econ Geol 100:1617–1630. doi:10.2113/gsecongeo.100.8.1617

    Article  Google Scholar 

  • Mathez EA, Hunter RH, Kinzler R (1997) Petrologic evolution of partially molten cumulate: the Atok section of the Bushveld complex. Contrib Miner Petrol 129:20–34. doi:10.1007/s004100050320

    Article  Google Scholar 

  • McBirney AR (1995) Mechanisms of differentiation in the Skaergaard intrusion. J Geol Soc 152:421–435. doi:10.1144/gsjgs.152.3.0421

    Article  Google Scholar 

  • McBirney AR, Nicolas A (1997) The Skaergaard layered series: Part II. Magmatic flow and dynamic layering. J Petrol 38:569–580

    Article  Google Scholar 

  • McBirney AR, Noyes RM (1979) Crystallization and layering of the Skaergaard intrusion. J Petrol 20:487–554

    Article  Google Scholar 

  • McBirney AR, Boudreau AE, Marsh BD (2009) Comments on: Textural maturity of cumulates: a record of chamber filling, liquidus assemblage, cooling rate and large-scale convection in mafic layered intrusions and a textural record of solidification and cooling in the Skaergaard intrusion, East Greenland. J Petrol 50:93–95. doi:10.1093/petrology/egn073

    Article  Google Scholar 

  • McKenzie D (1984) The generation and compaction of partially molten rock. J Petrol 25:713–765. doi:10.1093/petrology/25.3.713

    Article  Google Scholar 

  • McKenzie D (1985) The extraction of magma from the crust and mantle. Earth Planet Sci Lett 74:81–91. doi:10.1016/0012-821X(85)90168-2

    Article  Google Scholar 

  • McKenzie D (2011) Compaction and crystallization in magma chambers: towards a model of the Skaergaard intrusion. J Petrol 52:905–930. doi:10.1093/petrology/egr009

    Article  Google Scholar 

  • Meurer WP, Boudreau AE (1998) Compaction of igneous cumulates part II: compaction and the development of igneous foliations. J Geol 106:293–304. doi:10.1086/516023

    Article  Google Scholar 

  • Mirza S, Richardson JF (1979) Sedimentation of suspensions of particles of two or more sizes. Chem Eng Sci 34:447–454. doi:10.1016/0009-2509(79)85088-5

    Article  Google Scholar 

  • Mondal SK, Mathez EA (2007) Origin of the UG2 chromitite layer, Bushveld complex. J Petrol 48:495–510. doi:10.1093/petrology/egl069

    Article  Google Scholar 

  • Morgan DJ, Jerram DA (2006) On estimating crystal shape for crystal size distribution analysis. J Volcanol Geotherm Res 154:1–7. doi:10.1016/j.jvolgeores.2005.09.016

    Article  Google Scholar 

  • Mungall JE, Naldrett AJ (2008) Ore deposits of the platinum-group elements. Elements 4:253–258

    Article  Google Scholar 

  • Naldrett AJ, Wilson A, Kinnaird J, Yudovskaya M, Chunnett G (2012) The origin of chromitites and related PGE mineralization in the Bushveld complex: new mineralogical and petrological constraints. Miner Depos 47:209–232. doi:10.1007/s00126-011-0366-3

    Article  Google Scholar 

  • Namur O, Charlier B (2012) Efficiency of compaction and compositional convection during mafic crystal mush solidification: the Sept Iles layered intrusion. Can Contrib Mineral Petrol 163:1049–1068. doi:10.1007/s00410-011-0715-3

    Article  Google Scholar 

  • Naslund HR, McBirney AR (1996) Mechanisms of formation of igneous layering. In: Richard Grant C (ed) Developments in petrology, vol 15. Elsevier, Amsterdam, pp 1–43. doi:10.1016/S0167-2894(96)80003-0

    Google Scholar 

  • Philpotts AR, Carroll M, Hill JM (1996) Crystal-mush compaction and the origin of pegmatitic segregation sheets in a thick flood-basalt flow in the Mesozoic Hartford Basin, Connecticut. J Petrol 37:811–836. doi:10.1093/petrology/37.4.811

    Article  Google Scholar 

  • Richardson JF, Zaki WN (1954) Sedimentation and fluidization(I). Chem Eng 33:35–55

    Google Scholar 

  • Schmidt MW, Forien M, Solferino G, Bagdassarov N (2012) Settling and compaction of olivine in basaltic magmas: an experimental study on the time scales of cumulate formation. Contrib Miner Petrol 164:959–976

    Article  Google Scholar 

  • Schwindinger KR (1999) Particle dynamics and aggregation of crystals in a magma chamber with application to Kilauea Iki olivines. J Volcanol Geotherm Res 88:209–238. doi:10.1016/S0377-0273(99)00009-8

    Article  Google Scholar 

  • Sharpe MR (1981) The chronology of magma influxes to the eastern compartment of the Bushveld complex as exemplified by its marginal border groups. J Geol Soc 138:307–326. doi:10.1144/gsjgs.138.3.0307

    Article  Google Scholar 

  • Sharpe MR, Hulbert LJ (1985) Ultramafic sills beneath the eastern Bushveld complex; mobilized suspensions of early lower zone cumulates in a parental magma with boninitic affinities. Econ Geol 80:849–871. doi:10.2113/gsecongeo.80.4.849

    Article  Google Scholar 

  • Shimizu I (1995) Kinetics of pressure solution creep in quartz: theoretical considerations. Tectonophysics 245:121–134. doi:10.1016/0040-1951(94)00230-7

    Article  Google Scholar 

  • Shirley DN (1986) Compaction of igneous cumulates. J Geol 94:795–809. doi:10.2307/30071584

    Article  Google Scholar 

  • Shirley DN (1987) Differentiation and compaction in the Palisades Sill. N J J Petrol 28:835–865. doi:10.1093/petrology/28.5.835

    Article  Google Scholar 

  • Singh P, Joseph DD (2000) Sedimentation of a sphere near a vertical wall in an Oldroyd-B fluid. J Non-Newton Fluid Mech 94:179–203. doi:10.1016/S0377-0257(00)00157-9

    Article  Google Scholar 

  • Sparks RSJ, Huppert HE, Kerr RC, McKenzie DP, Tait SR (1985) Postcumulus processes in layered intrusions. Geol Mag 122:555–568. doi:10.1017/S0016756800035470

    Article  Google Scholar 

  • Stolper E, Walker D (1980) Melt density and the average composition of basalt. Contrib Min Petrol 74:7–12

    Article  Google Scholar 

  • Tatum JA, Finnis MV, Lawson NJ, Harrison GM (2005) 3-D particle image velocimetry of the flow field around a sphere sedimenting near a wall: Part 2. Effects of distance from the wall. J Non-Newtonian Fluid Mech 127:95–106. doi:10.1016/j.jnnfm.2005.02.008

    Article  Google Scholar 

  • Taylor WR, Green DH (1988) Measurement of reduced peridotite–C–O–H solidus and implications for redox melting of the mantle. Nature 332:349–352

    Article  Google Scholar 

  • Tegner C, Thy P, Holness MB, Jakobsen JK, Lesher CE (2009) Differentiation and compaction in the Skaergaard intrusion. J Petrol 50:813–840. doi:10.1093/petrology/egp020

    Article  Google Scholar 

  • Tomkins MR, Baldock TE, Nielsen P (2005) Hindered settling of sand grains. Sedimentology 52:1425–1432. doi:10.1111/j.1365-3091.2005.00750.x

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics. Cambridge University Press, New York

    Book  Google Scholar 

  • Ulmer P, Luth RW (1991) The graphite–COH fluid equilibrium in P, T, fO2 space—an experimental determination to 30 Kbar and 1600 °C. Contrib Miner Petrol 106:265–272. doi:10.1007/bf00324556

    Article  Google Scholar 

  • VanTongeren JA, Mathez EA, Kelemen PB (2010) A felsic end to Bushveld differentiation. J Petrol 51:1891–1912. doi:10.1093/petrology/egq042

    Article  Google Scholar 

  • Wager LR, Brown GM (1968) Layered igneous rocks. Oliver and Boyd, London

    Google Scholar 

  • Wager LR, Brown GM, Wadsworth WJ (1960) Types of igneous cumulates. J Petrol 1:73–85. doi:10.1093/petrology/1.1.73

    Article  Google Scholar 

  • Walker D, Jurewicz SR, Watson EB (1985) Experimental observation of an isothermal transition from orthocumulate to adcumulus texture. Eos Trans AGU 66:362

    Google Scholar 

  • Walker D, Jurewicz SR, Watson EB (1988) Adcumulate dunite growth in a small thermal gradient. Contrib Mineral Petrol 99:306–319

    Article  Google Scholar 

  • Waters C, Boudreau AE (1996) A reevaluation of crystal-size distributions in chromite cumulates. Am Mineral 81:1452–1459

    Google Scholar 

  • Yang X-S (2001) Density-driven compactional flow in porous media. J Comput Appl Math 130:245–257. doi:10.1016/S0377-0427(99)00379-9

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Swiss National Science Foundation (SNF) Marie Heim Voegtlin (MHV) program, Grant No. PMCDP2_129181, and by generous support of ETH Zurich. We also thank J.A.D. Connolly for discussion of compaction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrzad Manoochehri.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoochehri, S., Schmidt, M.W. Settling and compaction of chromite cumulates employing a centrifuging piston cylinder and application to layered mafic intrusions. Contrib Mineral Petrol 168, 1091 (2014). https://doi.org/10.1007/s00410-014-1091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1091-6

Keywords

Navigation