Skip to main content
Log in

The variation of tetrahedral bond lengths in sodic plagioclase feldspars

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Multiple linear regression analysis has been applied to the geometric and chemical variables in sodic plagioclases in order to determine their relative effects on individual T-O bond lengths in the Al1+xSi3−xO8 tetrahedral framework. Using data from crystal structure analyses of low and high albite, An16 and An28, and assuming that low albite is completely ordered,

$$\begin{gathered} {\text{T}} - {\text{O = 1}}{\text{.568}} + {\text{[(0}}{\text{.122) x (Al content of the T site)]}} \hfill \\ {\text{ }} - {\text{[(0}}{\text{.037) x (}}\Delta {\text{{\rm A}l}}_{{\text{br}}} )] + [0.063){\text{ x }}(\Sigma {\text{[}}q{\text{/(Na,Ca}} - {\text{O)}}^{\text{2}} ])] \hfill \\ {\text{ }} + {\text{[(0}}{\text{.029) x (}} - {\text{1/cosT}} - {\text{O}} - {\text{T)]}} \hfill \\ \end{gathered}$$
(1)

where the Al content of a particular tetrahedral (T) site can be estimated from empirically-derived determinative curves, where Δ Albr is a linkage factor to account for the Al content of adjacent tetrahedral sites, where the formal charge on the (Na1−xCax) atom is q=1+x, and where T-O-T is the inter-tetrahedral angle involving the T-O bond. For sodic plagioclases it is essential to know only the anorthite content and the 2Θ131-2Θ1¯31 spacing (CuK α radiation) in order to determine the independent variables in this equation and thus to evaluate the individual T-O distances.

The 64 individual T-O distances predicted for the four sodic plagioclases by this equation agree well with the observed T-O bond lengths (σ=0.004 Å; r=0.994), and the method has been used by way of example to rationalize the T-O bond lengths in analcime (cf. Ferraris, Jones and Yerkess, 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleman, D. E., Clark, J. R.: Crystal structure of reedmergnerite, a boron albite, and its relation to feldspar crystal chemistry. Am. Mineralogist 50, 1827–1850 (1965).

    Google Scholar 

  • Baur, W. H.: The prediction of bond length variations in silicon-oxygen bonds. Am. Mineralogist 56, 1573–1599 (1971).

    Google Scholar 

  • Brown, B. E., Bailey, S. W.: The structure of maximum microcline. Acta Cryst. 17, 1391–1400 (1964).

    Google Scholar 

  • Brown, G. E., Gibbs, G. V., Ribbe, P. H.: The nature and variation in length of the Si-O and Al-O bonds in framework silicates. Am. Mineralogist 54, 1044–1061 (1969).

    Google Scholar 

  • Clark, J. R., Papike, J. J.: Silicon-oxygen bonds in chain and framework silicates. Progr. Am. Crystallogr. Assoc. Abstr. Summer Mtg., 91 (1967).

  • Cruickshank, D. W. J.: The role of 3d-orbitals in π-bonds between (a) silicon, phosphorus, sulfur or chlorine and (b) oxygen or nitrogen. J. Chem. Soc. 5486–5504 (1961).

  • Draper, N. R., Smith, H.: Applied regression analysis. New York: John Wiley & Sons, Inc. 1966.

    Google Scholar 

  • Ferraris, G., Jones, D. W., Yerkess, J.: A neutron-diffraction study of the crystal structure of analcime, NaAlSi2O6·H2O. Z. Krist. 135, 240–252 (1972).

    Google Scholar 

  • Finney, J. J., Bailey, S. W.: Crystal structure of an authigenic maximum microcline. Z. Krist. 119, 413–436 (1964).

    Google Scholar 

  • Fleet, S. G., Chandrasekhar, S., Megaw, H. D.: The structure of bytownite (“body-centered anorthite”). Acta Cryst. 21, 782–801 (1966).

    Google Scholar 

  • Gait, R. I., Ferguson, R. B., Coish, H. R.: Electrostatic charge distributions in the structure of low albite, NaAlSi3O8. Acta Cryst. 26, 68–77 (1970).

    Google Scholar 

  • Gibbs, G. V., Hamil, M. M., Louisnathan, S. J., Bartell, L. S., Yow, H.: Correlations between Si-O bond length, Si-O-Si angle and bond overlap populations calculated using extended Hückel molecular orbital theory. Am. Mineralogist 57, 1578–1613 (1972).

    Google Scholar 

  • Jones, J. B.: Al-O and Si-O tetrahedral distances in alumino-silicate framework structures. Acta Cryst. B 24, 355–358 (1968).

    Google Scholar 

  • Jones, J. B., Taylor, W. H.: Bond lengths in alkali feldspars. Acta Cryst. 24, 1387–1392 (1968).

    Google Scholar 

  • Kroll, H.: Determination of Al, Si distribution in alkali feldspars from x-ray powder data. Neues Jahrb. Mineral. Monatsh. 1971, 91–94 (1971).

    Google Scholar 

  • Megaw, H. D., Kempster, C. J. E., Radoslovich, E. W.: The structure of anorthite, CaAl2Si2O8. II. Description and discussion. Acta Cryst. 15, 1017–1035 (1962).

    Google Scholar 

  • Phillips, M. W., Colville, A. A., Ribbe, P. H.: The crystal structures of two oligoclases: a comparison with low and high albite. Z. Krist. 133, 43–65 (1971).

    Google Scholar 

  • Phillips, M. W., Ribbe, P. H.: The structures of monoclinic potassium-rich feldspars. Am. Mineralogist 58 (in press, 1973).

  • Phillips, M. W., Ribbe, P. H., Gibbs, G. V.: Tetrahedral bond length variations in anorthite. Am. Mineralogist 58 (in press, 1973).

  • Ribbe, P. H.: One-parameter characterization of the average Al/Si distribution in plagioclase feldspars. J. Geophys. Res. 77, 5790–5797 (1972).

    Google Scholar 

  • Ribbe, P. H., Gibbs, G. V.: Statistical analysis of mean Al/Si-O bond distances and Al content of tetrahedra in feldspars. Am. Mineralogist 54, 85–94 (1969).

    Google Scholar 

  • Ribbe, P. H., Megaw, H. D., Taylor, W. H.: The albite structures. Acta Cryst. 25, 1503–1518 (1969).

    Google Scholar 

  • Ribbe, P. H., Phillips, M. W., Gibbs, G. V.: Tetrahedral bond length variations in feldspars. In: MacKenzie, W. S., Zussman, J., Eds., Proc. N.A.T.O. Advanced Studies Institute on Feldspars. Manchester: Manchester University Press 1973.

    Google Scholar 

  • Shannon, R. D., Prewitt, C. T.: Effective ionic radii in oxides and fluorides. Acta Cryst. B 25, 925–946 (1969).

    Google Scholar 

  • Smith, J. V.: A review of the Al-O and Si-O distances. Acta Cryst. 7, 479–483 (1954).

    Google Scholar 

  • Smith, J. V., Bailey, S. W.: Second review of Al-O and Si-O tetrahedral distances. Acta Cryst. 16, 801–810 (1963).

    Google Scholar 

  • Stewart, D. B., Ribbe, P. H.: Structural explanation for variations in cell parameters of alkali feldspar with Al/Si ordering. Am. J. Sci. 267 A, 444–462 (1969).

    Google Scholar 

  • Taylor, D.: The relationship between Si-O distances and Si-O-Si bond angles in the silica polymorphe. Mineral. Mag. 38, 629–631 (1972).

    Google Scholar 

  • Wainwright, J. E., Starkey, J.: Crystal structure of a metamorphic low albite. Geol. Soc. Prog. Abstr. 2, 310 (1968).

    Google Scholar 

  • Wainwright, J. E., Starkey, J.: A refinement of the structure of anorthite. Z. Krist. 133, 75–84 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, M.W., Ribbe, P.H. The variation of tetrahedral bond lengths in sodic plagioclase feldspars. Contr. Mineral. and Petrol. 39, 327–339 (1973). https://doi.org/10.1007/BF00376472

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376472

Keywords

Navigation