Skip to main content

Advertisement

Log in

Intercomparison and validation of the mixed layer depth fields of global ocean syntheses

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Intercomparison and evaluation of the global ocean surface mixed layer depth (MLD) fields estimated from a suite of major ocean syntheses are conducted. Compared with the reference MLDs calculated from individual profiles, MLDs calculated from monthly mean and gridded profiles show negative biases of 10–20 m in early spring related to the re-stratification process of relatively deep mixed layers. Vertical resolution of profiles also influences the MLD estimation. MLDs are underestimated by approximately 5–7 (14–16) m with the vertical resolution of 25 (50) m when the criterion of potential density exceeding the 10-m value by 0.03 kg m−3 is used for the MLD estimation. Using the larger criterion (0.125 kg m−3) generally reduces the underestimations. In addition, positive biases greater than 100 m are found in wintertime subpolar regions when MLD criteria based on temperature are used. Biases of the reanalyses are due to both model errors and errors related to differences between the assimilation methods. The result shows that these errors are partially cancelled out through the ensemble averaging. Moreover, the bias in the ensemble mean field of the reanalyses is smaller than in the observation-only analyses. This is largely attributed to comparably higher resolutions of the reanalyses. The robust reproduction of both the seasonal cycle and interannual variability by the ensemble mean of the reanalyses indicates a great potential of the ensemble mean MLD field for investigating and monitoring upper ocean processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alves O, Shi L, Wedd R, Balmaseda M, Chang Y, Chepurin G, Fujii Y, Gaillard F, Good S, Guinehut S, Haines K, Hernandez F, Lee T, Palmer M, Peterson KA, Masuda S, Storto A, Toyoda T, Valdivieso M, Vernieres G, Wang X, Yin Y (2014) An assessment of upper ocean salinity reanalyses from CLIVAR GSOP/GODAE system. CLIVAR EXCHANGES 64:11–14

    Google Scholar 

  • Balmaseda MA, Dee D, Vidard A, Anderson DLT (2007) A multivariate treatment of bias for sequential data assimilation: application to the tropical oceans. Q J R Meteorol Soc 133:167–179. doi:10.1002/qj.12

    Article  Google Scholar 

  • Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161. doi:10.1002/qj.2063

    Article  Google Scholar 

  • Balmaseda MA, Hernandez F, Storto A, Palmer MD, Alves O, Shi L, Smith GC, Toyoda T, Valdivieso M, Barnier B, Behringer D, Boyer T, Chang YS, Chepurin GA, Ferry N, Forget G, Fujii Y, Good S, Guinehut S, Haines K, Ishikawa Y, Keeley S, Köhl A, Lee T, Martin M, Masina S, Masuda S, Meyssignac B, Mogensen K, Parent L, Peterson KA, Tang YM, Yin Y, Vernieres G, Wang X, Waters J, Wedd R, Wang O, Xue Y, Chevallier M, Lemieux JF, Dupont F, Kuragano T, Kamachi M, Awaji T, Caltabiano A, Wilmer-Becker K, Gaillard F (2015) The ocean reanalyses intercomparison project (ORA-IP). J Oper Oceanogr 7(3):81–99

    Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed-layer physics. J Phys Oceanogr 23:1363–1388

    Article  Google Scholar 

  • Blockley E et al (2013) Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new global FOAM forecasts. Geosci Model Dev Discuss 6:6219–6278. doi:10.5194/gmdd-6-6219-2013

    Article  Google Scholar 

  • Chang YS, Zhang S, Rosati A, Delworth TL, Stern WF (2013) An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Clim Dyn 40:775–803. doi:10.1007/s00382-012-1412-2

    Article  Google Scholar 

  • Chen D, Busalacchi AJ, Rothstein LM (1994) The roles of vertical mixing, solar-radiation, and wind stress in a model simulation of the sea-surface temperature seasonal cycle in the tropical Pacific-Ocean. J Geophys Res 99(C10):20345–20359

    Article  Google Scholar 

  • Danabasoglu G et al (2014) North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: Mean state. Ocean Model 73:76–107. doi:10.1016/j.ocemod.2013.10.005

    Article  Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378

    Article  Google Scholar 

  • Dodimead AJ (1967) Winter oceanographic conditions in the Central Subarctic Pacific. Int North Pac Comm 999:1–14

    Google Scholar 

  • Ferry N, Parent L, Garric G, Bricaud C, Testut CE, Le Galloudec O, Lellouche JM, Drévillon M, Greiner E, Barnier B, Molines JM, Jourdain N, Guinehut S, Zawadzki L (2012) GLORYS2V1 global ocean reanalysis of the altimetric era (1993–2009) at meso scale. Mercator Ocean Newsl 44:28–39

    Google Scholar 

  • Fujii Y, Nakaegawa N, Matsumoto S, Yasuda T, Yamanaka G, Kamachi M (2009) Coupled climate simulation by constraining ocean fields in a coupled model with ocean data. J Clim 22:5541–5557

    Article  Google Scholar 

  • Fukumori I (2002) A partitioned Kalman filter and smoother. Mon Weather Rev 130:1370–1383

    Article  Google Scholar 

  • Gnanadesikan A et al (2006) GFDL’s CM2 global coupled climate models. Part II: the baseline ocean simulation. J Clim 19:675–697. doi:10.1175/JCLI3630.1

    Article  Google Scholar 

  • Guinehut S, Dhomps AL, Larnicol G, Le Traon PY (2012) High resolution 3D temperature and salinity fields derived from in situ and satellite observations. Ocean Sci 8:845–857. doi:10.5194/os-8-845-2012

    Article  Google Scholar 

  • Haines K, Valdivieso M, Zuo H, Stepanov VN (2012) Transports and budgets in a 1/4° global ocean reanalysis 1989–2010. Ocean Sci 8(3):333–344. doi:10.5194/os-8-333-2012.002/qj.2063

    Article  Google Scholar 

  • Hasumi H, Tatebe H, Kawasaki T, Kurogi M, Sakamoto TT (2010) Progress of North Pacific modelling over the past decade. Deep-Sea Res II 57:1188–1200. doi:10.1016/j.dsr2.2009.12.008

    Article  Google Scholar 

  • Hosoda S, Ohira T, Sato K, Suga T (2010) Improved description of global mixed-865 layer depth using Argo profiling floats. J Oceanogr 66:773–787. doi:10.1007/s10872-866-010-0063-3

    Article  Google Scholar 

  • Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles—historical and real-time data. J Mar Syst 65:158–175. doi:10.1016/j.jmarsys.2005.11.019

    Article  Google Scholar 

  • Iwasaki S, Kubota M, Watabe T (2014) Assessment of various global freshwater flux products for the global ice-free oceans. Rem Sens Env 140:549–561. doi:10.1016/j.rse.2013.09.026

    Article  Google Scholar 

  • Janssen PAEM (2012) Ocean wave effects on the daily cycle in SST. J Geophys Res 117:C00J32. doi:10.1029/2012JC007943

  • Juza M, Penduff T, Brankart JM, Barnier B (2012) Estimating the distortion of mixed layer property distributions induced by the Argo sampling. J Oper Oceanogr 5:45–58

    Article  Google Scholar 

  • Katsura S, Oka E (2014) Formation mechanism of winter barrier layer in the subtropical Pacific. In: 2014 ocean science meeting, 23–28 Feb 2014, Honolulu, Hawaii, USA

  • Köhl A (2014) Evaluation of the GECCO2 ocean synthesis: transports of volume, heat and freshwater in the Atlantic. Q J R Meteorol Soc. doi:10.1002/qj.2347

    Google Scholar 

  • Köhl A, Sena Martins M, Stammer D (2014) Impact of assimilating surface salinity from SMOS on ocean circulation estimates. J Geophys Res 119:5449–5464. doi:10.1002/2014JC010040

    Article  Google Scholar 

  • Lahoz W, Errera Q (2010) Constituent assimilation. In: Lahoz W, Khattatov B, Menard R (eds) Data assimilation, making sense of observations. Springer, New York, pp 449–490. doi:10.1007/987-3-540-74703-1

    Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403

    Article  Google Scholar 

  • Lee T, Awaji T, Balmaseda MA, Grenier E, Stammer D (2009) Ocean state estimation for climate research. Oceanography 22:160–167. doi:10.5670/oceanog.2009.74

    Article  Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean. NOAA/ERL GFDL, Princeton

    Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, volume 1: temperature. In: Levitus S (ed) NOAA Atlas NESDIS 68. US Government Printing Office, Washington, p 184

    Google Scholar 

  • Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific Ocean. J Geophys Res 96:3343–3357

    Article  Google Scholar 

  • Maes C, Ando K, Delcroix T, Kessler WS, McPhaden MJ, Roemmich D (2006) Observed correlation of surface salinity, temperature and barrier layer at the eastern edge of the western Pacific warm pool. Geophys Res Lett 33:L06601. doi:10.1029/2005GL024772

    Article  Google Scholar 

  • Masuda S, Awaji T, Sugiura N, Matthews JP, Toyoda T, Kawai Y, Doi T, Kouketsu S, Igarashi H, Katsumata K, Uchida H, Kawano T, Fukasawa M (2010) Simulated rapid warming of abyssal North Pacific waters. Science 329:319–322. doi:10.1126/science.1188703

    Article  Google Scholar 

  • Mochizuki T, Ishii M, Kimoto M, Chikamoto Y, Watanabe M, Nozawa T, Sakamoro TT, Shiogama H, Awaji T, Sugiura N, Toyoda T, Yasunaka S, Tatebe H, Mori M (2010) Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc Natl Acad Sci USA 107:1833–1837. doi:10.1073/pnas.0906531107

    Article  Google Scholar 

  • Morioka Y, Tozuka T, Masson S, Terray P, Luo JJ, Yamagata T (2012) Subtropical dipole modes simulated in a coupled general circulation model. J Clim 25:4029–4047. doi:10.1175/JCLI-D-11-00396.1

    Article  Google Scholar 

  • Noh Y, Lee WS (2008) Prediction of the mixed and mixing layer depths from an OGCM. J Oceanogr 64:217–225. doi:10.1007/s10872-008-0017-1

    Article  Google Scholar 

  • Noh Y, Kang YJ, Matsuura T, Iizuka S (2005) Effect of the Prandtl number in the parameterization of vertical mixing in an OGCM of the tropical Pacific. Geophys Res Lett 32:L23609. doi:10.1029/2005GL024540

    Article  Google Scholar 

  • Palmer M, Balmaseda M, Chang YS, Chepurin G, Fujii Y, Good S, Guinehut S, Hernandez F, Martin M, Masuda S, Peterson KA, Toyoda T, Valdivieso M, Vernieres G, Wang O, Xue Y (2014) GLIVAR-GSOP/GODAE intercomparison of ocean heat content: initial results. CLIVAR EXCHANGES 64:8–10

    Google Scholar 

  • Pedlosky J (1996) Ocean circulation theory. Springer, Berlin. doi:10.1007/987-3-662-03204-6

    Book  Google Scholar 

  • Shay LK, Goni GJ, Black PG (2000) Effects of a warm oceanic feature on Hurricane Opal. Mon Weather Rev 128:1366–1383

    Article  Google Scholar 

  • Smith G, Chevallier M, Lemieux JF, Dupont F, Vernieres G, Storto A, Toyoda T, Fujii Y, Chang Y, Valdivieso M, Peterson KA, Ferry N, Hernandez F, Balmaseda MA, Keeley S, Wang X (2014) Preliminary evaluation of sea ice fields form the ocean reanalyses intercomparison project. CLIVAR EXCHANGES 64:32–34

    Google Scholar 

  • Storto A, Dobricic S, Masina S, Di Pietro P (2011) Assimilating along-track altimetric observations through local hydrostatic adjustment in a global ocean variational assimilation system. Mon Weather Rev 139:738–754. doi:10.1175/2010MWR3350.1

    Article  Google Scholar 

  • Suga T, Kato A, Hanawa K (2000) North Pacific Tropical Water: its climatology and temporal changes associated with the climate regime shift in the 1970s. Prog Oceanogr 47:223–256

    Article  Google Scholar 

  • Sugiura N, Awaji T, Masuda S, Mochizuki T, Toyoda T, Miyama T, Igarashi H, Ishikawa Y (2008) Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations. J Geophys Res 113:C10017. doi:10.1029/2008JC004741

    Article  Google Scholar 

  • Takeuchi E (2006) Studies on the wintertime shoaling of oceanic surface mixed layer. PhD thesis, University of Tokyo

  • Takeuchi E, Yasuda I (2003) Wintertime shoaling of oceanic surface mixed layer. Geophys Res Lett 30:2152. doi:10.1029/2003GL018511

    Google Scholar 

  • Toyoda T, Awaji T, Ishikawa Y, Nakamura T (2004) Preconditioning of winter mixed layer in the formation of North Pacific eastern subtropical mode water. Geophys Res Lett 31:L17206. doi:10.1029/2004GL020677

    Article  Google Scholar 

  • Toyoda T, Fujii Y, Yasuda T, Usui N, Iwao T, Kuragano T, Kamachi M (2013) Improved analysis of the seasonal-interannual fields by a global ocean data assimilation system. Theor Appl Mech Jpn 61:31–48. doi:10.11345/nctam.61.31

    Google Scholar 

  • Toyoda T, Fujii Y, Kuragano T, Kamachi M, Ishikawa Y, Masuda S, Awaji T, Hernandez F, Ferry N, Guinehut S, Martin M, Peterson KA, Good S, Valdivieso M, Haines K, Storto A, Köhl A, Yin Y, Shi L, Smith G, Chang Y, Vernieres G, Wang X, Wang O, Lee T, Balmaseda M (2014) Mixed layer depth intercomparison among global ocean syntheses reanalyses. CLIVAR EXCHANGES 64:22–24

    Google Scholar 

  • Toyoda T, Fujii Y, Kuragano T, Matthews JP, Abe H, Ebuchi N, Usui N, Ogawa K, Kamachi M (2015) Improvements to a global ocean data assimilation system through the incorporation of Aquarius surface salinity data. Q J R Meteorol Soc. doi:10.1002/qj.2561

    Google Scholar 

  • Umlauf L, Burchard H (2003) A generic length-scale equation for geophysical turbulence models. J Mar Res 61(2):235–265. doi:10.1357/002224003322005087

    Article  Google Scholar 

  • Valdivieso M, Haines K, Balmaseda M, Barnier B, Chang Y, Ferry N, Fujii Y, Köhl A, Lee T, Martin M, Storto A, Toyoda T, Wang X, Waters J, Xue Y, Yin Y (2014) Heat fluxes from ocean and coupled reanalyses. CLIVAR EXCHANGES 64:28–31

    Google Scholar 

  • Vernieres G, Rienecker MM, Kovach R, Keppenne C (2012) The GEOS-iODAS: Description and evaluation. NASA Tech Rep Series on Global Modeling and Data Assimilation 30:TM-2012-104606, GSFC/NASA, Greenbelt, MD, USA

  • Wunsch C, Heimbach P (2013) Dynamically and kinematically consistent global ocean circulation and ice state estimates. In: Sielder G, Griffies SM, Gould J, Church JA (eds) Ocean circulation and climate: a 21st century perspective. International Geophysics Series, vol 103. Academic Press, Oxford, pp 553–579. doi:10.1016/b978-0-12-391851-2.00021-0

    Chapter  Google Scholar 

  • Xue Y, Balmaseda MA, Boyer T, Ferry N, Good S, Ishikawa I, Kumar A, Rienecker M, Rosati AJ, Yin Y (2012) A comparative analysis of upper-ocean heat content variability from an ensemble of operational ocean reanalyses. J Clim 25:6905–6929. dio:10.1175/JCLI-D-11-00542.1

  • Yin Y, Alves O, Oke PR (2011) An ensemble ocean data assimilation system for seasonal prediction. Mon Weather Rev 139:786–808. doi:10.1175/2010MWR3419.1

    Article  Google Scholar 

  • Yuan XJ, Talley LD (1996) The subarctic frontal zone in the North Pacific: characteristics of frontal structure from climatological data synoptic surveys. J Geophys Res 101:16491–16508

    Article  Google Scholar 

  • Zuo H, Balmaseda MA, Mogensen K (2014) The ECMWF-MyOcean2 eddy-permitting ocean and sea-ice re-analysis ORAP5. Part 1: implementation. Tech Rep 736, ECMWF, Reading, UK

Download references

Acknowledgments

We thank two anonymous reviewers for their constructive comments. The MILA-GPV dataset (Hosoda et al. 2010) is provided by the RCGC/JAMSTEC from their web site at http://www.jamstec.go.jp/ARGO/argo_web/MILAGPV/. The MLD dataset of de Boyer Montégut et al. (2004) is obtained from his web site at http://www.ifremer.fr/cerweb/deboyer/mld/home.php. The Argo float data are provided by the NODC/NOAA at their web site http://www.nodc.noaa.gov/OC5/WOD13/. This work was partly supported by the Research Program on Climate Change Adaptation (RECCA) of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese government (MEXT), by the Data Integration and Analysis System (DIAS) of the MEXT, by the joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101), by the UK Public Weather Service Research Programme, and by the European Commission funded projects MyOcean (FP7-SPACE-2007-1) and MyOcean2 (FP7-SPACE-2011-1). During the preparation of this article, our co-author Nicolas Ferry passed away. He was an active and supportive member of the ORA-IP and CLIVAR-GSOP activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Toyoda.

Additional information

This paper is a contribution to the special issue on Ocean estimation from an ensemble of global ocean reanalyses consisting of papers from the Ocean Reanalyses Intercomparsion Project (ORAIP), coordinated by CLIVAR-GSOP and GODAE OceanView. The special issue also contains specific studies using single reanalysis systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toyoda, T., Fujii, Y., Kuragano, T. et al. Intercomparison and validation of the mixed layer depth fields of global ocean syntheses. Clim Dyn 49, 753–773 (2017). https://doi.org/10.1007/s00382-015-2637-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2637-7

Keywords

Navigation