Skip to main content

Advertisement

Log in

The regional impact of Land-Use Land-cover Change (LULCC) over West Africa from an ensemble of global climate models under the auspices of the WAMME2 project

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The population of the Sahel region of West Africa has approximately doubled in the past 50 years, and could potentially double again by the middle of this century. This has led to the northward expansion of agricultural areas at the expense of natural savanna, leading to widespread land use -land cover change (LULCC). Because there is strong evidence of significant surface-atmosphere coupling in this region, one of the main goals of the West African Monsoon Modeling and Evaluation project phase II is to provide basic understanding of LULCC on the regional climate, and to evaluate the sensitivity of the seasonal variability of the West African Monsoon to LULCC. The prescribed LULCC is based on the changes from 1950 through 1990, representing a maximum feasible degradation scenario in the past half century. It is applied to 5 state of the art global climate models (GCMs) over a 6-year simulation period. Multiple GCMs are used because the magnitude of the impact of LULCC depends on model-dependent coupling strength between the surface and the overlying atmosphere, the magnitude of the surface biophysical changes, and how the key processes linking the surface with the atmosphere are parameterized within a particular model framework. Land cover maps and surface parameters may vary widely among models; therefore a special effort was made to impose consistent biogeophysical responses of surface parameters to LULCC using a simple experimental setup. The prescribed LULCC corresponds to degraded vegetation conditions, which mainly cause increases in the Bowen ratio and decreases in the surface net radiation, and result in a significant reduction in surface evaporation (upwards of 1 mm day−1 over a large part of the Sahel). This, in turn, mainly leads to less moisture convergence and precipitation over the LULCC zone. The overall impact is a rainfall reduction with every model, which ranges across models from 4 to 25 % averaged over the Sahel, and a southward shift of the rainfall peak in three of the five models which evokes a precipitation dipole pattern which is consistent with the observed pattern for dry climate anomalies over this region. The African Easterly Jet shifts equator-ward, although the strength of this change varies considerably among the models. In most of the models, the main factor causing diabatic cooling of the upper troposphere and enhanced subsidence over the region of LULCC is the reduction of convective heating rates linked to reduced latent heat flux and moisture flux convergence. In broad agreement with previous studies, the impact of degradation on the regional climate is found to vary among the different models, however, the signal is stronger and more consistent between the models here than in previous inter-comparison projects. This is likely related to our emphasis on prioritizing a consistent impact of LULCC on the surface biophysical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large scale environment. J Atmos Sci 31:674–701

    Article  Google Scholar 

  • Blein R, Soulé BG, Dupaigre BF, Yérma B (2008) Agricultural Potential of West Africa. Economic Community of West African States (ECOWAS). Foundation pour l’agriculture et la ruralité dans le monde (FARM). pp 118

  • Boone A, Poccard-Leclerq I, Xue Y, Feng J, De Rosnay P (2010) Evaluation of the WAMME model surface fluxes using results from the AMMA land-surface model intercomparison project. Clim Dyn 35:127–142. doi:10.1007/s00382-009-0653-1

    Article  Google Scholar 

  • Charney JG (1975) Dynamics of deserts and drought in the Sahel. Q J R Meteorl Soc 101:193–202

    Article  Google Scholar 

  • Charney JG, Quirk WJ, Chow S-H, Kornfield J (1977) A comparative study of the effects of albedo change on drought in semi-arid regions. J Atmos Sci 34:1366–1385

    Article  Google Scholar 

  • Chou MI, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech Mem 104606(3):85

    Google Scholar 

  • Chou M-D, Suarez MJ, Liang XZ, Yan M-H (2001) A thermal infrared radiation parameterization for atmospheric studies. Technical report series on global modeling and data assimilation, vol 19, NASA/TM-2001-104606. pp 68

  • Cook KH (1999) Generation of the African easterly jet and its role in determining West African precipitation. J Clim 12:1165–1184

    Article  Google Scholar 

  • Dardel C, Kergoat L, Hiernaux P, Mougin E, Grippa M, Tucker CJ (2014) Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sens Environ 140:350–364

    Article  Google Scholar 

  • de Noblet-Ducoudré N, Boisier J, Pitman A, Bonan G, Brovkin V, Cruz F, Delire C, Gayler V, van den Kurk B, Lawrence D, van der Molen M, Müller C, Reick C, Strengers B, Voldoire A (2012) Determining robust impacts of land-use induced land-cover changeson surface climate over North America and Eurasia; Results from the first set of LUCID experiments. J Clim 25:3261–3281. doi:10.1175/JCLI-D-11-00338.1

    Article  Google Scholar 

  • Derbyshire SH (2011) Adaptive detrainment in a convective parametrization. Q J R Meteorol Soc 137:1856–1871

    Article  Google Scholar 

  • Dirmeyer PA (2011) The terrestrial segment of soil moisture-climate coupling. Geophys Res Lett 38:L16702. doi:10.1029/2011GL048268

    Article  Google Scholar 

  • Dirmeyer PA, Schlosser CA, Brubaker KL (2009) Precipitation, recycling, and land memory: an integrated analysis. J Hydrometeorol 10:278–288

    Article  Google Scholar 

  • Douglas EM, Beltrán-Przekurat A, Niyogi D, Pielke RA Sr, Vörösmarty CJ (2009) The impact of agricultural intensification and irrigation on land-atmosphere interactions and Indian monsoon precipitation-a mesoscale modeling perspective. Glob Planet Change 67:117–128. doi:10.1016/j.gloplacha.2008.12.007

    Article  Google Scholar 

  • Edwards JM, Slingo A (1996) Studies with a flexible new radiation code. I: choosing a configuration for a large-scale model. Q J R Meteorol Soc 122:689–719

    Article  Google Scholar 

  • Essery RLH, Best MJ, Betts RA, Cox PM (2002) Explicit representation of subgrid heterogeneity in a GCM land-surface scheme. J Hydrometeorol 4:530–545

    Article  Google Scholar 

  • Govaerts Y, Lattanzio A (2008) Estimation of surface albedo increase during the eighties Sahel drought from Meteosat observations. Glob Planet Change 64:139–145

    Article  Google Scholar 

  • Guimberteau M, Laval K, Perrier A, Polcher J (2012) Global effect of irrigation and its impact on the onset of the Indian summer monsoon. Clim Dyn 39:1329–1348

    Article  Google Scholar 

  • HadGEM2 model development team (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4:723–757

    Article  Google Scholar 

  • Hagos S, Leung LR, Xue Y, Boone A, de Sales F, Neupane N, Huang M, Yoon JH (2014) Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model. Clim Dyn 43:2765–2775. doi:10.1007/s00382-014-2092-x

    Article  Google Scholar 

  • Hansen MC, DeFries RS, Townshend JR, Sohlberg R (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens 21:1303–1330

    Article  Google Scholar 

  • Harshvardhan DaviesR, Randall DA, Corsetti TG (1987) A fast radiation parameterization for atmospheric circulation models. J Geophys Res 92:1009–1016

    Article  Google Scholar 

  • Houldcroft CJ, Grey WMF, Barnsley M, Taylor CM, Los SO, North PRJ (2009) New vegetation albedo parameters and global fields of soil background albedo derived from MODIS for use in a climate model. J Hydrometeorol 10:183–198. doi:10.1175/2008JHM1021.1

    Article  Google Scholar 

  • Hourdin F, Musat I, Grandpeix J-Y, Polcher J, Guichard F, Favot F, Marquet P, Boone A, Lafore J-P, Redelsperger J-L, Ruti PM, Dell’aquila A, Filiberti MA, Pham M, Doval TL, Traore AK, Gallée H (2010) AMMA-model intercomparison project. Bull Am Meteorol Soc 91:95–104. doi:10.1175/2009BAMS2791.1

    Article  Google Scholar 

  • Hurtt GC, Frolking S, Fearon MG, Moore B III, Shevliakova E, Malyshev S, Pacala SW, Houghton RA (2006) The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood harvest activity, and resulting secondary lands. Glob Change Biol 12:1208–1229. doi:10.1111/j.1365-2486.2006.01150.x

    Article  Google Scholar 

  • Hurtt GC, Chini LP, Frolking S, Betts R, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones C, Kindermann G, Kinoshita T, Klein Goldewijk K, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang Y (2011) Harmonization of land-use scenarios for the period 1500–2100: 600 Years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Change 109:117–161. doi:10.1007/s10584-011-0153-2

    Article  Google Scholar 

  • Iacono M, Delamere J, Mlawer E, Shephard M, Clough S, Collins W (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113D:13103

    Article  Google Scholar 

  • IGBP (1992) Improved global data for land applications. In: Townshend JRG (ed) IGBP Global Change Report No 20. International Geosphere-Biosphere Programme, Stockholm

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. In: Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kang H-S, Xue Y, Collatz GJ (2007) Impact assessment of satellite-derived leaf area index datasets using a general circulation model. J Clim 20:993–1015. doi:10.1175/JCLI4054.1

    Article  Google Scholar 

  • Kim D-H, Sexton JO, Townshend JR (2014) Accelerated deforestation in the humid tropics from the 1990s to the 2000s. Geophys Res Lett 42:3495–3501. doi:10.1002/2014GL062777

    Article  Google Scholar 

  • Kim DH, Sexton JO, Noojipady P, Huang C, Anand A, Channan S, Feng M, Townshend JR (2015) Global, Landsat-based forest-cover change from 1990 to 2000. Remote Sens Environ 155:178–193

    Article  Google Scholar 

  • Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140

    Article  Google Scholar 

  • Koster R, Suarez MJ, Ducharne A, Kumar P, Stieglitz M (2000) A catchment based approach to modeling land surface processes in a GCM—Part 1: model structure. J Geophys Res 105:809–822

    Article  Google Scholar 

  • Kuchler AW (1983) World map of natural vegetation. Goode’s World Atlas, 16th edn. Rand McNally, pp 16–17

  • Laval K, Picon L (1986) Effect of a change of the surface albedo of the Sahel on climate. J Atmos Sci 43:2418–2429

    Article  Google Scholar 

  • Lawrence PJ, Chase TN (2007) Representing a new MODIS consistent land surface in the community land model (CLM 3.0). J Geophys Res 112:G01023. doi:10.1029/2006JG000168

    Google Scholar 

  • Leblanc MJ, Favreau G, Massuel S, Tweed SO, Loireau M, Cappelaere B (2008) Land clearance and hydrological change in the Sahel: SW Niger. Glob Planet Change 61:135–150. doi:10.1016/j.gloplacha.2007.08.011

    Article  Google Scholar 

  • Li W, Xue Y, Poccard I (2007) Numerical investigation of the impact of vegetation indices on the variability of West African summer monsoon. J Meteorol Soc Jpn 85A:363–383

    Article  Google Scholar 

  • Mahmood R, Pielke RA Sr, Hubbard KG, Niyogi D, Dirmeyer PA, McAlpine C, Carleton AM, Hale R, Gameda S, Beltran-Przekurat A, Baker B, McNider R, Legates DR, Shepherd M, Du J, Blanken PD, Frauenfeld OW, Nair US, Fall S (2014) Land cover changes and their biogeophysical effects on climate. Int J Climatol 34:929–953. doi:10.1002/joc.3736

    Article  Google Scholar 

  • Mechoso CR, Yu JY, Arakawa A (2000) A coupled GCM pilgrimage: from climate catastrophe to ENSO simulations. General circulation model development: past, present and future. In: Proceedings of a symposium in honor of professor Akio Arakawa, D. A. Randall. Academic Press, USA, pp 539–575

  • Moorthi S, Suarez MJ (1992) Relaxed Arakawa-Schubert: a parameterization of moist convection for general circulation models. Mon Weather Rev 120:978–1002

    Article  Google Scholar 

  • Newell RE, Kidson JW (1984) African means wind changes between Sahelian wet and dry periods. Int J Climatol 4:27–33

    Article  Google Scholar 

  • Nicholson SE (2008) The intensity, location and structure of the tropical rain belt over West Africa as factors in interannual variability. Int J Climatol 28:1775–1785

    Article  Google Scholar 

  • Nicholson SE (2013) The West African Sahel: a review of recent studies on the rainfall regime and its variability. ISRN Meteorol. doi:10.1155/2013/453521

    Google Scholar 

  • Nicholson SE, Grist JP (2001) A simple conceptual model for understanding rainfall variability in the West African Sahel on interannual and interdecadal time scales. Int J Climatol 21:1733–1757

    Article  Google Scholar 

  • Nicholson SE, Tucker CJ, Ba MB (1998) Desertification, drought, and surface vegetation: an example from the West African Sahel. Bull Am Meteorol Soc 79:1–15

    Article  Google Scholar 

  • Oleson KW, Niu GY, Yang ZL, Lawrence DM, Thornton PE, Lawrence PJ, Stöckli R, Dickinson RE, Bonan GB, Levis S, Dai A, Qian T (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res 113:G01021. doi:10.1029/2007JG000563

    Article  Google Scholar 

  • Pielke RA Sr, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S, Reichstein M, Kabat P, de Noblet N (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. WIREs Clim Change 2:828–850. doi:10.1002/wcc.144

    Article  Google Scholar 

  • Pitman AJ, de Noblet-Ducoudré N, Cruz FT, Davin EL, Bonan GB, Brovkin V, Claussen M, Delire C, Ganzeveld L, Gayler V et al (2009) Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys Res Lett 36:L14814. doi:10.1029/2009GL039076

    Article  Google Scholar 

  • Ramankutty N, Evan A, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycles 22:GB1003. doi:10.1029/2007GB002952

    Article  Google Scholar 

  • Redelsperger J-L, Thorncroft CD, Diedhiou A, Lebel T, Parker DJ, Polcher J (2006) African monsoon multidisciplinary analysis: an international research project and field campaign. Bull Am Meteorol Soc 87:1739–1746

    Article  Google Scholar 

  • Roehrig R, Bouniol D, Guichard F, Hourdin F, Redelsperger J-L (2013) The present and future of the West African monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA transect. J Clim 26:6471–6505. doi:10.1175/JCLI-D-12-00505.1

    Article  Google Scholar 

  • Saeed F, Hagemann S, Jacob D (2009) Impact of irrigation on the South Asian summer monsoon. Geophys Res Lett 36:L20711. doi:10.1029/2009GL040625

    Article  Google Scholar 

  • Santer BD, Wigley TML (1990) Regional validation of means, variances, and spatial patterns in general circulation model control runs. J Geophys Res 95:829–850

    Article  Google Scholar 

  • Song G (2013) Global and Sahel regional biophysical processes, vegetation dynamics, and climate interactions. PhD Dissertation. University of California, Los Angeles, p 183

  • Sud YC, Fennessy M (1982) A study of the influence of surface albedo on July circulation in semi-arid regions using the GLAS GCM. J Climatol 2:105–125

    Article  Google Scholar 

  • Taylor CM, Parker DJ, Kalthoff N, Gaertner MA, Philippon N, Bastin S, Harris PP, Boone A, Guichard F, Flamant C, Grandpeix J-Y, Cerlini P, Baldi M, Descroix L, Douville H, Polcher J, Agusti-Panareda A (2011) New perspectives on land-atmosphere feedbacks from the African monsoon multidisciplinary analysis (AMMA). Atmos Sci Lett 12:38–44. doi:10.1002/asl.336

    Article  Google Scholar 

  • Taylor CM, de Jeu RichardAM, Guichard F, Harris PP, Dorigo WA (2012a) Afternoon rain more likely over drier soils. Nature 489:423–426. doi:10.1038/nature11377

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012b) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tuinenberg OA, Hutjes RWA, Kabat P (2012) The fate of evaporated water from the Ganges basin. J Geophys Res. doi:10.1029/2011JD016221

    Google Scholar 

  • Wang GL, Eltahir EAB (2000) The role of ecosystem dynamics in enhancing the low-frequency variability of the Sahel rainfall. Water Resour Res 36(4):1013–1021

    Article  Google Scholar 

  • Wang G, Yu M, Xue Y (2015) Modeling the potential contribution of land use changes to the 20th century Sahel drought using a regional climate model: impact of lateral boundary conditions. Clim Dyn 34:929–953. doi:10.1007/s00382-015-2812-x

    Google Scholar 

  • Wei J, Dirmeyer PA, Wisser D, Bosilovich MJ, Mocko DM (2013) Where does the irrgation water go? An estimate of the contribution of iirgation to precipitation using MERRA. J Hydrometeorol 14:275–289. doi:10.1175/JHM-D-12-079.1

    Article  Google Scholar 

  • Xue Y (1997) Biosphere feedback on regional climate in tropical North Africa. Q J R Meteorol Soc 123:1483–1515

    Article  Google Scholar 

  • Xue Y, Dirmeyer PA (2015) Land-atmosphere interactions in monsoon regimes and future prospects for enhancing prediction. CLIVAR Exchanges 19(66):28–33

    Google Scholar 

  • Xue Y, Liou KN, Kasahara A (1990) Investigation of the biogeophysical feedback on the African climate using a two-dimensional model. J Clim 3:337–352

    Article  Google Scholar 

  • Xue Y, Sellers PJ, Kinter JL, Shukla J (1991) A simplified biosphere model for global climate studies. J Clim 4:345–364

    Article  Google Scholar 

  • Xue Y, Juang HM, Li W, Prince S, DeFries R, Jiao Y, Vasic R (2004) Role of land surface processes in monsoon development: East Asia and West Africa. J Geophys Res 109:D03105. doi:10.1029/2003JD003556

    Google Scholar 

  • Xue Y, De Sales F, Lau KMW, Boone A, Feng J, Dirmeyer P, Guo Z, Kim KM, Kitoh A, Kumar V, Poccard-Leclercq I, Mahowald N, Moufouma-Okia W, Pegion P, Rowell D, Schubert SD, Sealy A, Thiaw WM, Vintzileos A, Williams S, Wu MLC (2010a) Intercomparison and analyses of the climatology of the West African monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) First Model Intercomparison Experiment. Clim Dyn 35:3–27. doi:10.1007/s00382-010-0778-2

    Article  Google Scholar 

  • Xue Y, De Sales F, Vasic R, Mechoso CR, Prince SD, Arakawa A (2010b) Global and temporal characteristics of seasonal climate/vegetation biophysical processes (VBP) interactions. J Clim 23:1411–1433

    Article  Google Scholar 

  • Xue Y, Boone A, Taylor CM (2012) Review and prospective of recent development in West African atmosphere/land interaction studies. Int J Geophys. doi:10.1155/2012/748921

    Google Scholar 

  • Xue Y, De Sales F, Lau WK-M, Boone A, Kim K-M, Mechoso CR, Wang G, Kucharski F, Schiro K, Hosaka M, Li S, Druyan LM, Seidou Sanda I, Thiaw W, Zeng N, Comer RE, Lim Y-K, Mahanama S, Song G, Gu Y, Hagos SM, Chin M, Schubert S, Dirmeyer P, Leung LR, Kalnay E, Kitoh A, Lu C-H, Mahowald NM, Zhang Z (2016) West African monsoon decadal variability and surface-related forcings: second West African Monsoon Modeling and Evaluation project experiment (WAMME II). Clim Dyn. doi:10.1007/s00382-016-3224-2

    Google Scholar 

  • Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmos Ocean 33:407–446

    Article  Google Scholar 

  • Zhang Z, Xue Y, MacDonald G, Cox PM, Collatz GJ (2015) Investigation of North American vegetation variability under recent climate—a study using the SSiB4/TRIFFID biophysical/dynamic vegetation model. J Geophy Res 120:1300–1321. doi:10.1002/2014JD021963

    Google Scholar 

  • Zheng XY, Eltahir EAB (1997) The response to deforestation and desertification in a model of West African monsoons. Geophys Res Lett 24:155–158

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the French component of AMMA. Based on French initiative, AMMA was built by an international scientific group and is currently funded by a large number of agencies, especially from France, UK, US and Africa. It has been beneficiary of a major financial contribution from the European Community’s Sixth Framework Research Programme. Detailed information on scientific coordination and funding is available on the AMMA International website http://www.amma-international.org. The authors acknowledge the ESPRI/IPSL database team for hosting the WAMME2 workspace within the framework of the AMMA database, and to K. Ramage, S. Bouffies-Cloche, and L. Fleury for their kind assistance with the WAMME2 database. We wish to acknowledge comments by R. Koster. R. Comer’s contribution was funded by the UK Department for International Development (DFID). The WAMME activity and analysis are supported by U.S. NSF Grants AGS-1115506 and AGS-1419526.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Anthony Boone.

Additional information

This paper is a contribution to the special issue on West African climate decadal variability and its modeling, consisting of papers from the West African Monsoon Modeling and Evaluation (WAMME) and the African Multidisciplinary Monsoon Analyses (AMMA) projects, and coordinated by Yongkang Xue, Serge Janicot, and William Lau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boone, A.A., Xue, Y., De Sales, F. et al. The regional impact of Land-Use Land-cover Change (LULCC) over West Africa from an ensemble of global climate models under the auspices of the WAMME2 project. Clim Dyn 47, 3547–3573 (2016). https://doi.org/10.1007/s00382-016-3252-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3252-y

Keywords

Navigation