Skip to main content
Log in

Variations in the difference between mean sea level measured either side of Cape Hatteras and their relation to the North Atlantic Oscillation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We consider the extent to which the difference in mean sea level (MSL) measured on the North American Atlantic coast either side of Cape Hatteras varies as a consequence of dynamical changes in the ocean caused by fluctuations in the North Atlantic Oscillation (NAO). From analysis of tide gauge data, we know that changes in MSL-difference and NAO index are correlated on decadal to century timescales enabling a scale factor of MSL-difference change per unit change in NAO index to be estimated. Changes in trend in the NAO index have been small during the past few centuries (when measured using windows of order 60–120 years). Therefore, if the same scale factor applies through this period of time, the corresponding changes in trend in MSL-difference for the past few centuries should also have been small. It is suggested thereby that the sea level records for recent centuries obtained from salt marshes (adjusted for long-term vertical land movements) should have essentially the same NAO-driven trends south and north of Cape Hatteras, only differing due to contributions from other processes such as changes in the Meridional Overturning Circulation or ‘geophysical fingerprints’. The salt marsh data evidently support this interpretation within their uncertainties for the past few centuries, and perhaps even for the past millennium. Recommendations are made on how greater insight might be obtained by acquiring more measurements and by improved modelling of the sea level response to wind along the shelf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allan R, Ansell T (2006) A new globally complete monthly historical mean sea level pressure data set (HadSLP2): 1850–2004. J Clim 19(22):5816–5842. doi:10.1175/JCLI3937.1

    Article  Google Scholar 

  • Andres M, Gawarkiewicz GG, Toole JM (2013) Interannual sea level variability in the western North Atlantic: regional forcing and remote response. Geophys Res Lett 40:5915–5919. doi:10.1002/2013GL058013

    Article  Google Scholar 

  • Baker A, Hellstrom JC, Kelly BFJ, Mariethoz G, Trouet V (2015) A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia. Sci Rep 5:10307. doi:10.1038/srep10307

    Article  Google Scholar 

  • Barlow NLM, Shennan I, Long AJ, Gehrels WR, Saher M, Woodroffe SA, Hillier C (2013) Salt marshes as late Holocene tide gauges. Glob Planet Change 106:90–110. doi:10.1016/j.gloplacha.2013.03.003

    Article  Google Scholar 

  • Bingham RJ, Hughes CW (2009) Signature of the Atlantic meridional overturning circulation in sea level along the east coast of North America. Geophys Res Lett 36:L02603. doi:10.1029/2008GL036215

    Article  Google Scholar 

  • Boon JD (2012) Evidence of sea level acceleration at U.S. and Canadian tide stations, Atlantic coast, North America. J Coast Res 28:1437–1445. doi:10.2112/JCOASTRES-D-12-00102.1

    Article  Google Scholar 

  • Cahill N, Kemp AC, Horton BP, Parnell AC (2015) Modeling sea-level change using errors-in-variables integrated Gaussian processes. Ann Appl Stat 9:547–571. doi:10.1214/15-AOAS824

    Article  Google Scholar 

  • Chambers DP, Merrifield MA, Nerem RS (2012) Is there a 60 year oscillation in global mean sea level? Geophys Res Lett 39:18. doi:10.1029/2012GL052885

    Article  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk M, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi:10.1002/qj.776

    Article  Google Scholar 

  • Cornes RC, Jones PD, Briffa KR, Osborn TJ (2013) Estimates of the North Atlantic Oscillation back to 1692 using a Paris-London westerly index. Int J Climatol 33:228–248. doi:10.1002/joc.3416

    Article  Google Scholar 

  • Cullen HM, D’Arrigo RD, Cook ER, Mann ME (2001) Multiproxy reconstructions of the North Atlantic Oscillation. Paleoceanography 16:27–39. doi:10.1029/1999PA000434

    Article  Google Scholar 

  • Frankcombe LM, Dijkstra HA (2009) Coherent multidecadal variability in North Atlantic sea level. Geophys Res Lett 36:L15604. doi:10.1029/2009GL039455

    Article  Google Scholar 

  • Hamlington BD, Leben RR, Kim K-Y, Nerem RS, Atkinson LP, Thompson PR (2015) The effect of the El Niño–Southern Oscillation on U.S. regional and coastal sea level. J Geophys Res 120:3970–3986. doi:10.1002/2014JC010602

    Article  Google Scholar 

  • Higginson S, Thompson KR, Woodworth PL, Hughes CW (2015) The tilt of mean sea level along the east coast of North America. Geophys Res Lett 42:1471–1479. doi:10.1002/2015GL063186

    Article  Google Scholar 

  • Holgate SJ, Matthews A, Woodworth PL, Rickards LJ, Tamisiea ME, Bradshaw E, Foden PR, Gordon KM, Jevrejeva S, Pugh J (2012) New data systems and products at the permanent service for mean sea level. J Coast Res 29:493–504. doi:10.2112/JCOASTRES-D-12-00175.1

    Google Scholar 

  • Hurrell JW (2015) The climate data guide: Hurrell North Atlantic Oscillation (NAO) index (PC-based). https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based

  • Jones PD, Jónsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int J Climatol 17:1433–1450. doi:10.1002/(SICI)1097-0088(19971115)17:13<1433:AID-JOC203>3.0.CO;2-P

    Article  Google Scholar 

  • Kemp AC, Horton BP, Donnelly JP, Mann ME, Vermeer M, Rahmstorf S (2011) Climate related sea-level variations over the past two millennia. Proc Natl Acad Sci USA 108:11017–11022. doi:10.1073/pnas.1015619108

    Article  Google Scholar 

  • Kemp AC, Horton BP, Vane CH, Bernhardt CE, Corbett DR, Engelhart SE, Anisfeld SC, Parnell AC, Cahill N (2013) Sea-level change during the last 2500 years in New Jersey, USA. Quat Sci Rev 81:90–104. doi:10.1016/j.quascirev.2013.09.024

    Article  Google Scholar 

  • Kemp AC, Hawkes AD, Donnelly JP, Vane CH, Horton BP, Hill TD, Anisfeld SC, Parnell AC, Cahill N (2015) Relative sea-level change in Connecticut (USA) during the last 2200 years. Earth Planet Sci Lett 428:217–229. doi:10.1016/j.epsl.2015.07.034

    Article  Google Scholar 

  • Kistler R, Collins C, Saha S, White G, Woollen J, Kalnay E, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50 years reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267. doi:10.1175/1520-0477(2001)

    Article  Google Scholar 

  • Knudsen MF, Seidenkrantz M-S, Jaconsen BH, Kuijpers A (2011) Tracking the Atlantic Multidecadal Oscillation through the last 8000 years. Nat Commun 2:178. doi:10.1038/ncomms1186

    Article  Google Scholar 

  • Kopp RE (2013) Does the mid-Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability? Geophys Res Lett 40:3981–3985. doi:10.1002/grl.50781

    Article  Google Scholar 

  • Kopp RE, Horton BP, Kemp AC, Tebaldi C (2015) Past and future sea-level rise along the coast of North Carolina, USA. Clim Change 132:693–707. doi:10.1007/s10584-015-1451-x

    Article  Google Scholar 

  • Kopp RE, Kemp AC, Bittermann K, Horton BP, Donnelly JP, Gehrels WR, Hay CC, Mitrovica JX, Morrow ED, Rahmstorf S (2016) Temperature-driven global sea-level variability in the common era. Proc Natl Acad Sci USA 113(11):E1434–E1441. doi:10.1073/pnas.1517056113

    Article  Google Scholar 

  • Krueger O, Schenk F, Feser F, Weisse R (2013) Inconsistencies between long-term trends in storminess derived from the 20CR reanalysis and observations. J Clim 26:868–874. doi:10.1175/JCLI-D-12-00309.1

    Article  Google Scholar 

  • Lehner F, Raible CC, Stocker TF (2012) Testing the robustness of a precipitation proxy-based North Atlantic Oscillation reconstruction. Quat Sci Rev 45:85–94. doi:10.1016/j.quascirev.2012.04.025

    Article  Google Scholar 

  • Long AJ, Barlow NLM, Gehrels WR, Saher MH, Woodworth PL, Scaife RG, Brain MJ, Cahill N (2014) Contrasting records of sea-level change in the eastern and western North Atlantic during the last 300 years. Earth Planet Sci Lett 338:110–122. doi:10.1016/j.epsl.2013.11.012

    Article  Google Scholar 

  • Lozier MS, Roussenov V, Reed MSC, Williams RG (2010) Opposing decadal changes for the North Atlantic meridional overturning circulation. Nat Geosci 3:728–734. doi:10.1038/ngeo947

    Article  Google Scholar 

  • Luterbacher J, Schmutz C, Gyalistras D, Xoplaki E, Wanner H (1999) Reconstruction of monthly NAO and EU indices back to AD 1675. Geophys Res Lett 26:2745–2748. doi:10.1029/1999GL900576

    Article  Google Scholar 

  • Luterbacher J, Xoplaki E, Dietrich D, Jones PD, Davies TD, Portis D, Gonzalez-Rouco JF, von Storch H, Gyalistras D, Casty C, Wanner H (2002) Extending North Atlantic Oscillation reconstructions back to 1500. Atmos Sci Lett 2:114–124. doi:10.1006/asle.2001.0044

    Article  Google Scholar 

  • Marshall J, Hill C, Perelman L, Adcroft A (1997) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modelling. J Geophys Res 102(C3):5733–5752. doi:10.1029/96JC02776

    Article  Google Scholar 

  • Marshall J, Johnson H, Goodman J (2001) A study of the interaction of the North Atlantic Oscillation with ocean circulation. J Clim 14:1399–1421. doi:10.1175/1520-0442(2001)

    Article  Google Scholar 

  • Maul GA, Martin DM (1993) Sea level rise at Key West, Florida, 1846–1992: America’s longest instrument record? Geophys Res Lett 20(18):1955–1958. doi:10.1029/93GL02371

    Article  Google Scholar 

  • Mazzarella A, Scafetta N (2012) Evidences for a quasi 60 year North Atlantic Oscillation since 1700 and its meaning for global climate change. Theor Appl Climatol 107:599–609. doi:10.1007/s00704-011-0499-4

    Article  Google Scholar 

  • McCarthy GD, Haigh ID, Hirschi JJ-M, Grist JP, Smeed DA (2015a) Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature 521:508–510. doi:10.1038/nature14491

    Article  Google Scholar 

  • McCarthy GD, Smeed DA, Johns WE, Frajka-Williams E, Moat BI, Rayner D, Baringer MO, Meinen CS, Collins J, Bryden HL (2015b) Measuring the Atlantic Meridional overturning circulation at 26°N. Prog Oceanogr 130:91–111. doi:10.1016/j.pocean.2014.10.006

    Article  Google Scholar 

  • Meade RH, Emery KO (1971) Sea level as affected by river runoff, Eastern United States. Science 173:425–428. doi:10.1126/science.173.3995.425

    Article  Google Scholar 

  • Miller KG, Kopp RE, Horton BP, Browning JV, Kemp AC (2013) A geological perspective on sea-level rise and its impacts along the U.S. mid-Atlantic coast. Earth’s Future 1:3–18. doi:10.1002/2013EF000135

    Article  Google Scholar 

  • Munk WH (1950) On the wind-driven ocean circulation. J Meteorol 7:79–93. doi:10.1175/1520-0469(1950)

    Article  Google Scholar 

  • Ortega P, Lehner F, Swingedouw D, Masson-Delmotte V, Raible CC, Casado M, Yiou P (2015) A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523:71–74. doi:10.1038/nature14518

    Article  Google Scholar 

  • Osborn TJ (2011) Winter 2009/2010 temperatures and a record-breaking North Atlantic Oscillation index. Weather 66:19–21. doi:10.1002/wea.660

    Article  Google Scholar 

  • Park J, Dusek G (2013) ENSO components of the Atlantic multidecadal oscillation and their relation to North Atlantic interannual coastal sea level anomalies. Ocean Sci 9:535–543. doi:10.5194/os-9-535-2013

    Article  Google Scholar 

  • Piecuch CG, Ponte RM (2015) Inverted barometer contributions to recent sea level changes along the northeast coast of North America. Geophys Res Lett 42:5918–5925. doi:10.1002/2015GL064580

    Article  Google Scholar 

  • Piecuch C, Dangendorf S, Ponte R, Marcos M (2016) Annual sea level changes on the North American Northeast Coast: influence of local winds and barotropic motions. J Clim 29:4801–4816. doi:10.1175/JCLI-D-16-0048.1

    Article  Google Scholar 

  • Pinto JG, Raible CC (2012) Past and recent changes in the North Atlantic oscillation. Wiley Interdiscip Rev: Clim Change 3:79–90. doi:10.1002/wcc.150

    Google Scholar 

  • Pugh D, Woodworth P (2014) Sea-level science: understanding tides, surges, tsunamis and mean sea-level changes. Cambridge University Press, Cambridge, pp 395. ISBN:978-1-107-02819-7

  • Rasmussen CE, Williams CIK (2006) Gaussian processes for machine learning. The MIT Press, Massachusetts Institute of Technology, Boston, p 272. ISBN:0-262-18253-X

    Google Scholar 

  • Sallenger AH Jr, Doran KS, Howd PA (2012) Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nat Clim Change 2:884–888. doi:10.1038/nclimate1597

    Article  Google Scholar 

  • Shennan I, Long AJ, Horton BP (eds) (2015) Handbook of sea-level research, 1st edn. Wiley, Chichester

    Google Scholar 

  • Smith DM, Murphy JM (2007) An objective ocean temperature and salinity analysis using covariances from a global climate model. J Geophys Res 112:C02022. doi:10.1029/2005JC003172

    Article  Google Scholar 

  • Smith DM, Allan RP, Eade R, Liu C, Loeb N, Palmer M, Roberts C, Scaife A (2015) Earth’s energy imbalance since 1960 in observations and CMIP5 models. Geophys Res Lett 42:1205–1213. doi:10.1002/2014GL062669

    Article  Google Scholar 

  • Stommel H (1948) The westward intensification of wind-driven ocean currents. EOS Trans Am Geophys Union 29:202–206. doi:10.1029/TR029i002p00202

    Article  Google Scholar 

  • Sweet WV, Park J (2014) From the extreme to the mean: acceleration and tipping points of coastal inundation from sea level rise. Earth’s Future 2:579–600. doi:10.1002/2014EF000272

    Article  Google Scholar 

  • Tamisiea ME, Mitrovica JX (2011) The moving boundaries of sea level change: understanding the origins of geographic variability. Oceanography 24:24–39. doi:10.5670/oceanog.2011.25

    Article  Google Scholar 

  • Thompson KR (1986) North Atlantic sea-level and circulation. Geophys J R Astron Soc 87:15–32. doi:10.1111/j.1365-246X.1986.tb04543.x

    Article  Google Scholar 

  • Trenberth KE, Paolino DA (1980) The northern hemisphere sea-level pressure data set: trends, errors and discontinuities. Mon Weather Rev 108:855–872. doi:10.1175/1520-0493(1980)

    Article  Google Scholar 

  • Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science 324:78–80. doi:10.1126/science.1166349

    Article  Google Scholar 

  • Vinther BM, Andersen KK, Hansen AW, Schmith T, Jones PD (2003) Improving the Gibraltar/Reykjavik NAO index. Geophys Res Lett 30(23):2222. doi:10.1029/2003GL018220

    Article  Google Scholar 

  • Wanner H, Brönnimann S, Casty C, Gyalistras D, Luterbacher J, Schmutz C, Stephenson DB, Xoplaki E (2001) North Atlantic Oscillation—concepts and studies. Surv Geophys 22:321–381. doi:10.1023/A:1014217317898

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys Union 79:579

    Article  Google Scholar 

  • Williams RG, Roussenov V, Smith D, Lozier MS (2014) Decadal evolution of ocean thermal anomalies in the North Atlantic: the effects of Ekman, overturning, and horizontal transport. J Clim 27:698–719. doi:10.1175/JCLI-D-12-00234.1

    Article  Google Scholar 

  • Williams RG, Roussenov V, Lozier MS, Smith D (2015) Mechanisms of heat content and thermocline change in the subtropical and subpolar North Atlantic. J Clim 28:9803–9815. doi:10.1175/JCLI-D-15-0097.1

    Article  Google Scholar 

  • Woodworth PL, Hughes CW, Bingham RJ, Gruber T (2012) Towards worldwide height system unification using ocean information. J Geod Sci 2(4):302–318. doi:10.2478/v10156-012-004-8

    Google Scholar 

  • Woodworth PL, Morales Maqueda MA, Roussenov VM, Williams RG, Hughes CW (2014) Mean sea-level variability along the northeast American Atlantic coast and the roles of the wind and the overturning circulation. J Geophys Res Oceans 119:8916–8935. doi:10.1002/2014JC010520

    Article  Google Scholar 

  • Yin J, Goddard PB (2013) Oceanic control of sea level rise patterns along the east coast of the United States. Geophys Res Lett 40:5514–5520. doi:10.1002/2013GL057992

    Article  Google Scholar 

  • Yin J, Schlesinger ME, Stouffer RJ (2009) Model projections of rapid sea-level rise on the northeast coast of the United States. Nat Geosci 2:262–266. doi:10.1038/NGEO462

    Article  Google Scholar 

  • Zervas C (2009) Sea level variations of the United States 1854–2006, National oceanic and atmospheric administration technical report NOS CO-OPS 053. Available from www.tidesandcurrents.noaa.gov

Download references

Acknowledgements

All observational data used in this paper may be obtained from the sources mentioned above, while model data may be obtained from P.L. Woodworth (plw@noc.ac.uk) or M.Á. Morales Maqueda (miguel.morales-maqueda@newcastle.ac.uk). Andrew Kemp (Tufts University) is thanked for comments on a draft of this paper, especially for advice on the regional salt marsh records, and for the data in Fig. 7. We thank our colleagues Antony Long, Tasha Barlow and Margot Saher in the UK Natural Environment Research Council (NERC) project “North Atlantic sea-level variability during the last half-millennium” (NE/G004757/1) for many discussions on North Atlantic sea level change. In addition, we are grateful to three reviewers for their useful comments. The NERC project “Climate variability in the North Atlantic Ocean: wind-induced changes in heat content, sea level and overturning” (NE/H02087X/1) also provided input to this study. Part of this work was funded by UK Natural Environment Research Council National Capability funding. Some of the figures in this paper were generated using the Generic Mapping Tools (Wessel and Smith 1998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Woodworth.

Appendix 1: Ocean circulation model

Appendix 1: Ocean circulation model

Our ocean circulation model takes the form of a ‘semi diagnostic’ dynamical analysis of historical temperature and salinity data spanning 1950–2009. It was used previously in studies of overturning variability (Lozier et al. 2010), thermocline depth and ocean heat content variability and gyre-scale steric changes in sea level (Williams et al. 2014, 2015) and MSL variability along the Atlantic coast of North America (Woodworth et al. 2014).

The historical temperature and salinity changes are derived from a global analysis of the available hydrographic data, including recent Argo data, by the UK Met Office [Met Office Statistical Ocean Reanalysis; see Smith and Murphy (2007), and Smith et al. (2015)]. The historical temperature and salinity data are assimilated into the Massachusetts Institute of Technology general circulation model (Marshall et al. 1997) in a semi-diagnostic manner; see Williams et al. (2014, 2015) for further model details. The model assimilation includes an initial 1 month spin up and then a further 12 months integration to cover an annual cycle. The model includes forcing by monthly mean wind stresses from the National Centers for Environmental Prediction (NCEP)–National Center for Atmospheric Research (NCAR) reanalyses (Kistler et al. 2001, www.cdc.noaa.gov). The dynamical adjustment does not include explicit surface heat or freshwater fluxes, but includes a weak artificial relaxation of temperature and salinity to the initial temperature and salinity data on a timescale of 36 months. This initialisation and assimilation procedure is repeated for each separate year.

The model assimilation is applied on a 1/5° × 1/6° (longitude × latitude) grid with 23 levels in the vertical for the period 1950–2009. (A coarse resolution 1° version of the grid is used for model testing.) The subsequent changes in sea level are then evaluated from these dynamically-adjusted model fields for each year. The model analyses are ideal for the present study as there is only a limited dynamical adjustment, responding to the hydrographic initialisation and wind forcing; the semi-diagnostic model does not determine its own hydrography as a consequence of surface heat and freshwater fluxes as most other models do, so that there is limited model drift from the repeated initialisations from the historical data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woodworth, P.L., Morales Maqueda, M.Á., Gehrels, W.R. et al. Variations in the difference between mean sea level measured either side of Cape Hatteras and their relation to the North Atlantic Oscillation. Clim Dyn 49, 2451–2469 (2017). https://doi.org/10.1007/s00382-016-3464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3464-1

Keywords

Navigation