Skip to main content

Advertisement

Log in

Climate predictability and prediction skill on seasonal time scales over South America from CHFP models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This work presents an assessment of the predictability and skill of climate anomalies over South America. The study was made considering a multi-model ensemble of seasonal forecasts for surface air temperature, precipitation and regional circulation, from coupled global circulation models included in the Climate Historical Forecast Project. Predictability was evaluated through the estimation of the signal-to-total variance ratio while prediction skill was assessed computing anomaly correlation coefficients. Both indicators present over the continent higher values at the tropics than at the extratropics for both, surface air temperature and precipitation. Moreover, predictability and prediction skill for temperature are slightly higher in DJF than in JJA while for precipitation they exhibit similar levels in both seasons. The largest values of predictability and skill for both variables and seasons are found over northwestern South America while modest but still significant values for extratropical precipitation at southeastern South America and the extratropical Andes. The predictability levels in ENSO years of both variables are slightly higher, although with the same spatial distribution, than that obtained considering all years. Nevertheless, predictability at the tropics for both variables and seasons diminishes in both warm and cold ENSO years respect to that in all years. The latter can be attributed to changes in signal rather than in the noise. Predictability and prediction skill for low-level winds and upper-level zonal winds over South America was also assessed. Maximum levels of predictability for low-level winds were found were maximum mean values are observed, i.e. the regions associated with the equatorial trade winds, the midlatitudes westerlies and the South American Low-Level Jet. Predictability maxima for upper-level zonal winds locate where the subtropical jet peaks. Seasonal changes in wind predictability are observed that seem to be related to those associated with the signal, especially at the extratropics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arora V, Scinocca J, Boer G, Christian J, Denman KL, Flato G, Kharin V, Lee W, Merryfield W (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38:L05805. doi:10.1029/2010GL046270

    Article  Google Scholar 

  • Barreiro M (2010) Influence of ENSO and the South Atlantic Ocean on climate predictability over Southeastern South America. Clim Dyn 35:1493–1508

    Article  Google Scholar 

  • Barreiro M, Chang P, Saravanan R (2002) Variability of the South Atlantic convergence zone simulated by an atmospheric general circulation model. J Clim. doi:10.1175/1520-0442(2002)015<0745:VOTSAC>2.0.CO;2

  • Barreiro M, Chang P, Saravanan R (2005) Simulated precipitation response to SST forcing and potential predictability in the region of the South Atlantic convergence zone. Clim Dyn. doi:10.1007/s00382-004-0487-9

    Google Scholar 

  • Becker E, van den Dool H, Zhang Q (2014) Predictability and forecast skill in NMME. J Clim 27:5891–5906. doi:10.1175/JCLI-D-13-00597.1

    Article  Google Scholar 

  • Chaves RR, Nobre P (2004) Interactions between the South Atlantic Ocean and the atmospheric circulation over South America. Geophys Res Lett 31:L03204. doi:10.1029/2003GL018647

    Article  Google Scholar 

  • Colman R, Deschamps L, Naughton M, Rikus L, Sulaiman A, Puri K, Roff G, Sun Z, Embury G (2005) BMRC atmospheric model (BAM) version 3.0: comparison with mean climatology. BMRC research report no. 108, Bur Met, Melbourne, Australia

  • DelSole T, Kumar A, Jha B (2013) Potential seasonal predictability: comparison between empirical and dynamical model estimates. Geophys Res Lett 40:3200–3206. doi:10.1002/grl.50581

    Article  Google Scholar 

  • Feng X, DelSole T, Houser P (2011) Bootstrap estimated seasonal potential predictability of global temperature and precipitation. Geophys Res Lett 38:L07702

    Article  Google Scholar 

  • Feng X, DelSole T, Houser P (2012) A method for estimating potential seasonal predictability: analysis of covariance. J Clim 25:5292–5308. doi:10.1175/JCLI-D-11-00342.1

    Article  Google Scholar 

  • Frumkin A, Misra V (2013) Predictability of dry season reforecasts over the tropical and the sub-tropical South American region. Int J Climatol 33:137–1247

    Article  Google Scholar 

  • Gueremy JF, Deque M, Brau A, Piedelievre JP (2005) Actual and potential skill of seasonal predictions using the CNRM contribution to DEMETER: coupled versus uncoupled model. Tellus 57A:308–319

    Article  Google Scholar 

  • Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A 57:219–233. doi:10.1111/j.1600-0870.2005.00103.x

    Google Scholar 

  • Hagedorn R, Doblas-Reyes FJ, Palmer TN (2006) DEMETER and the application of seasonal forecasts. In: Palmer T, Hagendom R (eds) Predictability of weather and climate. Cambridge University Press, Cambridge, pp 674–692

    Chapter  Google Scholar 

  • Jha B, Kumar A (2009) A comparative analysis of change in the first and second moment of the PDF of seasonal mean 200-mb heights with ENSO SSTs. J Clim 22:1412–1423. doi:10.1175/2008JCLI2495.1

    Article  Google Scholar 

  • Kalnay et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470

    Article  Google Scholar 

  • Kirtman B, Pirani A (2009) The state of the art of seasonal prediction: outcomes and recommendations from the first world climate research program workshop on seasonal prediction. Bull Am Meteorol Soc 90:455–458

    Article  Google Scholar 

  • Kumar A, Hoerling MP (1998) Annual cycle of Pacific-North American seasonal predictability associated with different phases of ENSO. J Clim 11:3295–3308. doi:10.1175/1520-0442(1998)011<3295:ACOPNA>2.0.CO;2

    Article  Google Scholar 

  • Kumar A, Jha B, Zhang Q, Bounoua L (2007) A new methodology for estimating the unpredictable component of seasonal atmospheric variability. J Clim 20:3888–3901. doi:10.1175/JCLI4216.1

    Google Scholar 

  • Landman WA, Goddard L (2002) Statistical recalibration of GCM forecasts over Southern Africa using model output statistics. J Clim 15:2038–2055

    Article  Google Scholar 

  • Li H, Misra V (2014) Global seasonal climate predictability in a two tiered forecast system. Part II: boreal winter and spring seasons. Clim Dyn 42:1449. doi:10.1007/s00382-013-1813-x

    Article  Google Scholar 

  • Marsland S, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5(2):91–127

    Article  Google Scholar 

  • Misra V (2004) An evaluation of the predictability of austral summer season precipitation over South America. J Clim 17:1161–1175

    Article  Google Scholar 

  • Misra V, Li H, Wu Z, Di Napoli S (2014) Global seasonal climate predictability in a two tiered forecast system: part I: boreal summer and fall seasons. Clim Dyn 42:1425. doi:10.1007/s00382-013-1812-y

  • Molteni F, Stockdale T, Balmaseda M, Balsamo G, Buizza R, FerrantiL, Magnusson L, Mogensen K, Palmer T, Vitart F (2011) The new ECMWF seasonal forecast system (System 4). ECMWF Technical Memorandum 656

  • National Research Council (2010) Assessment of intraseasonal to interannual climate prediction and predictability. The National Academies Press, Washington

    Google Scholar 

  • Nobre P et al (2004) Seasonal-to-decadal predictability and prediction of South American climate. White Paper prepared for the CLIVAR Workshop on Atlantic Predictability Reading, UK, 19–23 April 2004

  • Osman M, Vera CS, Doblas-Reyes FJ (2016) Predictability of the tropospheric circulation in the Southern Hemisphere from CHFP models. Clim Dyn 46(7):2423–2434. doi:10.1007/s00382-015-2710-2

    Article  Google Scholar 

  • Peng P, Kumar A, Wang W (2011) An analysis of seasonal predictability in coupled model forecasts. Clim Dyn 36:637–648

    Article  Google Scholar 

  • Quan XW, Webster PJ, Moore AM, Chang HR (2004) Seasonality in SST-forced atmospheric short-term climate predictability. J Clim 17:3090–3108

    Article  Google Scholar 

  • Rowell DP (1998) Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J Clim 11:109–120

    Article  Google Scholar 

  • Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, Van den Dool HM, Pan HL, Moorthi S, Behringer D, Stokes D, Peña M, Lord S, White G, Ebisuzaki W, Peng P, Xie P (2006) The NCEP climate forecast system. J Clim 19:3483–3517. doi:10.1175/JCLI3812.1

    Article  Google Scholar 

  • Scaife AA et al (2014) Skillful long-range prediction of European and North American winters. Geophys Res Lett 41:2514–2519. doi:10.1002/2014GL059637

    Article  Google Scholar 

  • Schiller A, Godfrey JS, McIntosh PC, Meyers G, Smith NR, Alves O, Wang G, Fiedler R (2002) A new version of the Australian community ocean model for seasonal climate prediction. CSIRO marine research report no. 240

  • Schubert SD, Suarez MJ, Pegion PJ, Kistler MA, Kumar A (2002) Predictability of zonal means during boreal summer. J Clim 15:420–434

    Article  Google Scholar 

  • Scinocca JF, McFarlane NA, Lazare M, Li J (2008) The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos Chem Phys 8:7055–7074

    Article  Google Scholar 

  • Smith D, Scaife AA, Kirtman BP (2012) What is the current state of scientific knowledge with regard to seasonal and decadal forecasting? Environ Res Lett 7:015602

    Article  Google Scholar 

  • Stefanova L, Misra V, O’Brien JJ et al (2012) Hindcast skill and predictability for precipitation and two-meter air temperature anomalies in global circulation models over the Southeast United States. Clim Dyn 38:161. doi:10.1007/s00382-010-0988-7

    Article  Google Scholar 

  • Stevens et al (2013) The atmospheric component of the MPI earth system model: ECHAM6. J Adv Model Earth Syst. doi:10.1002/jame.20015

    Google Scholar 

  • Stockdale TN, Anderson DLT, Balmaseda MA, Doblas-Reyes FJ, Ferranti L, Mogensen K, Palmer TN, Molteni F, Vitart F (2011) ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn. doi:10.1007/s00382-010-0947-3

    Google Scholar 

  • Taschetto AS, Wainer I (2008) Reproducibility of South American Precipitation due to Subtropical South Atlantic SSTs. J Clim. doi:10.1175/2007JCLI1865.1

    Google Scholar 

  • Van den Dool H (2007) Empirical methods in short-term climate prediction. Oxford University Press, Oxford

    Google Scholar 

  • Vera C, Baez J, Douglas M, Emmanuel CB, Marengo J, Meitin J, Nicolini M, Nogues-Paegle J, Paegle J, Penalba O, Salio P, Saulo C, Silva Dias MA, Silva Dias P, Zipser E (2006a) The South American low-level jet experiment. Bull Am Meteorol Soc 87:63–77. doi:10.1175/BAMS-87-1-63

    Article  Google Scholar 

  • Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo J, Mechoso CR, Nogues-Paegle J, Silva Dias PL, Zhang C (2006b) Toward a unified view of the American monsoon systems. J Clim 19:4977–5000. doi:10.1175/JCLI3896.1

    Article  Google Scholar 

  • Watanabe M et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335. doi:10.1175/2010JCLI3679.1

    Article  Google Scholar 

  • Wu R, Kirtman BP (2006) Changes in spread and predictability associated with ENSO in an ensemble coupled GCM. J Clim 19:4378–4396

    Article  Google Scholar 

  • Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka YT, Shindo E, Tsujino H, Deushi M, Mizuta R, Yabu S, Obata A, Nakano H, Koshiro T, Ose T, Kitoh A (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3—model description and basic performance. J Meterol Soc Jpn 90A:23–64. doi:10.2151/jmsj.2012-A02

    Article  Google Scholar 

  • Zipser EJ, Cecil DJ, Liu C, Nesbitt SW, Yorty DP (2006) Where are the most intense thunderstorms on earth? Bull Am Meteorol Soc 87:1057–1071

    Article  Google Scholar 

  • Zwiers FW, Wang XL, Sheng J (2000) Effects of specifying bottom boundary conditions in an ensemble of atmospheric GCM simulations. J Geophys Res Atmos 105:7295–7315

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the WCRP/CLIVAR Working Group on Seasonal to Interannual Prediction (WGSIP) for establishing the Climate-system Historical Forecast Project (CHFP, see Kirtman and Pirani 2009) and the Centro de Investigaciones del Mar y la Atmósfera (CIMA) for providing the model output http://chfps.cima.fcen.uba.ar/DS. We also thank the data providers for making the model output available through CHFP. This research was supported by UBACyT 20020100100434, CONICET/PIP 112-20120100626CO, PIDDEF 2014/2017 No 15, ANR-15-JCL/-0002-01 “CLIMAX”. M.O. is supported by a Ph.D grant from CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisol Osman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osman, M., Vera, C.S. Climate predictability and prediction skill on seasonal time scales over South America from CHFP models. Clim Dyn 49, 2365–2383 (2017). https://doi.org/10.1007/s00382-016-3444-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3444-5

Keywords

Navigation