Skip to main content

Advertisement

Log in

Optimal nudging strategies in regional climate modelling: investigation in a Big-Brother experiment over the European and Mediterranean regions

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The objective of this work is to gain a general insight into the key mechanisms involved in the impact of nudging on the large scales and the small scales of a regional climate simulation. A “Big Brother experiment” (BBE) approach is used where a “reference atmosphere” is known, unlike when regional climate models are used in practice. The main focus is on the sensitivity to nudging time, but the BBE approach allows to go beyond a pure sensitivity study by providing a reference which model outputs try to approach, defining an optimal nudging time. Elaborating upon previous idealized studies, this work introduces key novel points. The BBE approach to optimal nudging is used with a realistic model, here the weather research and forecasting model over the European and Mediterranean regions. A winter simulation (1 December 1989–28 February 1990) and a summer simulation (1 June 1999–31 August 1999) with a 50 km horizontal mesh grid have been performed with initial and boundary conditions provided by the ERA-interim reanalysis of the European Center for Medium-range Weather Forecast to produce the “reference atmosphere”. The impacts of spectral and indiscriminate nudging are compared all others things being equal and as a function of nudging time. The impact of other numerical parameters, specifically the domain size and update frequency of the large-scale driving fields, on the sensitivity of the optimal nudging time is investigated. The nudged simulations are also compared to non-nudged simulations. Similarity between the reference and the simulations is evaluated for the surface temperature, surface wind and for rainfall, key variables for climate variability analysis and impact studies. These variables are located in the planetary boundary layer, which is not subject to nudging. Regarding the determination of a possible optimal nudging time, the conclusion is not the same for indiscriminate nudging (IN) and spectral nudging and depends on the update frequency of the driving large-scale fields τ a . For IN, the optimal nudging time is around τ = 3 h for almost all cases. For spectral nudging, the best results are for the smallest value of τ used for the simulations (τ = 1 h) for frequent update of the driving large-scale fields (3 and 6 h). The optimal nudging time is 3 for 12 h interval between two consecutive driving large-scale fields due to time sampling errors. In terms of resemblance to the reference fields, the differences between the simulations performed with IN and spectral nudging are small. A possible reason for this very similar performance is that nudging is active only above the planetary boundary layer where small-scale features are less energetic. As expected from previous studies, the impact of nudging is weaker for a smaller domain size. However the optimal nudging time itself is not sensitive to domain size. The proposed strategy ensures a dynamical consistency between the driving field and the simulated small-scale field but it does not ensure the best “observed” fine scale field because of the possible impact of incorrect driving large-scale field. This type of downscaling provides an upper bound on the skill possible for recent historical past and twenty-first century projections. The optimal nudging strategy with respect to dynamic downscaling could add skill whenever the parent global model has some level of skill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alexandru A, de Elia R, Laprise R, Separovic L, Biner S (2009) Sensitivity study of regional climate model simulations to large-scale nudging parameters. Mon Weather Rev 137:1666–1686

    Article  Google Scholar 

  • Bhaskaran B, Jones RG, Murphy JM, Noguer M (1996) Simulations of the Indian summer monsoon using a nested regional climate model: domain size experiments. Clim Dyn 12:573–587

    Google Scholar 

  • Bowden J, Otte T, Nolte C, Otte M (2012) Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling. J Clim 25:2805–2823

    Article  Google Scholar 

  • Bukovsky MS, Karoly DJ (2009) Precipitation simulations using wrf as a nested regional climate model. J Appl Meteorol Climatol 48:2152–2159

    Article  Google Scholar 

  • Caldwell P, Chin HNS, Bader DC, Bala G (2009) Evaluation of a WRF dynamical downscaling simulation over California. Clim Change 95:499–521

    Article  Google Scholar 

  • Castro C, Pielke Sr R, Leoncini G (2005) Dynamical downscaling: assessment of value retained and added using the regional atmospheric modeling system (RAMS). J Geophys Res 110:D05108. doi:10.1029/2004JD004721

  • Claud C, Alhammoud B, Funatsu BM, Lebeaupin-Brossier C, Chaboureau JP, Béranger K, Drobinski P (2012) A high resolution climatology of precipitation and deep convection over the mediterranean region from operational satellite microwave data: development and application to the evaluation of model uncertainties. Nat Hazards Earth Syst Sci 12:785–798

    Article  Google Scholar 

  • Crétat J, Pohl B, Richard Y, Drobinski P (2012) Uncertainties in simulating regional climate of southern africa: sensitivity to physical parameterizations using WRF. Clim Dyn 38:613–634

    Article  Google Scholar 

  • Davies HC, Turner RE (1977) Updating prediction models by dynamical relaxation: an examination of the technique. Q J R Meteorol Soc 103:225–245

    Article  Google Scholar 

  • De Elia R, Laprise R, Denis B (2002) Forecasting skill limits of nested, limited-area models: a perfect-model approach. Mon Weather Rev 130:2006–2023

    Article  Google Scholar 

  • Denis B, Laprise R, Caya D, Côté J (2002) Downscaling ability of one-way nested regional climate models: the Big-Brother experiment. Clim Dyn 18:627–646

    Article  Google Scholar 

  • Denis B, Laprise R, Caya D (2003) Sensitivity of a regional climate model to the resolution of the lateral boundary conditions. Clim Dyn 20:107–126

    Google Scholar 

  • Déqué M, Piedelievre J (1995) High-resolution climate simulation over Europe. Clim Dyn 11:321–339

    Article  Google Scholar 

  • Di Luca A, de Elía R, Laprise R (2012a) Potential for added value in temperature simulated by high-resolution nested RCMs in present climate and in the climate change signal. Clim Dyn 1–22. doi:10.1007/s00382-012-1384-2

  • Di Luca A, de Elia R, Laprise R (2012b) Potential for added value in precipitation simulated by high resolution nested regional climate models and observations. Clim Dyn 38:1229–1247

    Article  Google Scholar 

  • Drobinski P, Flamant C, Dusek J, Flamant P, Pelon J (2001) Observational evidence and modeling of an internal hydraulic jump at the atmospheric boundary layer top during a tramontane event. Boundary Layer Meteorol 98:497–515

    Article  Google Scholar 

  • Drobinski P, Bastin S, Guénard V, Caccia J, Dabas A, Delville P, Protat A, Reitebuch O, Werner C (2005) Summer mistral at the exit of the Rhône valley. Q J R Meteorol Soc 131:353–375

    Article  Google Scholar 

  • Drobinski P, Béranger K, Ducrocq V, Allen J, Chronis G, Font J, Madec G, Papathanassiou E, Pinardi N, Sammari C, Taupier-Letage I (2009a) The HYMEX (hydrological in the mediterranean experiment) program: the specific context of oceanography. Mercator Newslett 32:3–4

    Google Scholar 

  • Drobinski P, Ducrocq V, Lionello P, The HyMeX ISSC (2009b) Hymex, a potential new CEOP RHP in the mediterranean basin. GEWEX Newslett 19:5–6

    Google Scholar 

  • Drobinski P, Ducrocq V, Lionello P (2010) Studying the hydrological cycle in the mediterranean. EOS Trans Am Geophys Union 91:373

    Article  Google Scholar 

  • Drobinski P, Ducrocq V, Lionello P, Homar V (2011) Hymex, the newest GEWEX regional hydroclimate project. GEWEX Newslett 21:10–11

    Google Scholar 

  • Drobinski P, Anav A, Lebeaupin-Brossier C, Samson G, Stéfanon M, Bastin S, Baklouti M, Béranger K, Beuvier J, Bourdallé-Badie R, Coquart L, D’Andrea F, De Noblet-Ducoudré N, Diaz F, Dutay JC, Ethe C, Foujols MA, Khvorostyanov D, Madec G, Mancip M, Masson S, Menut L, Palmieri J, Polcher J, Turquety S, Valcke S, Viovy N (2012) Modelling the regional coupled earth system MORCE: application to process and climate studies in vulnerable regions. Env Model Softw 35:1–18

    Article  Google Scholar 

  • Ducrocq V, Nuissier O, Ricard D, Lebeaupin C, Anquetin S (2008) A numerical study of three catastrophic precipitating events over Southern France. II: mesoscale trigerring and stationarity factors. Q J R Meteorol Soc 134:131–145

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Dudhia J (1993) A nonhydrostatic version of the Penn State/NCAR mesoscale model: validation tests and simulations of an Atlantic cyclone and cold front. Mon Weather Rev 121:1493–1513

    Article  Google Scholar 

  • Flaounas E, Drobinski P, Vrac M, Bastin S, Lebeaupin-Brossier C, Stéfanon M (2012a) Precipitation and temperature variability and extremes in the mediterranean region: evaluation of dynamical and statistical downscaling methods. Clim Dyn. doi:10.1007/s00382-012-1558-y

  • Flaounas E, Drobinski P, Bastin S (2012b) Dynamical dowscaling of IPSL-CM5 CMIP5 historical simulations over the mediterranean: benefits on the representation of regional cyclogenesis. Clim Dyn. doi:10.1007/s00382-012-1606-7

  • Flaounas E, Drobinski P, Borga M, Calvet JC, Delrieu G, Morin E, Tartari G, R T (2012c) Assessment of gridded observations used for climate model validation in the mediterranean region: the HyMeX and MED–CORDEX framework. Env Res Lett 7. doi:10.1088/1748-9326/7/2/024017

  • Fyfe J, Merryfield W, Kharin V, Boer G, Lee W, Von Salzen K (2011) Skillful predictions of decadal trends in global mean surface temperature. Geophys Res Lett 38:L22801. doi:10.1029/2011GL049508

  • Giorgi F, Bi X (2000) A study of internal variability of a regional climate model. J Geophys Res 105:29503–29521

    Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the cordex framework. WMO Bull 58(3):175–183

    Google Scholar 

  • Guénard V, Drobinski P, Caccia J, Campistron B, Bénech B (2005) An observational study of the mesoscale mistral dynamics. Boundary Layer Meteorol 115:263–288

    Article  Google Scholar 

  • Guénard V, Drobinski P, Caccia J, Tedeschi G, Currier P (2006) Dynamics of the MAP IOP-15 severe mistral event: observations and high-resolution numerical simulations. Q J R Meteorol Soc 132:757–778

    Article  Google Scholar 

  • Hewitson BC, Crane RG (1996) Climate downscaling: techniques and application. Clim Res 07:97–110

    Article  Google Scholar 

  • Hohenegger C, Brockhaus P, Bretherton CS, Schaer C (2009) The soil moisture-precipitation feedback in simulations with explicit and parameterized convection. J Clim 22:5003–5020

    Article  Google Scholar 

  • Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120

    Article  Google Scholar 

  • Hong SYHMHJ, Zhao Q (1998) Implementation of prognostic cloud scheme for a regional spectral model. Mon Weather Rev 126:2621–2639

    Article  Google Scholar 

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, LeVan P, Li Z, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813

    Article  Google Scholar 

  • Kain JS (2004) The Kain Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181

    Article  Google Scholar 

  • Kanamaru H, Kanamitsu M (2007) Scale-selective bias correction in a downscaling of global analysis using a regional model. Mon Weather Rev 135(2):334–350

    Article  Google Scholar 

  • Lebeaupin-Brossier C, Drobinski P (2009) Numerical high-resolution air-sea coupling over the gulf of Lions during two tramontane/mistral events. J Geophys Res 114. doi:10.1029/2008JD011,601

  • Lebeaupin-Brossier C, Béranger K, Deltel C, Drobinski P (2011) The mediterranean response to different space-time resolution atmospheric forcings using perpetual mode sensitivity simulations. Ocean Model 36:1–25

    Article  Google Scholar 

  • Lebeaupin-Brossier C, Béranger K, Drobinski P (2012a) Sensitivity of the north-western mediterranean coastal and thermohaline circulations as simulated by the 1/12° resolution oceanic model NEMO-MED12 to the space-time resolution of the atmospheric forcing. Ocean Model 43–44:94–107

    Article  Google Scholar 

  • Lebeaupin-Brossier C, Béranger K, Drobinski P (2012b) Ocean response to strong precipitation events in the gulf of lions (north-western mediterranean sea): a sensitivity study. Ocean Dyn 62:213–226

    Article  Google Scholar 

  • Lebeaupin Brossier C, Drobinski P, Béranger K, Bastin S, Orain F (2012c) Ocean memory effect on the dynamics of coastal heavy precipitation preceded by a mistral event in the north-western mediterranean. Q J R Meteorol Soc. doi:10.1002/qj.2049

  • Leduc M, Laprise R (2009) Regional climate model sensitivity to domain size. Clim Dyn 32:833–854

    Article  Google Scholar 

  • Liu P, Tsimpidi A, Hu Y, Stone B, Russell A, Nenes A (2012) Differences between downscaling with spectral and grid nudging using wrf. Atmos Chem Phys 12:3601–3610

    Article  Google Scholar 

  • Lo JC, Yang ZL, Pielke RA (2008) Assessment of three dynamical climate downscaling methods using the weather research and forecasting (WRF) model. J Geophys Res 113:D09112

    Google Scholar 

  • Miguez-Macho G, Stenchikov GL, Robock A (2004) Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J Geophys Res 109:D13104–D13104

    Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682

    Google Scholar 

  • Noguer M, Jones R, Murphy J (1998) Sources of systematic errors in the climatology of a regional climate model over Europe. Clim Dyn 14:691–712

    Article  Google Scholar 

  • Noh Y, Cheon WG, Hong SY, Raasch S (2003) Improvement of the k-profile model for the planetary boundary layer based on large eddy simulation data. Boundary Layer Meteorol 107(2):401–427

    Google Scholar 

  • Omrani H, Drobinski P, Dubos T (2012a) Investigation of indiscriminate nudging and predictability in a nested quasi-geostrophic model. Q J Roy Meteorol Soc 138:158–169

    Article  Google Scholar 

  • Omrani H, Drobinski P, Dubos T (2012b) Spectral nudging in regional climate modeling: how strongly should we nudge? Q J R Meteorol Soc 138:1808–1813

    Google Scholar 

  • Peixoto J, deAlmeida M, Rosen RD, Salstein DA (1982) Atmospheric moisture transport and the water balance of the mediterranean sea. Water Resour Res 18:83–90

    Article  Google Scholar 

  • Radu R, Déqué M, Somot S (2008) Spectral nudging in a spectral regional climate model. Tellus A 60:898–910

    Article  Google Scholar 

  • Rockel B, Castro C, Pielke Sr R, von Storch H, Leoncini G (2008) Dynamical downscaling: Assessment of model system dependent retained and added variability for two different regional climate models. J Geophys Res 113:D21107. doi:10.1029/2007JD009461

  • Rodriguez Fonseca B, Castro M (2002) On the connection between winter anomalous precipitation in the Iberian Peninsula and Morocco and the summer subtropical Atlantic SST. Geophys Res Lett 29. doi:10.1029/2001GL014421

  • Rowell DP, Jones RG (2006) Causes and uncertainty of future summer drying over europe. Clim Dyn 27:281–299

    Article  Google Scholar 

  • Salameh T, Drobinski P, Dubos T (2010) The effect of indiscriminate nudging time on large and small scales in regional climate modelling: application to the mediterranean basin. Q J R Meteorol Soc 136:170–182

    Article  Google Scholar 

  • Schraff C (1997) Mesoscale data assimilation and prediction of low stratus in the Alpine region. Meteorol Atmos Phys 64:21–50

    Article  Google Scholar 

  • Seth A, Giorgi F (1998) The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J Clim 11:2698–2712

    Article  Google Scholar 

  • Skamarock WC, Klemp JB (2007) A time-split nonhydrostatic atmospheric model for research and NWP applications. J Comput Phys 227:3465–3485

    Article  Google Scholar 

  • Stauffer DR, Seaman NL (1990) Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: experiments with synoptic-scale data. Mon Weather Rev 118(6):1250–1277

    Google Scholar 

  • Stauffer DR, Seaman NL (1994) Multiscale four-dimensional data assimilation. J Appl Meteorol 33:416–434

    Article  Google Scholar 

  • Stéfanon M, D’Andrea F, Drobinski P (2012) Heatwave classification over europe and the mediterranean region. Environ Res Lett 7. doi:10.1088/1748-9326/7/1/014023

  • Stephens G, L’Ecuyer T, Forbes R, Gettlemen A, Golaz J, Bodas-Salcedo A, Suzuki K, Gabriel P, Haynes J (2010) Dreary state of precipitation in global models. J Geophys Res 115:D24211. doi:10.1029/2010JD014532

  • von Storch H, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128:3664–3673

    Article  Google Scholar 

  • Sun JLXZZ, Liang H (2012) Parameterization of instantaneous global horizontal irradiance at the surface. Part II: cloudy-sky component. J Geophys Res. doi:10.1029/2012JD017557

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Google Scholar 

  • Thatcher M, McGregor JL (2009) Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model. Mon Weather Rev 137(6):1742–1752

    Article  Google Scholar 

  • Trigo ea R (2006) Relations between variability in the mediterranean region and mid-latitude variability. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 179–226

  • Van Haren R, Van Oldenborgh G, Lenderink G, Collins M, Hazeleger W (2012) Sst and circulation trend biases cause an underestimation of european precipitation trends. Clim Dyn. doi:10.1007/s00382-012-1401-5

  • Van Oldenborgh G, Doblas-Reyes F, Wouters B, Hazeleger W (2012) Decadal prediction skill in a multi-model ensemble. Clim Dyn 38:1263–1280

    Article  Google Scholar 

  • Vidard PA, Dimet FXL, Piacentini A (2003) Determination of optimal nudging coefficients. Tellus A 55:1–15

    Article  Google Scholar 

  • Waldron KM, Paegle J, Horel JD (1996) Sensitivity of a spectrally filtered and nudged limited-area model to outer model options. Mon Weather Rev 124:529–547

    Article  Google Scholar 

  • Weisse R, Feser F (2003) Evaluation of a method to reduce uncertainty in wind hindcasts performed with regional atmosphere models. Coastal Eng 48:211–255

    Google Scholar 

  • Xoplaki E, J GRJL, Wanner H (2004) Wet season mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dyn 23:63–78

    Article  Google Scholar 

  • Xu Z, Yang Z (2012) An improved dynamical downscaling method with gcm bias corrections and its validation with 30 years of climate simulations. J Clim. doi:10.1175/JCLI-D-12-00005.1

  • Yong LI, Richard Ménar D, Lars Peter Riishøjgaar D, Cohn SE, Rood RB (1998) A study on assimilating potential vorticity data. Tellus A 50:490–506

    Article  Google Scholar 

  • Zampieri M, D’Andrea F, Vautard R, Ciais P, de Noblet-Ducoudré N, Yiou P (2009) Hot european summers and the role of soil moisture in the propagation of mediterranean drought. J Clim 22:4747–4758

    Article  Google Scholar 

Download references

Acknowledgments

This research has received funding from the ANR-MEDUP project, GIS “Climat-Environnement-Soci” MORCE-MED project, and through ADEME (Agence de lEnvironnement et de la Matrise de lEnergie) contract 0705C0038. It was also supported by the IPSL group for regional climate and environmental studies. This work also contributes to the HyMeX program (HYdrological cycle in The Mediterranean EXperiment) through INSU-MISTRALS support and the Med–CORDEX program (A Coordinated Regional climate Downscaling Experiment-Mediterranean region).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiba Omrani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omrani, H., Drobinski, P. & Dubos, T. Optimal nudging strategies in regional climate modelling: investigation in a Big-Brother experiment over the European and Mediterranean regions. Clim Dyn 41, 2451–2470 (2013). https://doi.org/10.1007/s00382-012-1615-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1615-6

Keywords

Navigation