Skip to main content

Advertisement

Log in

The climatological mean atmospheric transport under weakened Atlantic thermohaline circulation climate scenario

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Global atmospheric transport in a climate subject to a substantial weakening of the Atlantic thermohaline circulation (THC) is studied by using climatological Green’s functions of the mass conservation equation for a conserved, passive tracer. Two sets of Green’s functions for the perturbed climate and for the present climate are evaluated from 11-year atmospheric trajectory calculations, based on 3-D winds simulated by GFDL’s newly developed global coupled ocean–atmosphere model (CM2.1). The Green’s function analysis reveals pronounced effects of the climate change on the atmospheric transport, including seasonally modified Hadley circulation with a stronger Northern Hemisphere cell in DJF and a weaker Southern Hemisphere cell in JJA. A weakened THC is also found to enhance mass exchange rates through mixing barriers between the tropics and the two extratropical zones. The response in the tropics is not zonally symmetric. The 3-D Green’s function analysis of the effect of THC weakening on transport in the tropical Pacific shows a modified Hadley cell in the eastern Pacific, confirming the results of our previous studies, and a weakening (strengthening) of the upward and eastward motion to the south (north) of the Equator in the western Pacific in the perturbed climate as compared to the present climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altabet MA, Higginson MJ, Murray DW (2002) The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2. Nature 415:159–162

    Article  Google Scholar 

  • Austin J, Tuck AF (1985) The calculation of stratospheric air parcel trajectories using satellite data. Quart J Roy Meteor Soc 111:279–307

    Article  Google Scholar 

  • Bowman KP (1993) Large-scale isentropic mixing properties of the Antarctic polar vortex from analyzed winds. J Geophys Res 98:23013–23027

    Article  Google Scholar 

  • Bowman KP (1996) Rossby wave phase speeds and mixing barriers in the stratosphere. Part I: Observations. J Atmos Sci 53:905–916

    Article  Google Scholar 

  • Bowman KP (2006) Transport of carbon monoxide from the tropics to extratropics. J Geophys Res 111:D02107. doi:10.1029/2005JD00617

    Article  Google Scholar 

  • Bowman KP, Carrie GD (2002) The mean-meridional transport circulation of the troposphere in an idealized GCM. J Atmos Sci 59:1502–1514

    Article  Google Scholar 

  • Bowman KP, Erukhimova TL (2004) Comparison of Global-Scale Lagrangian Transport Properties of the NCEP reanalysis and CCM3. J Clim 17:1135–1146

    Article  Google Scholar 

  • Broccoli AJ, Dahl KA, Stouffer RJ (2006) The Response of the ITCZ to Northern Hemisphere cooling. Geophys Res Lett 33:L01702. doi:10.1029/2005GL024546

    Article  Google Scholar 

  • Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at ±25°N. Nature 438:655–657

    Article  Google Scholar 

  • Chen P (1994) The permeability of the Antarctic vortex edge. J Geophys Res 99:20563–20571

    Article  Google Scholar 

  • Cheng W, Bitz CM, Chiang JCH (2007) Adjustment of the global climate to an abrupt slowdown of the Atlantic meridional overturning circulation. In: Schmittner, Chiang, Hemming (eds) In press for Ocean Circulation: Mechanisms and Impacts (AGU Monograph). doi:10.1029/173GM19

  • Chiang JCH, Biasutti M, Battisti DC (2003) Sensitivity of the Atlantic intertropical convergence zone to last glacial maximum boundary conditions. Paleoceanography 18. doi:10.1029/2003PA000916

  • Dahl KA, Broccoli AJ, Stouffer R (2005) Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: a tropical Atlantic perspective. Clim Dyn 24:325–346. doi:10.1007/s00382-004-0499-5

    Article  Google Scholar 

  • Delworth TL et al (2006) GFDLs CM2 global coupled climate models Part 1: Formulation and simulation characteristics. J Clim 19:643–674

    Article  Google Scholar 

  • Erukhimova TL, Bowman KP (2006) Role of convection in global-scale transport in the troposphere. J Geophys Res 111:D03105. doi:10.1029/2005JD006006

    Article  Google Scholar 

  • Hall TM, Plumb RA (1994) Age as a diagnostic of stratospheric transport. J Geophys Res 99:1059–1070

    Article  Google Scholar 

  • Holzer M (1999) Analysis of passive tracer transport as modeled by an atmospheric general circulation model. J Clim 12:1659–1684

    Article  Google Scholar 

  • Holzer M, Boer GJ (2001) Simulated changes in atmospheric transport climate. J Clim 14:4398–4420

    Article  Google Scholar 

  • Holzer M, Hall TM (2000) Transit-time and tracer-age distributions in geophysical flows. J Atmos Sci 57:3539–3558

    Article  Google Scholar 

  • Hsu CPF (1980) Air parcel motions during a numerically simulated sudden stratospheric warming. J Atmos Sci 37:2768–2792

    Article  Google Scholar 

  • Kida H (1983) General circulation of air parcels and transport characteristics derived from a hemispheric GCM. Part 2. Very long-term motions of air parcels in the troposphere and stratosphere. J Meteor Soc Japan 61:510–522

    Google Scholar 

  • Koutavas A, Lynch-Stieglitz J, Marchitto TM Jr., Sachs JP (2002) El-Niño-like pattern in Ice age tropical Pacific sea surface temperature. Science 297:226–230

    Article  Google Scholar 

  • Mari C et al (2004) Export of Asian pollution during two cold front episodes of the TRACE-P experiment. J Geophys Res 109:D15S17. doi:10.1029/2003JD004307

  • Matsuno T (1980) Lagrangian motion of air parcels in the stratosphere in the presence of planetary waves. Pure Appl Goephys 118:189–216

    Article  Google Scholar 

  • Peterson LC, Haug GH, Hughen KA, Rohl U (2000) Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290:1947–1950

    Article  Google Scholar 

  • Pierce RB, Fairlie TDA (1993) Chaotic advection in the stratosphere: Implications for the dispersal of chemically perturbed air from the polar vortex. J Geophys Res 98:18589–18595

    Article  Google Scholar 

  • Pierrehumbert RT, Yang H (1993) Global chaotic mixing on isentropic surfaces. J Atmos Sci 50:2462–2480

    Article  Google Scholar 

  • Schoeberl MR, Sparcling LC, Newman PA, Rosenberg JE (1992) The structure of the polar vortex. J Geophys Res 97:7859–7882

    Google Scholar 

  • Stouffer RJ, Dixon KW, Spelman MJ, Hurlin W, Yin J, Gregory JM, Weaver AJ, Eby M, Flato GM, Robitaille DY, Hasumi H, Oka A, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Peltier WR, Vettoretti G, Sokolov A, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387

    Article  Google Scholar 

  • Sutton RT, Maclean H, Swinbank R, O’Neill A, Taylor FW (1994) High-resolution stratospheric tracer fields estimated from satellite observation using Lagrangian trajectory calculations. J Atmos Sci 51:2995–3005

    Article  Google Scholar 

  • Timmermann A, An S-I, Krebs U, Goosse H (2005) ENSO suppression due to weakening of the North Atlantic thermohaline circulation. J Clim 18:3122–3139

    Article  Google Scholar 

  • Timmermann A, Okumura Y, An S-I, Clement A, Dong B, Guilyardi E, Hu A, Jungclaus J, Krebs U, Renold M, Stocker TF, Stouffer RJ, Sutton R, Xie S-P, Yin J (2007) The influence of shutdown of the Atlantic meridional overturning circulation on ENSO. J Clim 20:4899–4919

    Article  Google Scholar 

  • Vellinga M, Wood RA (2002) Global climate impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267

    Article  Google Scholar 

  • Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen C-C, Dorale JA (2001) A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294:2345–2348

    Article  Google Scholar 

  • Wang XF, Auler AS, Edwards RL, Cheng H, Cristall PS, Smart PL, Richards DA, Shen CC (2004) Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432:740–743

    Article  Google Scholar 

  • Zhang R, Delworth TL (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18:1853–1860

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Erukhimova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erukhimova, T., Zhang, R. & Bowman, K.P. The climatological mean atmospheric transport under weakened Atlantic thermohaline circulation climate scenario. Clim Dyn 32, 343–354 (2009). https://doi.org/10.1007/s00382-008-0402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0402-x

Keywords

Navigation