Skip to main content
Log in

Probabilistic seismic hazard model for Cairo, Egypt: estimates and uncertainties

  • Original Research
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

A new seismic hazard model for Cairo, the capital city of Egypt is developed herein based on comprehensive consideration of uncertainties in various components of the probabilistic seismic hazard analysis. The proposed seismic hazard model is developed from an updated catalogue of historical and instrumental seismicity, geodetic strain rates derived from GPS-based velocity-field of the crust, and the geologic slip rates of active faults. The seismic source model consists of area sources and active faults characterised to forecast the seismic productivity in the region. Ground motion prediction models are selected to describe the expected ground motion at the sites of interest. The model accounts for inherent epistemic uncertainties of statistical earthquake recurrence; maximum magnitude; ground motion prediction models, and their propagation toward the obtained results. The proposed model is applied to a site-specific hazard analysis for Kottamiya, Rehab City and Zahraa-Madinat-Nasr (hereinafter referred to as Zahraa) to the East of Cairo (Egypt). The site-specific analysis accounts for the site response, through the parameterization of the sites in terms of average 30-m shear-wave velocity (Vs30). The present seismic hazard model can be considered as a reference model for earthquake risk mitigation and proper resilience planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Abou Elenean KM, Hussein HM, Abu El-Ata AS, Ibrahim EM (2000) Seismological aspects of the Cairo earthquake, 12th October 1992. Ann Geofis 43(3):485–504

    Google Scholar 

  • Adly A (2010) Detailed seismic hazard study for new Cairo City, Egypt. M.Sc. thesis, Al-Azhar University, Egypt

  • Adly A, Poggi V, Fäh D, Hassoup A, Omran A (2017) Combining active and passive seismic methods for the characterization of urban sites in Cairo, Egypt. Geophys J Int 210(1):428–442. https://doi.org/10.1093/gji/ggx176

    Article  Google Scholar 

  • Aki K (1965) Maximum likelihood estimate of b in the formula log (N) = a − b M and its confidence limits. Bull Earthq Res Inst Tokyo Univ 43:237–239

    Google Scholar 

  • Akkar S, Sandıkkaya MA, Bommer JJ (2014) Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull Earthq Eng 12(1):359–387. https://doi.org/10.1007/s10518-013-9461-4

    Article  Google Scholar 

  • Ambraseys NN, Melville CP, Adams RD (1994) The seismicity of Egypt, Arabia and the Red Sea. Cambridge University Press, London

    Book  Google Scholar 

  • Anderson JG, Luco JE (1983) Consequences of slip rate constants on earthquake occurrence relations. Bull Seis Soc Am 73:471–496

    Google Scholar 

  • Atkinson GM, Boore DM (2003) Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bull Seismol Soc Am 93:1703–1729

    Article  Google Scholar 

  • Badawy A, Korrat I, El-Hadidy M, Gaber H (2016) Update earthquake risk assessment in Cairo. J Seismol, Egypt. https://doi.org/10.1007/s10950-016-9621-5

    Book  Google Scholar 

  • Bender B (1983) Maximum likelihood estimation of b values for magnitude grouped data. Bull Seismol Soc Am 73:831–851

    Google Scholar 

  • Bommer JJ, Crowley H (2017) The purpose and definition of the minimum magnitude limit in PSHA calculations. Seismol Res Lett 88(4):1097–1106. https://doi.org/10.1785/0220170015

    Article  Google Scholar 

  • Bommer JJ, Scherbaum F (2008) The use and misuse of logic trees in probabilistic seismic hazard analysis. Earthq Spectra 24:997–1009. https://doi.org/10.1193/1.2977755

    Article  Google Scholar 

  • Bommer JJ, Douglas J, Scherbaum F et al (2010) On the selection of ground-motion prediction equations for seismic hazard analysis. Seismol Res Lett 81(5):794–801

    Article  Google Scholar 

  • Boore DM, Stewart JP, Seyhan E et al (2014) NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthq Spec 30(3):1057–1085

    Article  Google Scholar 

  • Brune JN (1968) Seismic moment, seismicity, and rate of slip along major fault zones. J Geophys Res 73:777–784

    Article  Google Scholar 

  • Budnitz RJ, Apostolakis G, Boore DM et al (1997) Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts. In: Technical report NUREG/CR-6372, Lawrence Livermore National Laboratory, sponsored by the U.S. Nuclear Regulatory Commission, U.S. Department of Energy, and Electric Power Research Institute

  • Bungum H (2007) Numerical modelling of fault activities. Comput Geosci 33:808–820

    Article  Google Scholar 

  • Campbell KW, Bozorgnia Y (2014) NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthq Spec 30(3):1087–1115

    Article  Google Scholar 

  • Chiou BS-J, Youngs RR (2014) Updated of the Chiou and Youngs NGA Model for the average horizontal component of peak ground motion and response spectra. Earthq Spectra 30(3):1117–1153

    Article  Google Scholar 

  • Danciu L, Kale Ö, Akkar S (2016) The 2014 earthquake model of the middle east: ground motion model and uncertainties. Bull Earthq Eng. https://doi.org/10.1007/s10518-016-9989-1

    Article  Google Scholar 

  • Deif A, Hamed H, Ibrahim HA et al (2011) Seismic hazard assessment in Aswan, Egypt. J Geophys Eng 8:531–548

    Article  Google Scholar 

  • Delavaud E, Cotton F, Akkar S et al (2012) Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. J Seismol 16:451–473. https://doi.org/10.1007/s10950-012-9281-z

    Article  Google Scholar 

  • Dorra EM, Stafford PJ, Elghazouli AY (2013) Earthquake loss estimation for Greater Cairo and the national economic implications. Bull Earthq Eng 11(4):1217–1257

    Article  Google Scholar 

  • EGSMA (1981) Geological map of Egypt, scale 1:2,000,000. Egyptian geological survey and mining authority, Cairo

    Google Scholar 

  • El-Hefnawy M, Deif A, El-Hemamy ST et al (2006) Probablistic assessment of earthquake hazard in Sinai in relation to the seismicity in the Eastern Mediterranean region. Bull Eng Geol Environ 65:309–319

    Article  Google Scholar 

  • El-Hussain I, Deif A, Al-Jabri K et al (2012) Probabilistic seismic hazard maps for the sultanate of Oman. Nat Hazards 64:173–210. https://doi.org/10.1007/s11069-012-0232-3

    Article  Google Scholar 

  • El-Sayed A, Wahlström R (1996) Distribution of the energy release, b-values and seismic hazard in Egypt. Nat Hazards 13:133–150

    Article  Google Scholar 

  • Ezzelarab M, Shokry MMF, Mohamed AME et al (2016) Evaluation of seismic hazard at the northwestern part of Egypt. J Afr Earth Sci 113:114–125

    Article  Google Scholar 

  • Field E, Jackson DD, Dolan JF (1999) A mutually consistent seismic-hazard source model for southern California. Bull Seismol Soc Am 89:559–578

    Google Scholar 

  • Field EH, Jordan TH, Cornell CA (2003) OpenSHA—a developing community-modeling environment for seismic hazard analysis. Seism Res Lett 74:406–419

    Article  Google Scholar 

  • Frankel A (1995) Mapping seismic hazard in the central and eastern United States. Seismol Res Lett 66:8–21

    Article  Google Scholar 

  • Galli P (1999) Active tectonics along the Wadi Araba-Jordan Valley transform fault. J Geophys Res 104(B2):2777–2796

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seism Soc Am 34:185–188

    Google Scholar 

  • Hurukawa N, Seto N, Inoue H et al (2001) Seismological observations in and around the Southern Partof the Gulf of Suez, Egypt. Bull seism Soc Am 91(4):708–717

    Article  Google Scholar 

  • Hussein HM, Abou Elenean KM, Marzouk IA et al (2013) Present-day tectonic stress regime in Egypt and surrounding area based on inversion of earthquake focal mechanisms. J Afr Earth Sci 81:1–15

    Article  Google Scholar 

  • Hyndman RD, Weichert DH (1983) Seismicity and rates of relative plate motion on the plate boundaries of western North America. Geophys J R Astron Soc 72:59–82

    Article  Google Scholar 

  • Kale Ö, Akkar S (2013) A new perspective for selecting and ranking ground-motion prediction equations (GMPEs): the euclidian distance-based ranking method. Bull Seismol Soc Am 103(2A):1069–1084

    Article  Google Scholar 

  • Kebeasy RM, Maamoun M, Albert RNH et al (1981) Earthquake activity and earthquake risk around the Alexandria area in Egypt. Acta Geophys Pol 29:37–48

    Google Scholar 

  • Kijko A, Singh M (2011) Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys 59(4):474–700

    Article  Google Scholar 

  • Klinger Y, Avouac JP, Dorbath L et al (2000) Seismic behaviour of the Dead Sea fault along Araba valley, Jordan. Geophys J Int 142:769–782

    Article  Google Scholar 

  • Kobeissi MA, Gomez F, Tabet C (2015) Measurement of anomalous radon gas emanation across the Yammouneh fault in Southern Lebanon: a possible approach to earthquake prediction. Int J Disaster Risk Sci 6:250–266

    Article  Google Scholar 

  • Kostrov VV (1974) Seismic moment and energy of earthquakes, and seismic flow of rocks. Izv Acad Sci USSR Phys Solid Earth 1:23–40

    Google Scholar 

  • Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, New York

    Google Scholar 

  • Lin P-S, Lee C-T (2008) Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan. Bull Seismol Soc Am 98:220–240. https://doi.org/10.1785/0120060002

    Article  Google Scholar 

  • Masson F, Chéry J, Hatzfeld D et al (2005) Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data. Geophys J Int 160:217–226. https://doi.org/10.1111/j.1365-246X.2004.02465.x

    Article  Google Scholar 

  • Mazzotti ST, James S, Henton J, Adams J (2005) GPS crustal strain, postglacial rebound, and seismicity in eastern North America: The St Lawrence valley example. J Geophys Res 110:B11301. https://doi.org/10.1029/2004JB003590

    Article  Google Scholar 

  • Mazzotti S, Leonard LJ, Cassidy JF et al (2011) Seismic hazard in western Canada from GPS strain rates versus earthquake catalog. J Geophys Res 116:B12310. https://doi.org/10.1029/2011JB008213

    Article  Google Scholar 

  • McClusky S, Balassania S, Barka A et al (2000) GPS constraints on plate motions and deformation in the Eastern Mediterranean: implications for plate dynamics. J Geophys Res 105:5695–5719

    Article  Google Scholar 

  • McClusky S, Reilinger R, Mahmoud S et al (2003) GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys J Int 155:126–138

    Article  Google Scholar 

  • McGuire RK (2004) Seismic hazard and risk analysis. Earthquake Engineering Research Institute, Oakland

    Google Scholar 

  • Mignan A, Danciu L, Giardini D (2015) Reassessment of the maximum fault rupture length of strike-slip earthquakes and inference on Mmax in the Anatolian Peninsula, Turkey. Seis Res Lett 86(3):890–900

    Article  Google Scholar 

  • Mohamed AA, El-Hadidy M, Deif A, AbouElenean K (2012) Seismic hazard studies in Egypt. NRIAG J Astr Geophys 1:119–140

    Article  Google Scholar 

  • Moharram AM, Elghazouli AY, Bommer JJ (2008) A framework for a seismic risk model for Greater Cairo. Soil Dyn Earthq Eng 28:795–811

    Article  Google Scholar 

  • Nemer T, Gomez F, Al Haddad S, Tabet C (2008) Coseismic growth of sedimentary basins along the Yammouneh strike-slip fault (Lebanon). Geophys J Int 175(3):1023–1039

    Article  Google Scholar 

  • Pagani M, Monelli D, Weatherill GA, Garcia J (2014a) The OpenQuake-engine book: hazard. Global Earthquake Model (GEM) Technical Report 2014-08. https://doi.org/10.13117/-gem.openquake.tr2014.08

  • Pagani M, Monelli D, Weatherill G et al (2014b) OpenQuake engine: an open hazard (and risk) software for the global earthquake model. Seismol Res Lett 85:692–702. https://doi.org/10.1785/0220130087

    Article  Google Scholar 

  • Papadopoulos GA, Baskoutas I, Fokaefs A (2014) Historical seismicity of the Kyparissiakos Gulf, western Peloponnese, Greece. Boll Geof Teor Appl 55:389–404. https://doi.org/10.4430/bgta0096

    Article  Google Scholar 

  • Reasenberg P (1985) Second-order moment of central California seismicity, 1969–1982. J Geophys Res 90:5479–5495

    Article  Google Scholar 

  • Reilinger R, McClusky S, Vernant P et al (2006) GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111(B5):B05411. https://doi.org/10.1029/2005JB004051

    Article  Google Scholar 

  • Reiter L (1990) Earthquake hazard analysis. Columbia University Press, New York

    Google Scholar 

  • Said R (1992) The geology of Egypt. Balkema Press, Amsterdam

    Google Scholar 

  • Saleh M, Becker M (2013) A new velocity field from the analysis of the Egyptian Permanent GPS Network (EPGN). Arab J Geosci. https://doi.org/10.1007/s12517-013-1132-x

    Article  Google Scholar 

  • Sawires R, Pelaez JA, Fat-Helbary RE, Ibrahim HA (2016) Updated probabilitic seismic-hazard values for Egypt. Bull Seismol Soc Am 106(4):1788–1801

    Article  Google Scholar 

  • Scherbaum F, Delavaud E, Riggelsen C (2009) Model selection in seismic hazard analysis: an information–theoretic perspective. Bull Seismol Soc Am 99(6):3234–3247

    Article  Google Scholar 

  • Storchak DA, Giacomo DDi, Bondár I et al (2012) ISC-GEM Global Instrumental Earthquake Catalogue (1900–2009). GEM technical report 2012-01 V1.0.0, GEM Foundation, Pavia, Italy. https://doi.org/10.13117/gem.gegd.tr2012.01

  • Tinti S, Mulargia F (1987) Confidence intervals of b-values for grouped magnitudes. Bull Seismol Soc Am 77:2125–2134

    Google Scholar 

  • USNRC (2012) Practical implementation guidelines for SSHAC Level 3 and 4 hazard studies”. NUREG-2117. US Nuclear Regulatory Commission, Washington

    Google Scholar 

  • Ward SN (1998) On the consistency of earthquake moment release and space geodetic strain rates: Europe. Geophys J Int 135:1011–1018. https://doi.org/10.1046/j.1365246X.1998.t01-2-00658.x

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Wheeler RL (2009) Methods of M max estimation east of the rocky mountains. Open file report 2009-1018, USGS

  • Wiemer S, Giardini D, Fäh D et al (2009) Probabilistic seismic hazard assessment of Switzerland: best estimates and uncertainties. J seismol 13:449–478. https://doi.org/10.1007/s10950-008-9138-7

    Article  Google Scholar 

  • Woessner J, Danciu L, Giardini D et al (2015) The 2013 European seismic hazard model: key components and results. Bull Earthq Eng. https://doi.org/10.1007/s10518-015-9795-1

    Article  Google Scholar 

  • Youngs RR, Coppersmith KJ (1985) Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bull Seism Soc Am 75:939–964

    Google Scholar 

  • Youngs RR, Chiou SJ, Silva WJ et al (1997) Strong ground motion attenuation relationships for subduction zone earthquakes. Seismol Res Lett 68:58–73. https://doi.org/10.1785/gssrl.68.1.58

    Article  Google Scholar 

  • Zhao JX (2006) Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bull Seismol Soc Am 96:898–913. https://doi.org/10.1785/0120050122

    Article  Google Scholar 

Download references

Acknowledgements

We thank Stephane Mazzotti and Phillip Resorfor their support in the estimation of the seismicity levels from geodetic strain rates. We appreciate the help of Nicolas Houlié and Stefan Hiemer, during the stay of the first author at Swiss Seismological Service, ETH Zurich. We also appreciate the constructive review comments of Julian Bommer, which helped to significantly improve the manuscript. This research is funded by the Egyptian Ministry of Higher Education and Scientific Research through a joint-supervision mission at the Swiss Federal Institute of Technology in Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Adly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adly, A., Danciu, L., Fäh, D. et al. Probabilistic seismic hazard model for Cairo, Egypt: estimates and uncertainties. Bull Earthquake Eng 16, 5697–5733 (2018). https://doi.org/10.1007/s10518-018-0440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-018-0440-7

Keywords

Navigation