Skip to main content
Log in

A magmatic source for fumaroles and diffuse degassing from the summit crater of Teide Volcano (Tenerife, Canary Islands): a geochemical evidence for the 2004–2005 seismic–volcanic crisis

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The present work reports the results of 15 studies of diffuse CO2 degassing performed at Teide Volcano crater (Canary Island, Spain) and the chemical and isotopic compositions of fluids discharged from a fumarolic field located at the top of the volcano as measured between 1991 and 2010. A higher contribution of magmatic gases accompanied by enhanced total diffuse CO2 emissions were observed in relation with a seismic crisis that occurred in Tenerife Island between 2001 and 2005, with the main peak of seismic activity between April and June 2004. A significant pulse in total diffuse CO2 emission was observed at the crater of Teide (up to 26.3 t day−1) in 2001. In December 2003, the chemical composition of the Teide fumarole changed significantly, including the appearance of SO2, an increase in the HCl and CO concentrations and in the C2H6/C2H4 and C3H8/C3H6 ratios, and a decrease in the H2S, CH4, and C6H6 concentrations and in the gas/steam ratio. A few months after a drastic decrease in seismic activity, the SO2, HCl, and CO concentrations and the C2H6/C2H4 and C3H8/C3H6 ratios strongly decreased, whereas the CH4 and C6H6 concentrations and the gas/steam ratios increased. According to the trends shown by both the geochemical parameters and the seismic signals late in the observation period, the risk of a rejuvenation of volcanic activity at Teide is considered to be low. The associated temporal changes in seismic activity and magmatic degassing indicate that geophysical and fluid geochemistry signals in this system are related. Future monitoring programs aimed at mitigating volcanic hazard on Tenerife Island should involve coupled geophysical and geochemical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ablay GJ, Martí J (2000) Stratigraphy, structure, and volcanic evolution of Pico Teide–Pico Viejo formation, Tenerife, Canary Islands. J Volcanol Geotherm Res 103:175–208

    Article  Google Scholar 

  • Ablay GJ, Carroll MR, Palmer MR, Martí J, Sparks RSJ (1998) Basanite–phonolite lineages of the Teide–Pico Viejo volcanic complex, Tenerife, Canary Islands. J Petrology 39:905–936

    Article  Google Scholar 

  • Aka F, Kusakabe M, Nagao K, Tanyileke G (2001) Noble gas isotopic compositions and water chemistry of soda springs from the islands of Bioko, Sao Tome and Annobon, along with Cameroon Volcanic Line, West Africa. Appl Geochem 16:323–338

    Article  Google Scholar 

  • Albert-Beltran JF, Araña V, Diez JL, Valentin A (1990) Physical–chemical conditions of the Teide volcanic system (Tenerife, Canary Islands). J Volcanol Geotherm Res 43:321–332

    Article  Google Scholar 

  • Allard P, Le Bronec J, Morel P, Vavasseur P, Faivre-Pierret R, Robe M, Roussel C, Zetwoog P (1987) Geochemistry of soil gas emanations from Mt. Etna, Sicily. Terra Cognita 7(G17–52):407

    Google Scholar 

  • Allard P, Carbonelle J, Dajlevic D, Bronce J, Morel P, Robe M, Maurenads J, Faivre-Pierret R, Martin D, Sabroux J, Zettwoog P (1991) Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351:387–391

    Article  Google Scholar 

  • Almendros J, Ibáñez JM, Carmona E, Zandomeneghi D (2007) Array analyses of volcanic earthquakes and tremor recorded at Las Cañadas caldera (Tenerife Island, Spain) during the 2004 seismic activation of Teide Volcano. J Volcanol Geotherm Res 160:285–299

    Article  Google Scholar 

  • Ancoechea E, Fuster JM, Ibarrola E, Cendrero A, Coello J, Hernán F, Cantagrel JM, Jamond C (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K–Ar data. J Volcanol Geotherm Res 44:231–249

    Article  Google Scholar 

  • Anguita F, Hernán F (2000) The Canary Islands origin: a unifying model. J Volcanol Geotherm Res 103:1–26

    Article  Google Scholar 

  • Araña V, Ortiz R (1986) Marco geodinámico del volcanismo canario. Anales de Física 82:202–231 (in Spanish)

    Google Scholar 

  • Araña V, Camacho A, Garcia A, Montesinos F, Blanco I, Viera R, Felpeto A (2000) Internal structure of Tenerife (Canary Islands) based on gravity aeromagnetic and volcanological data. J Volcanol Geotherm Res 103:43–64

    Article  Google Scholar 

  • Baubron J, Allard P, Toutain J (1990) Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy. Nature 344:51–53

    Article  Google Scholar 

  • Baubron J, Mathieu R, Miele G (1991) Measurement of gas flow from soils in volcanic areas: the accumulation method. Napoli ’91 International Conference on Active Volcanoes and Risk Mitigation. Abstract, 27 August–1 September 1991, Naples, Italy

  • Burnard P, Graham D, Turner G (1997) Vesicle-specific noble gas analyses of “popping rock”: implications for primordial noble gases in Earth. Science 276:568–571

    Article  Google Scholar 

  • Cañas JA, Ugalde A, Pujades LG, Carracedo J, Soler V, Blanco MJ (1992) Intrinsic and scattering ware attenuation in the Canary Islands. J Geophys Res 103:15037–15050

    Article  Google Scholar 

  • Capaccioni B, Mangani F (2001) Monitoring of active but quiescent volcanoes using light hydrocarbon distribution in volcanic gases: the results of 4 years of discontinuous monitoring in the Campi Flegrei (Italy). Earth Planet Sci Lett 188:543–555

    Article  Google Scholar 

  • Capaccioni B, Taran Y, Tassi F, Vaselli O, Mangani F, Macias JL (2004) Source conditions and degradation processes of light hydrocarbons in volcanic gases: an example from El Chichón Volcano (Chiapas State, Mexico). Chem Geol 20:81–96

    Article  Google Scholar 

  • Carapezza M, Inguaggiato S, Brusca L, Longo M (2004) Geochemical precursors of the activity of an open-conduit volcano: the Stromboli 2002–2003 eruptive events. Geophys Res Lett 31:L07620. doi:10.1029/2004GL019614

    Article  Google Scholar 

  • Carapezza ML, Ricci T, Ranaldi M, Tarchini L (2009) Active degassing structures of Stromboli and variations in diffuse CO2 output related to the volcanic activity. J Volcanol Geotherm Res 182:231–245

    Article  Google Scholar 

  • Cardellini C, Chiodini G, Frondini F (2003) Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. J Geophys Res 108:B9. doi:10.1029/202JB002165

    Article  Google Scholar 

  • Carracedo JC (1994) The Canary Islands: an example of structural control on the growth of large oceanic-island volcanoes. J Volcanol Getherm Res 60:225–241

    Article  Google Scholar 

  • Carracedo JC, Rodríguez E, Guillou H, Pterne M, Scaillet S, Pérez F, Paris R, Fra-Paleo U (2007) Eruptive and structural history of Teide Volcano and rift zones of Tenerife, Canary Islands. Geol Soc Am Bull 119:1027–1051

    Article  Google Scholar 

  • Chiodini G, Marini L (1998) Hydrothermal gas equilibria: the H2O–H2–CO2–CO–CH4 system. Geochim Cosmochim Acta 62:2673–2687

    Article  Google Scholar 

  • Chiodini G, Frondini F, Raco B (1996) Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy). Bull Vulcanoll 48:41–50

    Article  Google Scholar 

  • Chiodini G, Avino R, Brombach T, Caliro S, Cardellini C, De Vita S, Frondini F, Granirei D, Marotta E, Ventura G (2004) Fumarolic and diffuse soil degassing west of Mount Epomeo, Ischia, Italy. J Volcan Geophys Res 133:291–309

    Article  Google Scholar 

  • Chiodini G, Baldini A, Barberi F, Carapezza M, Cardellini C, Frondini F, Granieri D, Ranaldi M (2007) Carbon dioxide degassing at Latera caldera (Italy): evidence of geothermal reservoir and evaluation of its potential energy. J Geophys Res 112:B12204. doi:10.1029/2006B004896

    Article  Google Scholar 

  • Chiodini G, Caliro S, Cardellini C, Avino R, Granieri D, Schmidt A (2008) Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic–hydrothermal areas. Earth Planet Sci Lett 274:372–379

    Article  Google Scholar 

  • Craig H, Lupton JE (1976) Primordial neon, helium and hydrogen in oceanic basalts. Earth Planet Sci Lett 31:369–385

    Article  Google Scholar 

  • Deutsch C, Journel A (1998) GSLIB: Geostatistical software library and users guide, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Domínguez I, del Fresno C, Rivera L (2011) New insight on the increasing seismicity during Tenerife’s 2004 volcanic reactivation. J Volcanol Geother Res 206:15–29

    Article  Google Scholar 

  • Edgar CJ, Wolf JA, Olin PH, Nichols HJ, Pittari A, Cas R, Reiners PW, Spell TL, Martí J (2005) The Late Quaternary Diego Hernández Formation, Tenerife: a cycle of repeated voluminous explosive phonolitic eruptions. Bull Volcanol 57:337–355

    Google Scholar 

  • Farrar C, Sorey M, Evans W, Howle J, Kerr B, Kennedy B, King C, Southon J (1995) Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest. Nature 376:675–678

    Article  Google Scholar 

  • Fernández J, Romero R, Carrasco D, Tiampo K, Rodríguez-Velazco G, Aparicio A, Araña V, Gonzalez-Matesanz F (2005) Detection of displacements on Tenerife Island, Canaries, using radar interferometry. Geophys J Int 160:33–45

    Article  Google Scholar 

  • Fridriksson T, Kristjánsson BR, Ármannsson H, Margrétardóttir E, Olafsdóttir S, Chiodini G (2006) CO2 emissions and heat flow trough soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland. Appl Geochem 21:1551–1569

    Article  Google Scholar 

  • Frondini F, Chiodini G, Caliro S, Cardellini C, Granieri D, Ventura G (2004) Diffuse CO2 degassing at Vesuvio, Italia. Bull Volcanol 66:642–651. doi:10.1007/s00445-004-0346

    Article  Google Scholar 

  • Frondini F, Caliro S, Cardellini C, Chiodini G, Morgantini N (2009) Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic–geothermal area (Italy). Appl Geochem 24:860–875

    Article  Google Scholar 

  • Galindo I (2005) Estructura volcanotectónica y emisión difusa de gases de Tenerife. PhD thesis, University of Barcelona, Spain (in Spanish)

  • Giammanco S, Gurrieri S, Valenza M (1995) Soil CO2 degassing on Mt Etna (Sicily) during the period 1989–1993: discrimination between climatic and volcanic influences. Bull Volcanol 57:52–60

    Google Scholar 

  • Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zeland. Appl Geochem 2:143–161

    Article  Google Scholar 

  • Giggenbach WF (1992) The composition of gases in geothermal and volcanic systems as a function of tectonic setting. Proceedings of the International Symposium on Water–Rock Interaction, WRI-8, pp 873–878

  • Giggenbach WF, Goguel RL (1989) Collection and analysis of geothermal and volcanic water and gas discharges. Unpublished report, Chemistry Division, DSIR-Petone, New Zealand, p 81

  • Giggenbach WF, Poreda RJ (1993) Helium isotopic and chemical composition of gases from volcanic–hydrothermal systems in the Philippines. Geothermics 22:369–380

    Article  Google Scholar 

  • Gottsmann J, Wooller L, Martí J, Fernández J, Camacho AG, González PJ, García A, Rymer H (2006) New evidence for the reawakening of Teide Volcano. Geophys Res Lett 33:L20311. doi:10.1029/2006GL027523

    Article  Google Scholar 

  • Graham DW (2002) Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: characterization of mantle source reservoirs. Rev Mineral Geochem 47:247–317

    Article  Google Scholar 

  • Granieri D, Carapezza M, Chiodini G, Avino R, Caliro S, Ranaldi M, Ricci T, Tarchini L (2006) Correlated increase in CO2 fumarolic content and diffuse emission from La Fossa crater (Vulcano, Italy): evidence of volcanic unrest or increasing gas release from a stationary deep magma body? Geophys Res Lett 33:L13316.1–L13316.4. doi:10.1029/2006GL026460

    Article  Google Scholar 

  • Gurenko AA, Hoernle KA, Hauff F, Schmincke H-U, Han D, Miura YN, Kaneoka I (2006) Major, trace element and Nd–Sr–Pb–O–He–Ar isotope signatures of shield stage lavas from the central and western Canary Islands: insights into mantle and crustal processes. Chem Geol 233:75–112

    Article  Google Scholar 

  • Hernández P, Pérez N, Salazar J, Nakai S, Notsu K, Wakita H (1998) Diffuse emission of carbon dioxide, methane, and helium-3 from Teide Volcano, Tenerife, Canary Islands. Geophys Res Lett 25:3.311–3.314

    Article  Google Scholar 

  • Hernández PA, Pérez N, Salazar J, Sato M, Notsu K, Wakita H (2000) Soil gas CO2, CH4, and H2 distribution in and around Las Cañadas Caldera, Tenerife, Canary Islands, Spain. J Volcanol Geotherm Res 103:425–438

    Article  Google Scholar 

  • Hernández P, Notsu K, Salazar J, Mori T, Natale G, Okada H, Virgili G, Shimoike Y, Sato M, Pérez N (2001) Carbon dioxide degassing by advective flow from Usu Volcano, Japan. Science 292:83–86

    Article  Google Scholar 

  • Hernández PA, Pérez NM, Padrón E, Melián G, Pereda E (2006) Diffuse CO2 emission changes at the summit cone of Teide Volcano and relation to seismic activity in and around Tenerife, Canary Islands. Abstracts of the Garavolcan International Meeting. Session 6: Tenerife’s experience: scientific results and the recent seismicvolcanic crisis. Garachico, Tenerife, Spain, 22–26 May 2006

  • Holland G, Ballentine CJ (2006) Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441:186–191

    Article  Google Scholar 

  • Huertas MJ, Arnaud NO, Ancochea E, Cantagrel JM, Fúster JM (2002) 40Ar/39Ar stratigraphy of pyroclastic units from the Cañadas Volcanic Edifice (Tenerife, Canary Islands) and their bearing on the structural evolution. J Volcanol Geoth Res 115:351–365

    Article  Google Scholar 

  • Javoy M, Pineau F, Allegre CJ (1982) Carbon geodynamic cycle. Nature 300:171–173

    Article  Google Scholar 

  • Kurz MD, Jenkins WJ, Schilling JG, Hart SR (1982) Helium isotopic variations in the mantle beneath the central northern Atlantic Ocean. Earth Planet Sci Lett 58:1–14

    Article  Google Scholar 

  • Lecinsky J, Hilley G, Tosha T, Aoyagi R, Yamamoto K, Benson S (2007) Dynamic coupling of volcanic CO2 flow and wind at the Horseshoe Lake tree kill, Mammoth Mountain, California. Geophys Res Lett 34:L03401. doi:10.1029/2006gl028848

    Article  Google Scholar 

  • López C, Blanco M, Carreño E (2006) Analysis of IGN seismic series in Tenerife that triggered the 2004 seismovolcanic alert. Abstracts of the Garavolcan International Meeting. Session 6: Tenerife’s experience: scientific result and the recent seismovolcanic crisis, Garachico, Tenerife, Spain, 22–26 May 2006

  • Mamyrin BA, Tolstikhin IN (1984) Helium isotopes in nature. In: Fyfe WS (ed) Development in geochemistry. Elsevier, Amsterdam, pp 1–273

    Google Scholar 

  • Marrero R (2010) Modelo hidrogeoquímico del acuífero de Las Cañadas del Teide, Tenerife, Islas Canarias. PhD thesis, Universitat Politécnica de Catalunya (in Spanish)

  • Marrero R, Melián G, Barrancos J, Hernández PA, Pérez NM (2006) Ground water chemistry changes and relation to the recent volcanic unrest at Tenerife, Canary Islands. Abstracts of the Garavolcan International Meeting. Session 6: Tenerife’s experience: scientific results and the recent seismicvolcanic crisis, Garachico, Tenerife, Spain, 22–26 May 2006

  • Martí J, Gudmundsson A (2000) The Las Cañadas Caldera (Tenerife, Canary Island): an overlapping collapse caldera generated by magma-chamber migration. J Volcanol Geotherm Res 103:161–173

    Article  Google Scholar 

  • Martí J, Mitjavila J, Araña V (1994) Stratigraphy, structure and geochronology of the Las Cañadas caldera (Tenerife, Canary Islands). Geological Magazine 131:715–727

    Article  Google Scholar 

  • Martí J, Geyer A, Andujar J, Teixido F, Costa F (2008) Assessing the potential for future explosive activity from Teide–Pico Viejo stratovolcanoes (Tenerife, Canary Islands). J Volcanol Geotherm Res 178:529–542

    Article  Google Scholar 

  • Matsuda J, Matsumoto T, Sumino H, Nagao K, Yamamoto J, Miura Y, Kaneoka I, Takahata N, Sano Y (2002) The 3He/4He ratio of the new internal He standard of Japan (HESJ). Geochem J 36:191–195

    Article  Google Scholar 

  • Matsuo S, Suzuki M, Mizutani Y (1978) Nitrogen to argon ratio in volcanic gases. Adv Earth Planet Sci Lett 3:17–25

    Google Scholar 

  • Mazot A, Rouwet S, Taran Y, Inguaggiato S, Varley N (2011) CO2 and He degassing at El Chichón Volcano, Chiapas, Mexico: gas flux, origin and relationship with local and regional tectonics. Bull Volcanol 73:423–441. doi:10.1007/s00445-010-0443-y

    Article  Google Scholar 

  • Melián G (2008) Desgasificación difusa de dióxido de carbono y otros volátiles en el volcán Poás, Costa Rica, América Central. PhD thesis, University of La Laguna, Spain (in Spanish)

  • Mezcua J, Buforn E, Udias A, Rueda J (1992) Seismotectonics of the Canary Islands. Tectonophysics 208:447–452

    Article  Google Scholar 

  • Montegrossi G, Tassi F, Vaselli O, Buccianti A, Garofalo K (2001) Sulfur species in volcanic gases. Anal Chem 73:3709–3715

    Article  Google Scholar 

  • Padrón E, Hernández P, Toulkeridis T, Pérez N, Marrero R, Melián G, Virgili G, Notsu K (2008) Diffuse CO2 emission rate from Pululahua and the lake-filled Cuicocha calderas, Ecuador. J Volcanol Geotherm Res 176:163–169. doi:10.1016/j.jvolgeores.2007.11.023

    Article  Google Scholar 

  • Parkinson K (1981) An improved method for measuring soil respiration in the field. J Appl Ecology 18:221–228

    Article  Google Scholar 

  • Pérez NM, Sturchio NC, Williams SN, Carracedo JC, Armenta JC (1992) Geochemical characteristics of the volcanic–hydrothermal gases in Teide, Timafaya, Taburiente, and Teneguía volcanoes, Canary Islands, Spain. Actas de las sesiones científicas. III Congreso Geológico de España, 1, pp 463–467. ISBN: 84-600-8132-X

  • Pérez NM, Wakita H, Nakai S, Sano Y, Williams SN (1994) 3He/4He isotopic ratios in volcanic–hydrothermal discharges from the Canary Islands, Spain: implications on the origin of the volcanic activity. Mineral Mag 58A:709–710

    Article  Google Scholar 

  • Pérez NM, Nakai S, Wakita H, Hernández PA, Salazar JM (1996) Helium-3 emission in and around Teide Volcano, Tenerife, Canary Islands, Spain. Geophys Res Lett 23:3531–3534

    Article  Google Scholar 

  • Pérez NM, Salazar J, Hernández P, Soriano T, Lopez K, Notsu K (2004a) Diffuse CO2 and 222Rn degassing from San Salvador volcano, El Salvador, Central America. Bull Geolog Soc Am Special Paper 375:227–236

    Google Scholar 

  • Pérez NM, Hernández PA, Lima N, Melián G, Galindo I, Padrón E, Marrero R, Salazar P, Gómez L, González P, Coello C, Pérez V (2004b) Reducing volcanic risk in the Canary Islands: are we doing the homework? Abstracts of the International Symposium “Reducing Volcanic Risk in Islands”, Tenerife, Canary Islands, Spain, 22–26 May 2006

  • Pérez NM, Melían G, Galindo I, Padrón E, Hernández PA, Nolasco D, Salazar P, Pérez V, Coello C, Marrero R, González Y, Barrancos J (2005) Premonitory geochemical and geophysical signatures of volcanic unrest at Tenerife, Canary Islands. Geophys Res Abst 7:09993

    Google Scholar 

  • Pérez NM, Hernández P, Padrón E, Cartagena R, Olmos R, Barahona F, Melián G, Salazar P, López D (2006) Anomalous diffuse CO2 emission prior to the January 2002 short-term unrest at San Miguel Volcano, El Salvador, Central America. Pure Appl Geophys 163:883–896

    Article  Google Scholar 

  • Pérez NM, Hernández PA (2007) Earthquake forecasting research in active volcanic areas by means of diffuse CO2 emission studies. In: Sen P, Das NK (eds) Geochemical precursors for earthquakes. Macmillan Advanced Res Series, pp 94–103

  • Pérez NM, Hernández PA, Padrón E, Melián G, Marrero R, Padilla G, Barrancos J, Nolasco D (2007) Precursory subsurface 222Rn and 220Rn degassing signatures of the 2004 seismic crisis at Tenerife, Canary Islands. Pure Appl Geophys 164:2431–2448. doi:10.1007/s00024-007-0280-x

    Article  Google Scholar 

  • Rizzo A, Grassa F, Inguaggiato S, Liotta M, Longo M, Madonia P, Brusca L, Capasso G, Morici S, Rouwet D, Vita F (2009) Geochemical evaluation of observed changes in volcanic activity during the 2007 eruption at Stromboli (Italy). J Volcanol Geotherm Res 182:246–254

    Article  Google Scholar 

  • Rollinson H (1993) Using geochemical data. Longman Scientific & Technical, Essex, UK, 352 pp

    Google Scholar 

  • Romero C (1990) Manifestaciones volcánicas históricas del Archipiélago Canario. PhD thesis, University of La Laguna, Spain (in Spanish)

  • Romero C (1991) Las manifestaciones volcánicas históricas del archipiélago canario (2 volumes). Gobierno de Canarias, Sta. Cruz de Tenerife, Spain (in Spanish)

  • Romero C (1992) Estudio geomorfológico de los volcanes históricos de Tenerife. In: Aula de cultura de Tenerife, Cabildo Insular, 265 pp (in Spanish)

  • Sagiya T, Barrancos J, Calvo D, Pérez N, Hernández P, Fujii N (2010) Continuous GPS observation in Canary Islands for volcano monitoring. Abstract of the Cities on Volcanoes Tenerife 2010, 1.3-P-41:92

  • Salazar J, Hernández P, Pérez N, Melián G, Álvarez J, Segura F, Notsu K (2001) Diffuse emission of carbon dioxide from Cerro Negro Volcano, Nicaragua. Geophys Res Lett 28:4275–4278

    Article  Google Scholar 

  • Salazar J, Pérez N, Hernández P, Soriano T, Barahona F, Olmos R, Cartagena R, López D, Lima N, Melián G, Padrón E, Galindo I, Notsu K (2002) Precursory diffuse carbon dioxide degassing related to a 5.1 magnitude earthquake in El Salvador, Central America. Earth Planet Sci Lett 205:81–89

    Article  Google Scholar 

  • Sano Y, Marty B (1995) Origin of carbon in fumarolic gas from island arcs. Chem Geol 119:265–274

    Article  Google Scholar 

  • Sano Y, Wakita H (1988) Precise measurement of helium isotopes in terrestrial gases. Bull Chem Soc Jpn 61:1153–1157

    Article  Google Scholar 

  • Seewald JS (1994) Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions. Nature 370:285–287

    Article  Google Scholar 

  • Taran YA, Giggenbach WF (2003) Geochemistry of light hydrocarbons in subduction-related volcanic and hydrothermal fluids. In: Simmons SF, Graham IJ (eds) Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the Earth. Society of Economic Geolologists Special Issue 10, Littleton, CO, pp 61–74

  • Taran Y, Pokrovsky BG, Doubik YM (1989) Isotopic composition and origin of water in adesitic magmas. Dokl. Academy of Sciences USSR, 304:440–443

    Google Scholar 

  • Tassi F, Montegrossi G, Vaselli O (2004) Metodologie di campionamento ed analisi in fase gassosa. CNR-IGG Firenze. Internal Report 1/2004, 17 pp (in Italian)

  • Tassi F, Vaselli O, Capaccioni B, Giolito C, Duarte E, Fernandez E, Minissale A, Magro G (2005a) The hydrothermal–volcanic system of Rincon de la Vieja Volcano (Costa Rica): a combined (inorganic and organic) geochemical approach to understanding the origin of the fluid discharges and its possible application to volcanic surveillance. J Volcanol Geotherm Res 148:315–333

    Article  Google Scholar 

  • Tassi F, Martinez C, Vaselli O, Capaccioni B, Viramonte J (2005b) The light hydrocarbons as new geoindicators of equilibrium temperatures and redox conditions of geothermal fields: evidence from El Tatio (northern Chile). Appl Geochem 20:2049–2062

    Article  Google Scholar 

  • Tassi F, Aguilera F, Vaselli O, Medina E, Tedesco D, Delgado Huertas A, Poreda R, Kojima SG (2009) The magmatic- and hydrothermal-dominated fumarolic system at the active crater of Lascar Volcano, northern Chile. Bull Volcanol 71:171–183. doi:10.1007/s00445-008-0216-z

    Article  Google Scholar 

  • Vaselli O, Tassi F, Montegrossi G, Capaccioni B, Giannini L (2006) Sampling and analysis of fumarolic gases. Acta Vulcanol 18:65–76

    Google Scholar 

Download references

Acknowledgments

We are grateful to the Teleférico Pico del Teide S.A. and all their staff for their assistance during the fieldworks at the summit or Teide Volcano and to Teide National Park for the important logistic support. We also thank a significant number of undergraduate students from The University of La Laguna for their enthusiastic collaboration during field work, as well as K. Nagao and A. Shimizu for their help in noble gas isotope analyses. This research was supported by the Cabildo Insular de Tenerife and through grants from the EU Programme INTEREG IIIB Azores–Madeira–Canarias (ALERTA-MAC/2.3/C56, and ALERTA II-03/MAC/4.1/C6), Spanish Ministry of Science and Technology (CGL2005-07509), Canary Islands Government Research Agency, ACIISI (SolSubC200801000385), and MAC Transnational Cooperation EU Programme 2007–2013 (MAKAVOL-MAC/3/C161). We wish to thank D. Rouwet, J. Lewicki, S. Giammanco, G. Williams Jones, and P. Delmelle for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Melián.

Additional information

Editorial responsibility: P. Delmelle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melián, G., Tassi, F., Pérez, N. et al. A magmatic source for fumaroles and diffuse degassing from the summit crater of Teide Volcano (Tenerife, Canary Islands): a geochemical evidence for the 2004–2005 seismic–volcanic crisis. Bull Volcanol 74, 1465–1483 (2012). https://doi.org/10.1007/s00445-012-0613-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0613-1

Keywords

Navigation