Skip to main content

Advertisement

Log in

Characterization and initial field test of an 8–14 μm thermal infrared hyperspectral imager for measuring SO2 in volcanic plumes

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The ability to image and quantify SO2 path-concentrations in volcanic plumes, either by day or by night, is beneficial to volcanologists. Gas emission rates are affected by the chemical equilibria in rising magmas and a better understanding of this relationship would be useful for short-term eruption prediction. A newly developed remote sensing long-wave thermal InfraRed (IR) imaging hyperspectral sensor – the Thermal Hyperspectral Imager (THI) – was built and tested. The system employs a Sagnac interferometer and an uncooled microbolometer in rapid scanning configuration to collect hyperspectral images of volcanic plumes. Each pixel in the resulting image yields a spectrum with 50 samples between 8 and 14 μm. Images are spectrally and radiometrically calibrated using an IR source with a narrow band filter and two blackbodies. In this paper, the sensitivity of the instrument for the purpose of quantifying SO2 using well constrained laboratory experiments is evaluated, and initial field results from Kīlauea volcano, Hawai’i, are presented. The sensitivity of THI was determined using gas cells filled with known concentrations of SO2 and using NIST-traceable blackbodies to simulate a range of realistic background conditions. Measurements made by THI were then benchmarked against a high spectral resolution off-the-shelf Michelson FTIR instrument. Theoretical thermal IR spectral radiances were computed with MODTRAN5 for the same optical conditions, to evaluate how well the (known) concentration of SO2 in the gas cells could be retrieved from the resulting THI spectra. Finally, THI was recently field-tested at Kīlauea to evaluate its ability to image the concentration of SO2 in a real volcanic plume. A path-concentration of 7150 ppm m was retrieved from measurements made near the Halema’uma’u vent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a, b
Fig. 7a–d
Fig. 8
Fig. 9a, b
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14 a, b

Similar content being viewed by others

References

  • Daag, A.S., Tubianosa, B.S., Newhall, C.G., Tuñgol, N.M., Javier, D., Dolan, M.T., Reyes, P.J.D., Arboleda, R.A., Martinez, M.M.L., Regalado, T.M. (1996). Monitoring sulphur dioxide emission at Mount Pinatubo. [Online] Available at: < http://pubs.usgs.gov/pinatubo/daag1/>, [Accessed on 3 Nov 2014]

  • Dalton MP, Watson IM, Nadeau PA, Werner C, Morrow W, Shannon JM (2009) Assessment of the UV camera sulfur dioxide retrieval for point source plumes. J Volcanol Geotherm Res 188(2009):358–366

    Article  Google Scholar 

  • Elias, T., Sutton, A.J. (2012). Sulfur dioxide emission rates from Kīlauea Volcano, Hawai’i, 2007–2010: U.S. Geological Survey Open-File Report 2012–1107, 25 p. (Available at http://pubs.usgs.gov/of/2012/1107/)

  • Exton, J.R., US National Aeronautics and Space Administration (1976) Stack plume visualization system, U.S. Pat. 3931462

  • Fellgett PB (1949) On the ultimate sensitivity and practical performance of radiation detectors. J Opt Soc Am (OSA) 39(11):970–976

    Article  Google Scholar 

  • Francis P, Burton M, Oppenheimer C (1998) Remote measurements of volcanic gas compositions by solar occultation spectroscopy. Nature 396:567–570

    Article  Google Scholar 

  • Galle B, Oppenheimer C, Geyer A, McGonigle AJS, Edmonds M, Horrocks L (2002) A miniaturized ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance. Journal of Volcanologyand Geothermal Research 119(2002):241–254

    Google Scholar 

  • Goff F, Love SP, Warren RG, Counce D, Obenholzner J, Siebe C, Schmidt SC (2001) Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatépetl volcano, Mexico. Chem Geol 177:133–156

    Article  Google Scholar 

  • Goforth MA, Gilchrist GW, Sirianni JD (2002) Cloud effects on thermal downwelling sky radiance. Proc. SPIE 4710, Thermosense XXIV, doi:10.1117/12.459570

  • Griffith, D. 2012. Matlab class wrapper for Modtran5. Matlab file exchange [online] Available at: <http://www.mathworks.com/matlabcentral/fileexchange/31961-matlab-class-wrapper-for-modtran-5>

  • Grutter M, Basaldud M, Rivera C, Harig R, Junkerman W, Caetano E, Delgado-Granados H (2008) SO2 emissions from Popocatepetl volcano: emission rates and plume imaging using optical remote sensing techniques. Atmos Chem Phys 8:6655–6663

    Article  Google Scholar 

  • Horton KA, Williams-Jones G, Garbeil H, Elias T, Sutton AJ, Mouginis-Mark P, Porter JN, Clegg S (2006) Real-time measurement of volcanic SO2 emissions: validation of a new UV correlation spectrometer (FLYSPEC). Bull Volcanol. doi:10.1007/s00445-005-0014-9

    Google Scholar 

  • Kern P, Werner C, Sutton J, Elias T, Thelen W, Kelly P, Mastin L (2012) Ultraviolet SO2 imaging systems allow insights into degassing processing occurring on short timescales at Kilauea’s summit [Online]. Available at: http://hilo.hawaii.edu/~kenhon/HawaiiChapman/documents/PKern2012HawaiiChapmanPoster.pdf

  • Kern C, Werner C, Elias T, Sutton AJ, Luebcke P (2013) Applying UV cameras for SO2 detection to distal or optically thick volcanic plumes. J Geophys Res 262:80–89

    Google Scholar 

  • Kern C, de Moor M, Galle B (2015) Monitoring gas emissions can help forecast volcanic eruptions. Eos 96. doi:10.1029/2015EO034081

  • La Spina A, Burton M, Allard P, Alparone S, Mure F (2015) Open-path FTIR spectroscopy of magma degassing processes during eight lava fountains on Mount Etna. Earth Planet Sci Lett 413:123–134

    Article  Google Scholar 

  • Love SP, Goff F, Counce D, Siebe C, Delgado H (1998) Passive infrared spectroscopy of the eruption plume at Popocatépetl volcano, Mexico. Nature 396:563–567

    Article  Google Scholar 

  • Lucey PG, Horton KA, Williams T (2008) Performance of a long-wave infrared hyperspectral imager using a Sagnac interferometer and an uncooled microbolometer array. Apply Optics 47(28):F107–F113 <7700>

    Article  Google Scholar 

  • Mertz L (1965) Transformation in optics. Wiley, N.Y

    Google Scholar 

  • Moffat AJ, Millan MM (1971) The applications of optical correlation techniques to the remote sensing of SO2 plumes using sky light. Atmos Environ 5:677–690

    Article  Google Scholar 

  • Mori T, Burton M (2006) The SO2 camera: a simple, fast and cheap method for ground-based imaging of SO2 in volcanic plumes. Geophys Res Lett 33:L24804. doi:10.1029/2006GL027916

    Article  Google Scholar 

  • Mori T, Burton M (2009) Quantification of the gas mass emitted during single explosions on Stromboli with the SO2 imaging camera. Joruanl of Volcanology and Geothermal Research 188:395–400

    Article  Google Scholar 

  • Noguchi K, Kamiya H (1963) Prediction of volcanic eruption by measuring the chemical composition and amounts of gases. Bull Volcanol 26:367–378

    Article  Google Scholar 

  • Oppenheimer C, Francis P, Burton M, Maciejewski AJH, Boardman L (1998) Remote measurement of volcanic gases by Fourier Tranform infrared spectroscopy. Applied Physics B Laser and Optics. 67:505–515

    Article  Google Scholar 

  • Oppenheimer C, Bani P, Calkins JA, Burton MR, Sawyer GM (2006) Rapid FTIR sensing of volcanic gases released by Strombolian explosions at Yasur volcano, Vanuatu. Applied Physics B Laser and Optics 85:453–460

    Article  Google Scholar 

  • Parfitt E, Wilson L (2008) Fundamentals of physical volcanology. Blackwell Publishing, New York

    Google Scholar 

  • Prata J, Bernardo C (2014) Retrieval of sulfur dioxide from a ground-based thermal infrared imaging camera. Atmospheric Measurement Techniques 7:2807–2828

    Article  Google Scholar 

  • Stix J, Gaonac’h H (2000) Gas, plume, and thermal monitoring. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, USA, pp. 1141–1163

    Google Scholar 

  • Stoiber RE, Jepsen A (1973) Sulfur dioxide contributions to the atmosphere by volcanoes. Science 182:577–578

    Article  Google Scholar 

  • Stoiber RE, Malinconico JLL, Williams SN (1983) Use of the correlation spectrometer at volcanoes. In: Tazieff H, Sabroux JC (eds) Forecasting volcanic events. Elsevier, New York, pp. 424–444

    Google Scholar 

  • Swinbank WC (1963) Long-wave radiation from clear skies. Q J R Meteorol Soc 89(381):339–348

    Article  Google Scholar 

  • University of Wyoming (2016). Upper air daily soundings. [Online]. Available at: < http://weather.uwyo.edu/upperair/sounding.html>

  • Wallace P, Plank T, Edmonds M, Hauri EH (2015) Volatiles in Magmas. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes, 2nd edn. Elseiver, Amsterdam, pp. 168–183

    Google Scholar 

  • Weibring P, Edner H, Svanberg S, Caltabiano T, Condarelli D, Cecchi G, Pantani L (1998) Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS) and correlation spectroscopy (COSPEC). Appl Phys B Lasers Opt 67:419–426

    Article  Google Scholar 

  • Weibring P, Swartling J, Edner H, Svanberg S, Caltabiano T, Condarelli D, Cecchi G, Pantani L (2002) Optical monitoring of volcanic sulphur dioxide emissions: comparison between four differemy remote-sensing spectroscopic techniques. Opt Las El 37:267–284

    Article  Google Scholar 

  • Werner C, Kelly P, Doukas M, Lopez T, Pfeffer M, McGimsey R, Neal C (2013) Degassing associated with the 2009 eruption of redoubt volcano Alaska. JVolcanol Geotherm Res. doi:10.1016/j.jvolgeores.2012.04.012

    Google Scholar 

  • Williams-Jones, G., Stix, J., Nadeau, P.A. (2008). Using the COSPEC in the field. The COSPEC Cookbook: making SO2 measurements at active volcanoes In: Williams-Jones, G., Stix, J., Hickson, C. (eds.). IAVCEI, Methods in Volcanology 1: 63–119

  • Wilson L, Walker GPL (1987) Explosive volcanic eruptions VI. Ejecta dispersal in Plinian eruptions: the control of eruptions conditions and atmospheric properties. Geophys J R Astron Soc 89:657–679

    Article  Google Scholar 

  • Wright R, Lucey P, Crites S, Horton K, Wood M, Garbeil H (2013) BBM/EM design of the thermal hyperspectral imager: an instrument for remote sensing of earth’s surface, atmosphere and ocean, from a microsatellite platform. Acta Astronautica 87:182–192

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by NASA’s Earth Science Technology Office (Instrument Incubator Program, NNX14AE61G). We thank the United States Department of Interior National Parks Service for authorizing collection of the field data reported in this paper (Permit number HAVO-2015-SCI-0050). This is HIGP publication number 2224 and SOEST publication number 9720.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Gabrieli.

Additional information

Editorial responsibility: T.P. Fischer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabrieli, A., Wright, R., Lucey, P.G. et al. Characterization and initial field test of an 8–14 μm thermal infrared hyperspectral imager for measuring SO2 in volcanic plumes. Bull Volcanol 78, 73 (2016). https://doi.org/10.1007/s00445-016-1068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1068-6

Keywords

Navigation