Skip to main content
Log in

Probability hazard map for future vent opening at the Campi Flegrei caldera, Italy

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Campi Flegrei caldera is a restless structure affected by general subsidence and ongoing resurgence of its central part. The persistent activity of the system and the explosive character of the volcanism lead to a very high volcanic hazard that, combined with intense urbanization, corresponds to a very high volcanic risk. One of the largest sources of uncertainty in volcanic hazard/risk assessment for Campi Flegrei is the spatial location of the future volcanic activity. This paper presents and discusses a long-term probability hazard map for vent opening in case of renewal of volcanism at the Campi Flegrei caldera, which shows the spatial conditional probability for the next vent opening, given that an eruption occurs. The map has been constructed by building a Bayesian inference scheme merging prior information and past data. The method allows both aleatory and epistemic uncertainties to be evaluated. The probability map of vent opening shows that two areas of relatively high probability are present within the active portion of the caldera, with a probability approximately doubled with respect to the rest of the caldera. The map has an immediate use in evaluating the areas of the caldera prone to the highest volcanic hazard. Furthermore, it represents an important ingredient in addressing the more general problem of quantitative volcanic hazards assessment at the Campi Flegrei caldera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alberico I, Lirer L, Petrosino P, Scandone R (2002) A methodology for the evaluation of long-term volcanic risk from pyroclastic flows in Campi Flegrei (Italy). J Volcanol Geotherm Res 116:63–78

    Article  Google Scholar 

  • Arienzo I, Moretti R, Civetta L, Orsi G, Papale P (2010) The feeding system of Agnano-Monte Spina eruption (Campi Flegrei caldera, Italy): dragging the past into present activity and future scenarios. Chem Geol 270:135–147. doi:10.1016/j.chemgeo.2009.11.012

    Article  Google Scholar 

  • Banks GN, Tilling RI, Harlow DH, Ewert JW (1989) Volcano monitoring and short-term forecasts. In: Tilling RI (ed) Volcanic hazards: short course in geology, vol 1. AGU, Washington, pp 51–80

    Google Scholar 

  • Barberi F, Corrado G, Innocenti F, Luongo G (1984) Phlegraean Fields 1982–1984: brief chronicle of a volcano emergency in a densely populated area. Bull Volcanol 47(2):175–185

    Article  Google Scholar 

  • Bebbington MS, Cronin SJ (2011) Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bull Volcanol 73:55–72. doi:10.1007/s00445-010-0403-6

    Article  Google Scholar 

  • Blong RJ (1984) Volcanic hazards: a sourcebook of the effects of eruptions. Academic, Sydney, p 424

    Google Scholar 

  • Bruno PPG (2004) Structure and evolution of the Bay of Pozzuoli (Italy) using marine seismic data: implications for collapse of the Campi Flegrei caldera. Bull Volcanol 66(4):342–363. doi:10.1016/s0040-1951(03)00327-5

    Article  Google Scholar 

  • Casertano L, Oliveri A, Quagliariello MT (1977) Hydrodynamics and Geodynamics in the Phlegraean Fields area of Italy. Nature 264:161–164

    Article  Google Scholar 

  • Cinque A, Rolandi G, Zamparelli V (1984) L’estensione dei depositi marini Olocenici nei Campi Flegrei in relazione alla vulcano-tettonica. Boll Soc Geol It 104:327–348

    Google Scholar 

  • Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes—the Campanian Ignimbrite, Campi Flegrei caldera, Italy. J Volcanol Geotherm Res 75:183–219

    Article  Google Scholar 

  • Chester DK, Degg M, Duncan AM, Guest JE (2001) The increasing exposure of cities to the effects of volcanic eruptions: a global survey. Environ Haz 2:89–103

    Google Scholar 

  • Connor CB, Hill BE (1995) Nonhomogeneous Poisson models for the probability of basaltic volcanism—application to the Yucca Mountain region, Nevada. J Geophys Res 100(B6):10107–10125

    Article  Google Scholar 

  • Connor CB, Stamatakos JA, Ferrill DA, Hill BE, Ofoegbu GI, Conway FM, Sagar B, Trapp J (2000) Geologic factors controlling patterns of small-volume basaltic volcanism: application to a volcanic hazards assessment at Yucca Mountain, Nevada. J Geophys Res 105(B1):417–432

    Article  Google Scholar 

  • Costa A, Dell’Erba F, Di Vito M, Isaia R, Macedonio G, Orsi G, Pfeiffer T (2009) Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). Bull Volcanol 71(3):259–273. doi:10.107/s00445-008-0220-3

    Article  Google Scholar 

  • Crandell DR, Booth B, Kusumadinata D, Shimozuru D, Walker GPL, Westerdamp D (1984) Source book for volcanic-hazards zonation. UNESCO, Paris, p 97

    Google Scholar 

  • Crescentini L, Amoruso A (2007) Effects of crustal layering on the inversion of deformation and gravity data in volcanic areas: an application to the Campi Flegrei caldera, Italy. Geophys Res Let 34:L09303. doi:10.1029/2007GL029919

    Article  Google Scholar 

  • D’Oriano C, Poggianti E, Bertagnini A, Cioni R, Landi P, Polacci M, Rosi M (2005) Changes in eruptive style during the A.D. 1538 Monte Nuovo eruption (Phlegrean Fields, Italy): the role of syn-eruptive crystallization. Bull Volcanol 67:601–621

    Article  Google Scholar 

  • Del Gaudio C, Aquino I, Ricco C, Serio C (2009) Monitoraggio geodetico dell’area vulcanica napoletana: risultati della livellazione geometrica di precisione eseguita ai Campi Flegrei a settembre 2008. Quaderni di Geofisica 66:14

    Google Scholar 

  • De Pippo T, Di Cara A, Guida M, Pescatore T, Renda P (1984) Contributi allo studio del golfo di Pozzuoli:lineamenti di geomorfologia. Mem Soc Geol It 27:151–159

    Google Scholar 

  • de Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Di Cesare T, Di Vito M, Fisher RV, Isaia R, Marotta E, Ort M, Pappalardo L, Southon J (1999) The Agnano-Monte Spina eruption in the densely populated, restless Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91(2–4):269–301

    Article  Google Scholar 

  • De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin HE (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic plain (Italy). Mineral Petrol 73:47–65

    Article  Google Scholar 

  • Deino AL, Orsi G, Piochi M, de Vita S (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera - Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–160. doi:10.1016/S0377-0273(03)00396-2

    Article  Google Scholar 

  • Di Vito MA, Isaia R, Orsi G, Southon J, de Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation in the past 12 ka at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91(2–4):221–246

    Article  Google Scholar 

  • Di Vito MA, Arienzo I, Braia G, Civetta L, D’Antonio M, Di Renzo V, Orsi G (2011) The Averno 2 fissure eruption: a recent small-size explosive event at the Campi Flegrei caldera (Italy). Bull Volcanol 73:295–320. doi:10.1007/s00445-010-0417-0

    Article  Google Scholar 

  • Fedele FG, Giaccio B, Isaia R, Orsi G, Carroll M, Scaillet B (2007) The Campanian ignimbrite factor: towards a reappraisal of the Middle to Upper Palaeolithic “transition”. In: Torrence R, Grattan J (eds) Living under the shadow: the cultural impacts of volcanic eruptions, vol 53, One World Archaeology Series. Left Coast Press, Walnutt Creek, pp 19–41

    Google Scholar 

  • Fisher RV, Orsi G, Ort M, Heiken G (1993) Mobility of a large-volume pyroclastic flow. Emplacement of the Campanian Ignimbrite, Italy. J Volcanol Geotherm Res 56:205–220

    Article  Google Scholar 

  • Fournier d’Albe EM (1979) Objectives of volcanic monitoring and prediction. J Geol Soc London 54:57–67

    Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (1995) Bayesian data analysis. CRC Press, Boca Raton

    Google Scholar 

  • Heiken G, Fakundiny R, Sutter J (eds) (2003) Earth sciences in the cities: a reader. AGU Sp. Publ. Series 56. pp. 444

  • Isaia R, D’Antonio M, Dell’Erba F, Di Vito M, Orsi G (2004) The Astroni volcano: the only example of close eruptions within the same vent area in the recent history of the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 133(1–4):171–192

    Article  Google Scholar 

  • Judenherc J, Zollo A (2004) The Bay of Naples (southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey. J Geophys Res 109:B10312. doi:10.1029/2003JB002876

    Article  Google Scholar 

  • Lindsay J, Marzocchi W, Jolly G, Constantinescu R, Selva J, Sandri L (2010) Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand national disaster exercise 'Ruaumoko'. Bull Volcanol 72:185–204. doi:10.1007/s00445-009-0311-9

    Article  Google Scholar 

  • Magill CR, McAneney KJ, Smith IEM (2005) Probabilistic assessment of vent locations for the next Auckland Volcanic Field event. Math Geol 37:227–242

    Article  Google Scholar 

  • Marti J, Folch A (2005) Anticipating volcanic eruptions. In: Marti J, Ernst GGJ (eds) Volcanoes and the Environment. Cambridge University Press, Cambridge, pp 90–120

    Chapter  Google Scholar 

  • Martin AJ, Umeda K, Connor CB, Weller JN, Zhao DP, Takahashi M (2004) Modeling long-term volcanic hazards through Bayesian inference: An example from the Tohoku volcanic arc, Japan. J Geophys Res 109:B10208. doi:10.1029/2004JB00320

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mt. Vesuvius. J Geophys Res 109:B11201. doi:10.1029/2004JB003155

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Furlan C (2006) A quantitative model for volcanic hazard assessment. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology. IAVCEI Publications, London, pp 31–37. ISBN 978-1-86239-208-3

    Google Scholar 

  • Marzocchi W, Neri A, Newhall CG, Papale P (2007) Probabilistic volcanic hazard and risk assessment. EOS Tran AGU 88(32):318

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Selva J (2008) BET_EF: a probabilistic tool for long- and short-term eruption forecasting. Bull Volcanol 70:623–632. doi:10.1007/s00445-007-0157-y

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Selva J (2010) BET_VH: a probabilistic tool for long-term volcanic hazard assessment. Bull Volcanol 72:705–716. doi:10.1007/s00445-010-0357-8

    Article  Google Scholar 

  • Marzocchi W, Woo G (2007) Probabilistic eruption forecasting and the call for an evacuation. Geophys Res Lett 34:L22310. doi:10.1029/2007GL031922

    Article  Google Scholar 

  • Marzocchi W, Woo G (2009) Principle of Volcanic Risk Metrics: theory and the case study of Mt. Vesuvius and Campi Flegrei (Italy). J Geophys Res 114:B3. doi:10.1029/2008JB005908

    Google Scholar 

  • Mosimann JE (1962) On the compound multinomial distribution, the multivariate fl-distribution and correlation among proportions. Biometrika 49:65–82

    Google Scholar 

  • Newhall CG, Dzurisin D (1988) Historical unrest at large calderas of the world. USGS Bull 1855, Washington.

  • Newhall CG, Hoblitt RP (2002) Constructing event trees for volcanic crises. Bull Volcanol 64:3–20

    Article  Google Scholar 

  • Orsi G, Gallo G, Zanchi A (1991) Simple-shearing block resurgence in caldera depressions. A model from Pantelleria and Ischia. J Volcanol Geotherm Res 47:1–11

    Article  Google Scholar 

  • Orsi G, Civetta L, D'Antonio M, Di Girolamo P, Piochi M (1995) Step-filling and development of a three-layers magma chamber: the Neapolitan Yellow Tuff case history. J Volcanol Geotherm Res 67:291–312

    Article  Google Scholar 

  • Orsi G, de Vita S, Di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214

    Article  Google Scholar 

  • Orsi G, Civetta L, Del Gaudio C, de Vita S, Di Vito MA, Isaia R, Petrazzuoli SM, Ricciardi G, Ricco C (1999a) Short-term ground deformations and seismicity in the nested Campi Flegrei caldera (Italy): an example of active block-resurgence in a densely populated area. J Volcanol Geotherm Res 91(2–4):415–451

    Article  Google Scholar 

  • Orsi G, Petrazzuoli S, Wohletz K (1999b) Mechanical and thermo-fluid behaviour during unrest episode at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91(2–4):453–470

    Article  Google Scholar 

  • Orsi G, de Vita S, Di Vito M, Nave R, Heiken G (2003) Facing volcanic and related hazards in the Neapolitan area, In: Heiken G, Fakundiny R, Sutter J (eds) Earth Sciences in the cities: a reader. AGU Sp. Publ. Series 56. pp. 121–170

  • Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530. doi:10.1007/s00445-003-0336-4

    Article  Google Scholar 

  • Orsi G, Di Vito MA, Selva J, Marzocchi W (2009) Long-term forecasting of eruption style and size at Campi Flegrei caldera (Italy). Earth Planet Sci Let 287:265–276. doi:10.1016/j.epsl.2009.08.013

    Article  Google Scholar 

  • Ort M, Orsi G, Pappalardo L, Fisher RV (2003) Emplacement processes in a far-traveled dilute pyroclastic current: anisotropy of magnetic susceptibility studies of the Campanian Ignimbrite. Bull Volcanol 65:55–72

    Google Scholar 

  • Parascandola A (1947) I fenomeni bradisismici del Serapeo di Pozzuoli. Genovesi, Naples

    Google Scholar 

  • Pescatore T, Diplomatico G, Senatore MR, Tramutoli M, Mirabile L (1984) Contributi allo studio del golfo di Pozzuoli: aspetti stratigrafici e strutturali. Mem Soc Geol It 27:133–149

    Google Scholar 

  • Rosi M, Sbrana A (eds) (1987) Phlegraean fields. CNR Quaderni della Ricerca Scientifica 114, N 9, pp. 175

  • Santacroce R, Cristofolini R, La Volpe L, Orsi G, Rosi M (2003) Italian Active Volcanoes. Episodes 26(3):227–234

    Google Scholar 

  • Scarpa R, Tilling RI (eds) (1996) Monitoring and mitigation of volcano hazards. Springer, Heidelberg, p 841

    Google Scholar 

  • Selva J, Marzocchi W, Orsi G, di Vito AM, Sandri L, Quaglino M, Costa A (2008) The Bayesian event tree for short- and long-term eruption forecasting (BET_EF) at Campi Flegrei, Italy. Abstract at CITIES ON VOLCANOES 5, Shimabara, Japan

  • Selva J, Costa A, Marzocchi W, Sandri L (2010) BET VH: long-term hazard from tephra fallout at Campi Flegrei, Italy. Bull Volcanol 72(6):705–716. doi:10.1007/s00445-010-0358-7

    Article  Google Scholar 

  • Simkin T, Siebert L (1994) Volcanoes of the world: a regional directory, gazetteer, and chronology of volcanism during the last 10,000 years, Secondth edn. Smithsonian Institution and Geoscience Press, Inc, Tucson, p 349

    Google Scholar 

  • Small C, Naumann T (2001) The global distribution of human population and recent volcanism. Environmen Haz 3:93–109

    Google Scholar 

  • Tilling RI (1989a) Volcanic hazards and their mitigation: progress and problems. Rev Geophys 27:237–269

    Article  Google Scholar 

  • Tilling RI (ed) (1989b) Volcanic hazards: short course in geology, vol. 1. AGU Washington. p. 123 (A Chinese-language version is available in: Tilling RI (1990) J Seismology (Beijing, China) 3 2 39:1–46. A Spanish-language version is available in: Tilling RI (ed) (1993) Los Peligros Volcánicos. World Organization of Volcano Observatories (WOVO-IAVCEI) (Translation by Ing. Bernardo Beate, Ecuador), 125 pp)

  • Tilling RI (2001) Volcano monitoring and eruption warnings. In: Zschau J, Küppers AN (eds) Early warning systems for natural disaster reduction. Springer, Berlin, pp 505–510

    Google Scholar 

  • Tilling RI (2005) Volcano hazards. In: Marti J, Ernst GGJ (eds) Volcanoes and the environment. Cambridge University Press, Cambridge, pp 55–89

    Chapter  Google Scholar 

  • Tilling RI, Bailey R (1985) Volcano hazards program in the United States. J Geodynamics 3:425–446

    Article  Google Scholar 

  • Tonarini S, D'Antonio M, Di Vito MA, Orsi G, Carandente A (2009) Geochemical and B-Sr-Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1-3.8 ka) within the Campi Flegrei caldera (southern Italy). Lithos 107:135–151

    Article  Google Scholar 

  • United Nations-International Strategy for Disaster Reduction (UN-ISDR) (2002) Living with Risk: a global review of disaster reduction initiatives. Available at: (http://www.unisdr.org/eng/about_isdr/bd-lwr-2004-eng.htm)

  • United Nations-International Strategy for Disaster Reduction (UN-ISDR) (2004) Living with Risk: A global review of disaster reduction initiatives/Vivir con el Riesgo Informe mundial sobre iniciativas para la reducción de desastres; Geneva382 pp. Spanish version available at http://www.unisdr.org/eng/about_isdr/bd-lwr-2004-spa.htm

  • Weller JN, Martin AJ, Connor CB, Connor LJ, Karakhanian A (2006) Modelling the spatial distribution of volcanoes: an example from Armenia. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology. Special Publications of IAVCEI 1. Geological Society, London, pp 77–88

    Google Scholar 

  • Williams H, McBirney AR (1979) Volcanology. Freeman, Cooper. & Co, San Francisco, 397 pp. ISBN 0-87735-321-2

    Google Scholar 

  • Wohletz KH, Orsi G, de Vita S (1995) Eruptive mechanisms of the Neapolitan Yellow Tuff interpreted from stratigraphic, chemical and granulometric data. J Volcanol Geotherm Res 67:263–290

    Article  Google Scholar 

  • Woo G (2008) Probabilistic criteria for volcano evacuation decision. Nat Haz 45:87–97

    Article  Google Scholar 

  • Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer under Campi Flegrei volcanic field. Geophys Res Lett 35:L12306. doi:10.1029/2008GL034242

    Article  Google Scholar 

Download references

Acknowledgments

The authors warmly thank M. Quaglino for helping in a first elaboration of the maps, S. Buononato for elaboration of a digital version of the structural map, and E. Bellucci Sessa of the Laboratory of Geomatics and Cartography of the INGV-OV for elaboration of the CFc DTM. The research has been carried out in the framework of the DPC-INGV projects on Campi Flegrei.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Selva.

Additional information

Editorial responsibility: J.C. Phillips

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

Best guess value (average), and confidence interval (10th, 50th and 90th percentiles), of the conditional probability of vent opening at Campi Flegrei at each SA, for the prior model (columns 2 to 5), the posterior model (columns 6 to 9) and the filtered posterior model (columns 10 to 13). (XLS 169 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selva, J., Orsi, G., Di Vito, M.A. et al. Probability hazard map for future vent opening at the Campi Flegrei caldera, Italy. Bull Volcanol 74, 497–510 (2012). https://doi.org/10.1007/s00445-011-0528-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0528-2

Keywords

Navigation