Skip to main content
Log in

Dynamic and static compressibility of glasses and the increase of density with depth in the earth’s interior

  • Ière Partie Communications Présentées À La XIIIème Assemblée Générale Berkeley, Aoùt 1963
  • Published:
Bulletin Volcanologique Aims and scope Submit manuscript

Abstract

It is shown, using an organic and an inorganic glass, that, in a relaxing material, the compressibility consists of two parts, an instantaneous (dynamic) part and a delayed part. The instantaneous part amounts to about 2/3 of the total (static) compressibility. From consideration of relaxation times it is seen that, in the mantle of the earth, the density has to be calculated using the static compressibility, while seismic velocity curves give the dynamic value. Density curves are calculated on the basis of an essentially homogeneous earth interior derived from hot solar material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  • Birch F.,Elasticity and constitution of the earth’s interior. J. Geophys. Research57, 227–286 (1952).

    Google Scholar 

  • Bolt B. A.,Earth models with continuous density distribution. Monthly notices Roy. Astron. Soc. Geophys. Suppl.7, 360–368 (1957).

    Google Scholar 

  • Bullard E. C.,The density within the earth, Verhandel. Ned. Geol. Mijnbouwk. Genoot. Geol. Ser.18, 23–41 (1957).

    Google Scholar 

  • Bullen K. E.,The problem of the earth’s density variation. Bull. Seism. Soc. Am.30, 235–250 (1940).

    Google Scholar 

  • —————,The density variation of the earth’s central core. Bull. Seismol. Soc. Am.32, 19–30 (1942).

    Google Scholar 

  • —————,Theoretical travel-times of S waves in the earth’s inner core. Monthly Notices Roy. Astron. Soc. Geophys. Supp.6, 50–59 (1950a).

    Google Scholar 

  • —————,An earth model based on a compressibility-pressure hypothesis. ibid.6, 50–59 (1950b).

    Google Scholar 

  • Daly R. A.,Streanght and structure of the earth, Prentice Hall, New York, 1940.

    Google Scholar 

  • Elsasser W. M.,Background of the geomagnetic dynamo theory. J. Geophys. Research61, 340–347 (1956).

    Google Scholar 

  • Gutenberg B.,Velocity of seismic waves in the earth’s mantle. Trans. Am. Geophys Union39, 486–489 (1958a).

    Google Scholar 

  • —————,Wave velocities in the earth’s core. Bull. Seism. Soc. Am.48, 301–314 (1958b).

    Google Scholar 

  • —————,Physics of the earth’s interior. Acad. Press. New York (1959).

    Google Scholar 

  • Jacobs J. A.,The interior of the earth. Advances in Geophys.3, 183–240 (1956).

    Google Scholar 

  • Jones G. O.,Glass, Methuen, London & J. Wiley, New York (1956).

    Google Scholar 

  • Jung K.,Naturforschung und Medizin in Deutschland, Geophys, Teil I,17, (1939–1946).

  • Knopoff L., andUffen R. J.,The densities of compounds at hight pressures and the state of the earth’s interior. J. Geophys. Research59, 471–484 (1954).

    Article  Google Scholar 

  • Kuhn W., andRittmann A.,Ueber den Zustand des Erdinnern und seine Entstehung aus einem homogenen Urzustand. Geol. Rundschau32, 215–256 (1941).

    Article  Google Scholar 

  • Kuhn W.,Stoffliche Homogenität des Erdinnern. Naturwiss.30, 689–696 (1942).

    Article  Google Scholar 

  • —————,Moeglicher Einfluss chemischer Gleichgewicht auf Viskosität und Relaxations zeit im Erdinnern, Experientia4, 23–24 (1948).

    Article  Google Scholar 

  • Kuhn W., andVielhauer S.,Beziehungen zwischen der Ausbreitung von Longitudinal und Transversalwellen in relaxierenden Medien. Part. I, Z. Phys. Chem.202, 124–160 (1953a); Part II, ibid 161–190 (1953 b).

    Google Scholar 

  • —————,Analogieversuche zur Ausbreitung von Bebenwellen in einem homogenen Erdinnern, Geochim. et Cosmochim. Acta3, 169–185 (1953c).

    Article  Google Scholar 

  • Lambert W. D.,Internal constitution of the earth, 2nd ed. p. 340 (B. Gutenberg Ed.) Dover, New York (1951).

    Google Scholar 

  • Lynch J.,A new theory of the earth’s core. Trans. Am. Geophys. Union,18, 123–124 (1937).

    Google Scholar 

  • McKinney I. E., Belcher H. V., andMarvin R. S., quoted inJ. D. Ferry,Viscoelastic properties of polymers, Wiley, New York (1961).

    Google Scholar 

  • Ramsey W. H.,The planets and the white dwarfs. Monthly Notices Roy. Astron Soc.110, 444–454 (1950).

    Google Scholar 

  • Rittmann A.,Vulkane und ihre Tätigkeit, Ferdinand Enke Verlag Stuttgart (1960).

  • Shimazu Y.,A chemical phase transition hypothesis of the origin of the C-layer within the mantle of the earth. J. Earth Sci. Nagoya Univ.61, 11–30 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

In memoriam Prof. Dr. W. Kuhn who died suddenly during the preparation of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, P., Kuhn, W. & Kuhn, H.J. Dynamic and static compressibility of glasses and the increase of density with depth in the earth’s interior. Bull Volcanol 27, 129–142 (1964). https://doi.org/10.1007/BF02597517

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02597517

Keywords

Navigation