Paper The following article is Open access

Electrical characteristics of multilayered HfO2-Al2O3 charge trapping stacks deposited by ALD

, , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation D Spassov et al 2016 J. Phys.: Conf. Ser. 764 012016 DOI 10.1088/1742-6596/764/1/012016

1742-6596/764/1/012016

Abstract

Electrical and charge trapping properties of atomic layer deposited HfO2-Al2O3 multilayer stacks with two different Al2O3 sublayer thicknesses were investigated regarding their implementation in charge trapping non-volatile memories. The effect of post deposition annealing in oxygen at 600°C is also studied. The decreasing Al2O3 thickness increases the stack's dielectric constant and the density of the initial positive oxide charge. The initial oxide charge increases after annealing to ∼6×1012 cm-2 and changes its sign to negative for the stacks with thicker Al2O3. The annealing enhances the dielectric constant of the stacks and reduces their thickness preserving the amorphous status. Nevertheless the annealing is not beneficial for the stacks with thicker Al2O3 as it considerably increases leakage currents. Conduction mechanisms in stacks were considered in terms of hopping conduction at low electric fields, and Fowler- Nordheim tunnelling, Schottky emission and Poole-Frenkel effect at higher ones. Maximum memory windows of about 12 and 16V were obtained for the as-grown structures with higher and lower Al2O3 content, respectively. In latter case additional improvement (the memory window increase up to 23V) is achieved by the annealing.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.