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Abstract

Existing dynamic global vegetation models (DGVMs) have a limited ability in reproduc-
ing phenology and decadal dynamics of vegetation greenness as observed by satel-
lites. These limitations in reproducing observations reflect a poor understanding and
description of the environmental controls on phenology, which strongly influence the5

ability to simulate longer term vegetation dynamics, e.g. carbon allocation. Combining
DGVMs with observational data sets can potentially help to revise current modelling
approaches and thus to enhance the understanding of processes that control seasonal
to long-term vegetation greenness dynamics. Here we implemented a new phenol-
ogy model within the LPJmL (Lund Potsdam Jena managed lands) DGVM and inte-10

grated several observational data sets to improve the ability of the model in reproducing
satellite-derived time series of vegetation greenness. Specifically, we optimized LPJmL
parameters against observational time series of the fraction of absorbed photosynthetic
active radiation (FAPAR), albedo and gross primary production to identify the main en-
vironmental controls for seasonal vegetation greenness dynamics. We demonstrated15

that LPJmL with new phenology and optimized parameters better reproduces season-
ality, inter-annual variability and trends of vegetation greenness. Our results indicate
that soil water availability is an important control on vegetation phenology not only in
water-limited biomes but also in boreal forests and the arctic tundra. Whereas water
availability controls phenology in water-limited ecosystems during the entire growing20

season, water availability co-modulates jointly with temperature the beginning of the
growing season in boreal and arctic regions. Additionally, water availability contributes
to better explain decadal greening trends in the Sahel and browning trends in boreal
forests. These results emphasize the importance of considering water availability in
a new generation of phenology modules in DGVMs in order to correctly reproduce25

observed seasonal to decadal dynamics of vegetation greenness.

10918

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/10917/2014/bgd-11-10917-2014-print.pdf
http://www.biogeosciences-discuss.net/11/10917/2014/bgd-11-10917-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 10917–11025, 2014

Phenology controls
and model-data

integration

M. Forkel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

1 Introduction

The greenness of the terrestrial vegetation is directly linked to plant productivity, surface
roughness and albedo and thus affects the climate system (Richardson et al., 2013).
Vegetation greenness can be quantified from satellite observations for example as Nor-
malized Difference Vegetation Index (NDVI) (Tucker, 1979). NDVI is a remotely sensed5

proxy for structural plant properties like leaf area index (LAI) (Turner et al., 1999) and
green leaf biomass (Gamon et al., 1995) but moreover for plant productivity. Especially,
NDVI of green vegetation has a linear relationship with the fraction of absorbed photo-
synthetic active radiation (FAPAR) (Fensholt et al., 2004; Gamon et al., 1995; Myneni
and Williams, 1994; Myneni et al., 1995, 1997b). Satellite-derived FAPAR estimates10

are often used to estimate terrestrial photosynthesis (Beer et al., 2010; Jung et al.,
2008, 2011; Potter et al., 1999). Decadal satellite observations of NDVI demonstrate
widespread positive trends (“greening”) especially in the high latitude regions (Lucht
et al., 2002; Myneni et al., 1997a; Xu et al., 2013) but also in the Sahel, southern Africa
and southern Australia (Fensholt and Proud, 2012; de Jong et al., 2011, 2013). Sur-15

prisingly, these trends are accompanied by negative trends (“browning”) which were
observed regionally in parts of the boreal forests of North America and Eurasia, and
in parts of eastern Africa and South America. Regionally different causes have been
identified for the observed greening and browning trends. The greening of the high lat-
itudes is supposed to be mainly induced by rising air temperatures (Lucht et al., 2002;20

Myneni et al., 1997a; Xu et al., 2013). On the other hand, the environmental controls
on the browning of boreal forests have been intensively investigated but no concluding
or general explanation has been found so far (Barichivich et al., 2014; Beck and Goetz,
2011; Beck et al., 2011; Bunn et al., 2007; Goetz et al., 2005; Piao et al., 2011; Wang
et al., 2011). Trends in vegetation greenness are often related to changes in vegetation25

phenology like an earlier onset and an associated lengthening of the growing season in
mid- and high-latitude regions (Atzberger et al., 2013; Høgda et al., 2001, 2013; Tucker
et al., 2001; Zeng et al., 2011) Changes in vegetation greenness are linked to changes
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in primary production and thus affect atmospheric CO2 concentrations and the terres-
trial carbon cycle (Barichivich et al., 2013; Keeling et al., 1996; Myneni et al., 1997a).
Additionally, vegetation greenness affects the climate system by influencing surface
albedo. For example, greening trends in high-latitudes are associated with decreas-
ing surface albedo (Urban et al., 2013) which alters the surface radiation budget (Lo-5

ranty et al., 2011). This can potentially further contribute to a warming of arctic regions
(Chapin et al., 2005). Thus, satellite observations of vegetation greenness demonstrate
the recent interactions and changes between terrestrial vegetation dynamics and the
climate system.

Dynamic global vegetation models (DGVM) or generally climate-carbon cycle mod-10

els are used to analyze and project the response of the terrestrial vegetation to the
past, recent and future climate variability (Prentice et al., 2007). DGVMs can be used
to explain observed trends in vegetation greenness (Lucht et al., 2002) or to quantify
the related terrestrial CO2 uptake. While most global models simulate an increasing
uptake of CO2 by the terrestrial vegetation under future climate change scenarios,15

the magnitude of future changes in land carbon uptake largely differs among mod-
els (Friedlingstein et al., 2006; Sitch et al., 2008). The spread of land carbon uptake
estimates among DGVMs might be partly related to insufficient representations of veg-
etation phenology and greenness (Richardson et al., 2012). Coupled climate-carbon
cycle models and uncoupled DGVMs have been compared against 30 year satellite-20

derived time series of LAI (Anav et al., 2013; Murray-Tortarolo et al., 2013; Zhu et al.,
2013). Models usually overestimate mean annual LAI in all biomes and have a too long
growing season because of a delayed season end (Anav et al., 2013; Murray-Tortarolo
et al., 2013; Zhu et al., 2013). Additionally, most DGVMs have more positive LAI trends
than the satellite-derived LAI product, i.e. they underestimate browning trends in bo-25

real forests while a few DGVMs do not reproduce the general greening of the high
latitudes (Murray-Tortarolo et al., 2013). The limitations of DGVMs in reproducing ob-
served LAI or FAPAR time series is mostly related to limited phenology routines that
often miss environmental controls on seasonal leaf development (Kelley et al., 2013;
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Murray-Tortarolo et al., 2013; Richardson et al., 2012). In conclusion, with improved
modeling approaches for vegetation phenology and greenness, DGVMs can potentially
more accurately reproduce the recent, and project the future response of the terrestrial
vegetation to climate variability.

Past studies successfully demonstrated the use of vegetation greenness obser-5

vations to improve stand-alone phenology models or to optimize phenology and
productivity-related parameters in DGVMs. The growing season index (GSI) is an em-
pirical phenology model that is used to estimate seasonal leaf developments (Jolly
et al., 2005). Empirical parameters of GSI have been optimized against globally dis-
tributed 10 year FAPAR and LAI time series from MODIS to reanalyze climatic drivers10

for vegetation phenology (Stöckli et al., 2008, 2011). This optimization resulted in
a good representation of temporal FAPAR and LAI dynamics in all major biomes except
evergreen tropical forests (Stöckli et al., 2011). Model parameters of the Biome-BGC
model were optimized against eddy covariance flux observations and NDVI time series
from MODIS for poplar plantations in Northern Italy which resulted in a more accu-15

rate representation of carbon fluxes and NDVI (Migliavacca et al., 2009). The BETHY-
CCDAS model was optimized against FAPAR time series from MERIS for seven eddy
covariance sites (Knorr et al., 2010) and later for 170 land grid cells using coarse 8
by 10◦ spatial resolution (Kaminski et al., 2012). These studies demonstrated the im-
provements in simulated vegetation phenology by optimizing model parameters against20

observations of vegetation greenness.
Nevertheless, spatial patterns and temporal dynamics of vegetation greenness were

not yet optimized in a DGVM globally at a higher spatial resolution (0.5◦) and by using
long-term (30 year) satellite-derived time series of vegetation greenness. Newly devel-
oped 30 year time series of LAI or FAPAR from the GIMMS3g dataset (Global Inventory25

Modeling and Mapping Studies, 3rd generation of datasets) (Zhu et al., 2013) allow im-
proving DGVMs not only based on seasonal cycles of single years (i.e. phenology) but
additionally against decadal time series properties including inter-variability and trends.
By integrating the GIMMS3g FAPAR data set in a DGVM, we can potentially improve
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spatial patterns and seasonal to long-term temporal dynamics of vegetation green-
ness. We are using the LPJmL DGVM (Lund–Potsdam–Jena managed lands). Similar
to other DGVMs, LPJmL does not accurately reproduce the growing season onset and
seasonal amplitude of observed LAI and FAPAR time series presumably because of
a limited phenology model (Kelley et al., 2013; Murray-Tortarolo et al., 2013). Thus in-5

tegrating long-term observations of FAPAR in the LPJmL DGVM potentially requires
the development of an improved phenology scheme.

We are aiming to improve environmental controls on vegetation phenology and
greenness in LPJmL by (1) developing a new phenology module for LPJmL, by (2)
optimizing FAPAR, productivity and phenology-related parameters of LPJmL against10

30 year satellite-derived time series of FAPAR, against 10 year satellite-derived time
series of vegetation albedo and against spatial patterns of mean annual gross primary
production (GPP) from a data-oriented estimate and by (3) integrating further data
streams in LPJmL to constrain land cover dynamics and disturbance effects on vegeta-
tion greenness in diagnostic model simulations. This model-data integration approach15

for LPJmL (LPJmL-MDI) will be applied to explain the role of phenological controls on
seasonal to long-term dynamics of vegetation greenness.

2 Model, data sets and model-data integration

2.1 Overview

LPJmL is a dynamic global vegetation model that simulates ecosystem processes as20

carbon and water fluxes, carbon allocation in plants and soils, permafrost dynamics,
fire spread and behaviour and vegetation establishment and mortality. We were us-
ing LPJmL version 3.5. This version is based on the original LPJ model (Sitch et al.,
2003). The model has been extended for human land use (Bondeau et al., 2007),
and agricultural water use (Rost et al., 2008). It includes a process-oriented fire model25

(Thonicke et al., 2010), an improved representation of surface albedo and snow cov-
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erage (Strengers et al., 2010) and a newly implemented soil hydrology scheme and
permafrost module (Schaphoff et al., 2013) This study focusses on the natural vegeta-
tion plant functional types (PFTs) (Sitch et al., 2003), i.e. our model developments and
optimizations we were not applied for crop functional types (CFTs) (Bondeau et al.,
2007) because crop phenology is highly driven by human practices.5

We developed a model-data integration approach for the LPJmL DGVM (LPJmL-
MDI, Fig. 1). LPJmL-MDI allows to (1) directly insert land cover, tree cover and
burnt area data sets in LPJmL for diagnostic model applications (Sec. 2.4.1), (2)
to optimize LPJmL model parameters against datasets (here FAPAR, GPP, albedo;
Sec. 2.4.2); and (3) to evaluate and benchmark LPJmL simulations against observa-10

tions or observation-based data sets (Sec. 2.4.3). Like in a prognostic mode, LPJmL
was driven by climate forcing data. Additionally, observed burnt areas were directly in-
serted in LPJmL to consider observed fire dynamics in diagnostic model applications.
For this, we directly replaced the simulated burnt area in the LPJmL-SPITFIRE fire
module (Thonicke et al., 2010) by observed burnt areas using the approach of Lehsten15

et al. (2008). Thus, the timing and location of fire spread is constrained by observations
whereas fire effects on vegetation are still simulated by LPJmL-SPITFIRE. We further
prescribed observed land cover and tree cover fractions to control for vegetation dy-
namics in parameter optimization experiments. Observed FAPAR and albedo time se-
ries as well as observation-based mean annual spatial patterns of GPP were used in20

a joint cost function to optimize productivity, phenology, radiation, and albedo-related
model parameters using a genetic optimization algorithm.

LPJmL was previously evaluated against site measurements of net carbon ecosys-
tem exchange (Schaphoff et al., 2013; Sitch et al., 2003), atmospheric CO2 fractions
(Sitch et al., 2003), soil moisture (Wagner et al., 2003), evapotranspiration and runoff25

(Gerten et al., 2004; Schaphoff et al., 2013), fire regimes (Thonicke et al., 2010), and
permafrost distribution (Schaphoff et al., 2013). We are evaluating LPJmL against addi-
tional and partly new available global data sets of FAPAR (Baret et al., 2013; Zhu et al.,
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2013), GPP and evapotranspiration (ET) (Jung et al., 2011), tree cover (Townshend
et al., 2011) and biomass (Saatchi et al., 2011; Thurner et al., 2014).

2.2 FAPAR and phenology in the LPJmL DGVM

2.2.1 FAPAR

FAPAR is defined as the ratio between the photosynthetic active radiation absorbed by5

the green canopy (APAR) and the total incident photosynthetic active radiation (PAR).
Thus, the total FAPAR of a grid cell is the sum of FAPAR that is distributed among the
individual PFTs:

FAPARPFT =
APARPFT

PAR
(1)

FAPARgridcell =
PFT=n∑
PFT=1

FAPARPFT (2)10

where n is the number of established PFTs in a grid cell. The FAPAR of a PFT depends
on the annual maximum foliar projective cover (FPC), on the daily snow coverage in
the green canopy (Fsnow, gv), green-leaf albedo (βleaf) and the daily phenology status
(Phen):15

FAPARPFT = FPCPFT × (PhenPFT − (PhenPFT × Fsnow, gv, PFT))× (1−βleaf, PFT) (3)

Thus, the temporal dynamic of FAPAR in LPJmL is affected on an annual time step
by changes in foliar projective cover (FPCPFT) and on daily time steps by changes in
phenology (PhenPFT) and snow coverage in the green canopy (Fsnow, gv, PFT) (Fig. A1).20

This approach extends the previous implementation of Sitch et al. (2003) where FAPAR
depended only on FPC and phenology but leaf albedo and snow effects on FAPAR were
missing.
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FPCPFT expresses the land cover fraction of a PFT. It is the annual maximum frac-
tional green canopy coverage of a PFT and is annually calculated from crown area
(CA), population density (P ) and LAI (Sitch et al., 2003):

FPCPFT = CAPFT × PPFT × (1−e−kPFT×LAIPFT) (4)
5

The last term expresses the light extinction in the canopy which depends exponentially
on LAI and the light extinction coefficient k of the Lambert–Beer law (Monsi and Saeki,
1953). The parameter k had a constant value of 0.5 for all PFTs in the original LPJmL
formulation (Sitch et al., 2003). We changed k to a PFT-dependent parameter because
it varies for different plant species as seen from field observations (Bolstad and Gower,10

1990; Kira et al., 1969; Monsi and Saeki, 1953). Crown area and leaf area index are
calculated based on allocation rules and are depending on the annual biomass incre-
ment (Sitch et al., 2003). Population density depends on establishment and mortality
processes in LPJmL (Sitch et al., 2003).

2.2.2 Phenology15

The daily phenology and green leaf status of a PFT (PhenPFT) in LPJmL expresses
the fractional cover of green leaves (from 0=no leaves to 1= full leave cover). Thus, it
represents the temporal dynamic of the canopy greenness. We explored two phenology
models in this study: first, we were trying to optimize model parameters of the original
phenology model in LPJmL (LPJmL-OP, Sitch et al., 2003, Appendix A1). Secondly,20

we implemented a new phenology model based on the growing season index (GSI)
concept (Jolly et al., 2005), hereinafter called LPJmL-GSI.

LPJmL-OP has three different routines for summergreen (i.e. temperature-driven de-
ciduous), evergreen (no seasonal variation) and rain-green (i.e. water-driven decidu-
ous) PFTs (details in Appendix A1). Obviously, LPJmL-OP misses important controls25

on phenology like effects of light in all PFTs or effects of water in summergreen and
herbaceous PFTs. Additionally, in herbaceous PFTs the end of the growing season
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is not controlled by environmental conditions but is defined based on fixed calendar
dates.

Because of the obvious limitations of LPJmL-OP, we developed the alternative
LPJmL-GSI phenology module. The growing season index (GSI) is an empirical phe-
nology model that multiplies limiting effects of temperature, day length and vapour pres-5

sure deficit (VPD) to a common phenology status (Jolly et al., 2005). We modified the
GSI concept for the specific use in LPJmL (LPJmL-GSI). We defined the phenology
status as a function of cold temperature, short-wave radiation and water availability. Ad-
ditionally to the original GSI model, we added a heat stress limiting function because it
has been suggested that vegetation greenness is limited by temperature-induced heat10

stress in several ecosystems (Bunn et al., 2007; Verstraeten et al., 2006) and has been
demonstrated that heat stress reduces plant productivity also without additional water
stress (Jiang and Huang, 2001; Van Peer et al., 2004; Poirier et al., 2012). Thus, the
daily phenology status of a PFT is the product of the daily cold temperature (fcold, PFT),
light (flight, PFT), water (fwater, PFT) and heat stress (fheat, PFT) limiting functions:15

PhenPFT = fcold, PFT × flight, PFT × fwater, PFT × fheat, PFT (5)

Examples for the four functions are shown in Fig. 2.
The cold temperature limiting function at a daily time step t is defined as:

f tcold, PFT = f t−1
cold, PFT +

(
1

1+e−slcold, PFT×(T−basecold, PFT)
− f t−1

cold, PFT

)
× τcold, PFT (6)20

where slcold, PFT and basecold, PFT are PFT-dependent slope and inflection point parame-
ters of a logistic function based on daily air temperature T (◦C). The parameter τcold, PFT
is the change rate parameter based on the difference between the actual predicted lim-
iting function value and the previous-day cold temperature limiting function value. This25

parameter introduces a temporal autocorrelation in the phenology status and avoids
abrupt phenological changes because of changing weather conditions.
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The light-limiting function was implemented accordingly:

f tlight, PFT = f t−1
light, PFT +

(
1

1+e−sllight, PFT×(SW−baselight, PFT)
− f t−1

light, PFT

)
× τlight, PFT (7)

where sllight, PFT and baselight, PFT are the PFT-dependent slope and inflection point
parameters of a logistic function based on daily shortwave downward radiation SW5

(W m−2). The parameter τlight, PFT is the temporal change rate for the light-limiting func-
tion.

The water-limiting function fwater, PFT depends on the daily water availability W (%) in
LPJmL:

f twater, PFT = f t−1
water, PFT +

(
1

1+e−slwater, PFT×(W−basewater, PFT)
− f t−1

water, PFT

)
× τwater, PFT (8)10

where slwater, PFT and basewater, PFT are the PFT-dependent slope and inflection point
parameters of a logistic function based on daily water availability. W is a ratio between
water supply from soil moisture and atmospheric water demand (Appendix A.2) (Gerten
et al., 2004). The parameter τwater, PFT is the temporal change rate for the water-limiting15

function.
The heat-stress limiting function is defined as the cold-temperature limiting function

based on daily air temperature but with a negative slope parameter:

f theat, PFT = f t−1
heat, PFT +

(
1

1+eslheat, PFT×(T−baseheat, PFT)
− f t−1

heat, PFT

)
× τheat, PFT (9)

20

where slheat, PFT and baseheat, PFT are the PFT-dependent slope and inflection point
parameters of a logistic function based on T . The parameter τheat, PFT is the temporal
change rate for the heat limiting function.

Besides the additional use of the heat stress limiting function, LPJmL-GSI has im-
portant differences to the original GSI phenology model (Jolly et al., 2005) We made25
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the water limiting function dependent on water availability. VPD has been used instead
in the original GSI phenology model. Nevertheless, it has been shown that phenology
is more driven by soil moisture and plant available water than by atmospheric water de-
mand especially in Mediterranean and grassland ecosystems (Archibald and Scholes,
2007; Kramer et al., 2000; Liu et al., 2013; Yuan et al., 2007) and that GSI performed5

better when using a soil moisture limiting function instead of the VPD limiting func-
tion (Migliavacca et al., 2011). With the implementation of the water limiting function
in LPJmL-GSI, phenology depends not only on atmospheric water demand as in the
original GSI model but also on water supply from soil moisture. Additionally, the soil
moisture can be modulated through seasonal freezing and thawing in permafrost soils10

according to the permafrost routines in LPJmL (Schaphoff et al., 2013). Another im-
portant difference to the original GSI phenology model is the use of logistic functions
instead of stepwise linear functions with fixed thresholds because smooth functions are
generally easier to optimize than functions with abrupt thresholds and potentially better
represent biological processes. A moving average of 21 days has been used in the15

original GSI model to create smooth phenological cycles and to avoid abrupt phenol-
ogy changes because of daily weather variability (Jolly et al., 2005). It has been shown
that PFT- and limiting function-dependent time averaging parameters are needed in-
stead of one single time averaging parameter (Stöckli et al., 2011). We implemented
change rate parameters τcold, τlight, τwater and τheat that are PFT- and limiting function-20

dependent instead of moving average window lengths because LPJmL as a prognostic
model cannot use a running window time averaging approach.

2.3 Data sets

2.3.1 Data sets for parameter optimization: FAPAR, albedo and GPP

We used FAPAR, albedo and GPP data sets to optimize phenology, FAPAR, productiv-25

ity and vegetation albedo-related parameters in LPJmL (Fig. 2). We require long-term
FAPAR datasets to improve vegetation greenness in LPJmL on seasonal to decadal
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time scales. Two recently developed datasets provide 30 year time series of FAPAR.
The Geoland2 BioPar (GEOV1) FAPAR dataset (Baret et al., 2013) (hereinafter called
GL2 FAPAR) and the GIMMS3g FAPAR (Zhu et al., 2013) datasets were used in this
study.

GL2 FAPAR is defined as the black-sky green canopy FAPAR at 10:15 solar time5

and has been produced based on SPOT VGT (1999–2012) and AVHRR (1981–2000)
(Baret et al., 2013). The GL2 FAPAR dataset has a temporal resolution of 10 days and
a spatial resolution of 0.05◦ for the AVHRR-period and of 1/112◦ for the SPOT VGT
period. GIMMS3g FAPAR corresponds to black-sky FAPAR at 10:35 solar time and has
been produced based on the GIMMS3g NDVI dataset (Zhu et al., 2013). GIMMS3g10

FAPAR has a 15 day temporal resolution and a 1/12◦ spatial resolution and covers
July 1981 to December 2011. We excluded in both FAPAR datasets observations that
were flagged as contaminated by snow, aerosols or clouds. Additionally, we excluded
FAPAR observations for months with temperatures< 0 ◦C to exclude potential remain-
ing distortions of snow cover. Both datasets were aggregated to a 0.5◦ spatial and15

monthly temporal resolution to be comparable with LPJmL simulations. We found that
the GL2 AVHRR and GL2 VGT FAPAR datasets have not been well harmonized (Ap-
pendix B1). Thus, we did not use the combined GL2 VGT and AVHRR FAPAR dataset
for parameter optimization and for analyses of inter-annual variability and trends but
only for analyses and evaluations of mean seasonal cycles and spatial patterns of20

FAPAR. The GIMMS3g FAPAR dataset has no uncertainty estimates. Uncertainty es-
timates are necessary in multiple data stream parameter optimization to weight single
data streams in the total cost function. As a workaround we estimated the uncertainty
based on monthly-varying quantile regressions to the 0.95 quantile between FAPAR
and the FAPAR uncertainty in the GL2 VGT dataset. We applied the fitted regressions25

to the GIMMS3g dataset to estimate FAPAR uncertainties (Appendix B2). The fit to the
upper quantile provides conservative uncertainty estimates for the GIMMS3g FAPAR
dataset.
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We used monthly shortwave white-sky albedo time series ranging from 2000 to 2010
from the MODIS C5 dataset (Lucht et al., 2000; Schaaf et al., 2002) to constrain veg-
etation albedo parameters. Albedo observations in months with< 5 ◦C air temperature
and above an albedo of 0.3 were excluded from optimization because we are optimiz-
ing only vegetation-related albedo parameters. High albedo values at low temperatures5

are probably affected by changing snow regimes which is not within our focus of model
development and optimization. Thus we are only optimizing growing season albedo.

We used mean annual total GPP patterns from the data-oriented MTE (model tree
ensemble) GPP estimate (Jung et al., 2011). This GPP estimate uses FLUXNET eddy
covariance observations together with satellite observations and climate data to up-10

scale GPP using a machine learning approach (Jung et al., 2011). This dataset is not
an observation but a result of an empirical model. Nevertheless, evaluation and cross-
validation analyses have shown that this dataset well represents the mean annual spa-
tial patterns and mean seasonal cycles of GPP whereas it has a poor performance in
representing temporal GPP anomalies (trends and extremes) (Jung et al., 2011). Thus,15

we are only using the mean annual total GPP from this dataset for parameter optimiza-
tion to constrain LPJmL within small biases of mean annual GPP. We used the mean
seasonal cycle from the MTE GPP product as an independent benchmark for model
evaluation.

2.3.2 Data sets for the prescription of land cover, tree cover and burnt area20

The FAPAR, albedo and GPP data sets do not presumably contain enough informa-
tion to constrain all processes that control FAPAR dynamics. Especially, processes like
establishment, mortality, competition between PFTs, allocation and disturbances con-
trol FPC and thus FAPAR. The optimization of parameters of these processes against
appropriate data streams is not feasible within this study. Thus, we directly prescribed25

land and tree cover fractions as well as burnt areas from observed data to control for
some of these processes.
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To prescribe land and tree cover in LPJmL, we combined several datasets to create
observation-based maps of FPC (Appendix C2). Land cover maps from remote sensing
products are not directly comparable with PFTs in global vegetation models due to
differences in classification systems (Jung et al., 2006; Poulter et al., 2011a). PFTs in
LPJmL are defined according to biome (tropical, temperate or boreal), leaf type (needle5

leaved, broadleaved) and phenology type (summergreen, evergreen, rain green). We
extracted the biome information from the Köppen–Geiger climate classification (Kottek
et al., 2006) whereas leaf type and phenology were extracted from the SYNMAP land
cover map (Jung et al., 2006). FPC was derived from MODIS tree cover (Townshend
et al., 2011). Because LPJmL so far classified herbaceous vegetation according to their10

photosynthetic pathway (i.e. C3, temperate herbaceous and C4, tropical herbaceous),
we further sub-divided herbaceous PFTs according to biome and introduced a polar
herbaceous PFT (PoH) based on the existing temperate herbaceous PFT (TeH) to
differentiate tundra from temperate grasslands.

Burnt area data was prescribed directly in LPJmL by combining three data sets, the15

Global Fire Emissions Database (GFED) burnt area dataset (Giglio et al., 2010), the
Alaska Large Fire Database (ALFDB) (Frames, 2012; Kasischke et al., 2002) and the
Canadian National Fire Database (CNFDB) (CFS, 2010; Stocks et al., 2002). GFED
provides monthly burnt area estimates in 0.5◦ resolution from 1996 to 2011. Burnt ar-
eas from the Alaska (ALFDB) and Canada (CNFDB) fire databases were used to extent20

burnt area time-series before 1996 for boreal North America. Fire perimeter observa-
tions from 1979 to 1996 from ALFDB and CNFDB were aggregated to 0.5◦ gridded
monthly burnt area time series. Observations before 1979 were excluded because fires
were not reported for all provinces in Canada. Although the CNFDB contains only fire
perimeters > 200 ha, in both databases some fires are missing due to different mapping25

techniques, and fire perimeters do not agree with burned area, the integration of these
datasets provides unique information about spatial-temporal patterns of disturbances
especially in boreal ecosystems. It is necessary to simulate fire activity also during the
model spin-up as fire influences the equilibrium between vegetation, soil and climate
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as well. Otherwise biomass would be overestimated at the beginning of the transient
model run. For this purpose, we created artificial burnt area time series for the periods
1901–1978 (North America) and 1901–1995 (rest of the world). Observed annual total
burnt areas from the periods 1979–2011 (North America) and 1996–2011 (rest of the
world) were resampled according to temperature and precipitation conditions and as-5

signed to the pre-data period in order to include fire regimes that agree with observed
fire regimes in the spin-up of LPJmL. This approach assumes that fire regimes in the
pre-data period were not different than in the observation period.

2.3.3 Data sets for model evaluation

LPJmL was evaluated against data sets that are independent from the optimization10

and prescription data sets and against independent temporal or spatial scales of the
optimization and prescription data sets. We compared LPJmL against mean annual
patterns and mean seasonal cycles of ET from the MTE estimate (Jung et al., 2011).
Further, we evaluated model results against spatial patterns of biomass. Ecosystem
biomass estimates were taken from satellite-derived forest biomass maps for the trop-15

ics (Saatchi et al., 2011) and for the temperate and boreal forests (Thurner et al., 2014)
including an estimation of herbaceous biomass. Additionally, we evaluated LPJmL
against independent temporal and spatial scales of the integration data (mean sea-
sonal cycle of GPP, tree cover, inter-annual variability and trends of FAPAR). We were
using tree cover from MODIS to evaluate LPJmL model runs with dynamic vegetation.20

2.3.4 Climate forcing data and model spin-up

LPJmL was driven by observed monthly temperature and precipitation data from the
CRU TS3.1 dataset ranging from 1901 to 2011 (Harris et al., 2013) as well as by
monthly shortwave downward radiation and long wave net radiation re-analysis data
from ERA-Interim (Dee et al., 2011).25
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LPJmL needs a model spin-up to establish PFTs and to bring vegetation and soil
carbon pools into equilibrium. The spin-up was performed according to the standard
LPJmL modeling protocol (Schaphoff et al., 2013; Thonicke et al., 2010): LPJmL was
run for 5000 years by repeating the climate data from 1900–1930. After the spin-up
model run, the transient model run was restarted from the spin-up conditions in 19015

and LPJmL was run for the period 1901–2011. Model results were analyzed for the
observation period (1982–2011).

For model optimization experiments we used a different spin-up scheme because
the spin-up is computational time demanding and many model runs are needed during
optimization experiments. As in the standard modeling protocol, we firstly spin-up the10

model for 5000 years by repeating the climate from 1901–1930. Secondly, a transient
model run was restarted from the spin-up conditions in 1901 and was performed for the
period 1901–1979. Thirdly, each optimization experiment was restarted from the con-
ditions in 1979 and a second spin-up for 100 years by recycling the climate from 1979
to 1988 was performed. The transient model run was restarted from the conditions of15

the second spin-up and simulated for the period 1979–2011. This second spin-up is
needed to bring the vegetation into a new equilibrium which can be caused by a new
parameter combination during optimization. From visual analyses of model results, we
found that a spin-up time of 100 years for the second spin-up was enough to eliminate
trends in FAPAR and GPP that resulted from other equilibrium conditions.20

2.4 Model-data integration

2.4.1 Prescription of land and tree cover

Land cover is expressed as FPC in LPJmL. We used the observation-based FPC
dataset to prescribe land and tree cover in LPJmL (Sec. 2.3.2, Appendix C1). The
presence of a PFT in a grid cell depends on establishment and mortality in LPJmL25

(Sitch et al., 2003). A PFT establishes in a grid cell if the climate is within the biocli-
matic limits of the PFT for establishment and survival. On the other hand, a PFT dies
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in a grid cell if the climate is no longer suitable for the PFT. Additionally, mortality oc-
curs because of heat stress, low productivity, competition among PFTs for light, and
because of fire disturbance (Sitch et al., 2003; Thonicke et al., 2010).

FPC is the major variable that contributes to inter-annual variability of FAPAR in
LPJmL despite the daily phenological status. Thus fixing FPC to the observed value5

is not a desired solution to prescribe land cover in LPJmL. Fixing FPC would neglect
mortality effects on land cover but would also permit the simulation of post-fire suc-
cession trajectories. Consequently, we prescribed land cover in LPJmL using a hy-
brid diagnostic-dynamic approach. In this approach we prescribed the annual maxi-
mum FPC in LPJmL similar to previous approaches (Poulter et al., 2011b). Firstly, we10

switched off the effects of bioclimatic limits on establishment and mortality. Only these
PFTs were allowed to establish in a grid cell that occurred in the observed land-cover
data set. Vegetation growth depends on the annual biomass increment and allocation
rules in LPJmL. This leads to an extension of FPC of each PFT. We limited a further
expansion of FPC if the simulated FPC values equals the observed FPC (prescribed15

maximum FPC). In this case, no new individuals are established and the population
density P of a PFT is corrected in order to fit the observed FPC (FPCobs):

PPFT,corr = PPFT ×FPCPFT − (FPCPFT −FPCobs, PFT) (10)

The biomass of the individuals that need to be killed in order to match the corrected20

population density PPFT,corr is transferred to the litter pools. The simulated FPC can be
lower than the observed FPC because the PFT is still growing or because the FPC
was reduced due to fire, heat stress or low productivity. For herbaceous PFTs we only
reduced the FPC if the observed total fractional vegetation cover in a grid cell was
exceeded. This allows herbaceous PFTs to replace tree PFTs if the FPC of trees is25

reduced due to fire or other mortality effects in the model. With this approach a pre-
scription of land cover can be achieved in LPJmL which still allows for main processes
of dynamic vegetation.

10934

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/10917/2014/bgd-11-10917-2014-print.pdf
http://www.biogeosciences-discuss.net/11/10917/2014/bgd-11-10917-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 10917–11025, 2014

Phenology controls
and model-data

integration

M. Forkel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.4.2 Parameter optimization

Photosynthesis, albedo, FAPAR and phenology-related model parameters of LPJmL
were optimized against observed FAPAR and albedo satellite observations and data-
oriented estimates of GPP. A description of all parameters including parameter values
is given in Appendix D1. The parameter αa is the most important parameter in LPJmL5

for photosynthesis (Zaehle et al., 2005). This parameter accounts for the amount of ra-
diation that is absorbed at leaf level in comparison to the total canopy. Thus, this param-
eter is a replacement for a more enhanced model formulation for canopy structure and
leaf clumping. We used this parameter to adjust biases in GPP. The PFT-dependent
leaf, stem and litter albedo parameters (βleaf, βstem and βlitter) are mostly sensitive for10

model simulations of albedo. The parameter βleaf affects additionally the maximum FA-
PAR of a PFT. The light extinction coefficient k controls the FPC of a PFT and thus
affects mainly land cover, maximum FAPAR and the available radiation for photosyn-
thesis. All other parameters that were considered in optimization experiments are the
parameters of the LPJmL-OP and LPJmL-GSI phenology modules. These parameters15

contribute mainly to seasonal variations in FAPAR. Some parameters were excluded
from optimization experiments that were identified as insensitive to GPP and FAPAR
simulations in PFTs. The temporal change rate parameters τtmin, τlight, τheat and τwater
are insensitive in most PFTs because of the monthly temporal resolution of the used
climate forcing data.20

The optimization of model parameters was performed by minimizing a cost func-
tion between model simulations and observations using a combined genetic and
gradient-based optimization algorithm (GENOUD, genetic optimization using deriva-
tives, Mebane and Sekhon, 2011, see Appendix D2 for details). The cost function J of
LPJmL for a single model grid cell (gc) depends on the scaled model parameter vector25

d (d =parameter value/prior parameter value) and is the sum of square error (SSE)
between model simulation and observation weighted by the number of observations
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(nobs) for each data stream (DS):

J(d )gc =
DS=n∑
DS=1

SSEDS(d )

nobsDS
(11)

The SSE for a single data stream is calculated from the LPJmL simulation of this data
stream (xLPJmL) and the corresponding observed values (xobs) weighted by the uncer-5

tainty of the observations (xobsunc) for each time step t:

SSE(d ) =
t=n∑
t=1

(xLPJmL, t(d ×p0)−xobs, t)
2

x2
obsunc, t

(12)

where p0 are LPJmL prior parameters. That means the minimization of the cost func-
tion J is based on scalars of LPJmL parameters relative to the prior parameter values.10

Different model optimization experiments were performed for individual grid cell and
for multiple grid cells of the same PFT for LPJmL-OP as well as for LPJmL-GSI (Ta-
ble 1). In the grid cell-based optimization experiments model parameters of the es-
tablished target tree PFT and the established herbaceous PFT were optimized at the
same time. The purpose of grid cell-level optimization experiments was to explore the15

variability of parameters within different regions and PFTs. In the PFT-level optimization
experiments the cost of LPJmL was calculated as the sum of the cost for each grid cell
weighted by the grid cell area A:

J(d )PFT =

∑gc=n
gc=1 J(d )gc ×Agc∑n

gc=1Agc

(13)
20

For PFT-level optimizations parameters of herbaceous PFTs were first optimized for
grid cells where only the herbaceous PFT is dominant. In a second step, the optimized
parameters of the herbaceous PFTs were used in the optimization of the target tree

10936

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/10917/2014/bgd-11-10917-2014-print.pdf
http://www.biogeosciences-discuss.net/11/10917/2014/bgd-11-10917-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 10917–11025, 2014

Phenology controls
and model-data

integration

M. Forkel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

PFT. The purpose of PFT-level optimization experiments is to derive optimized param-
eter sets that can be used for one PFT in global model runs.

For grid cell as well PFT-level optimization experiments, we only used grid cells that
are vegetated, dominated by one PFT and that are only marginally affected from agri-
cultural use or fire disturbances. These grid cells are called candidate grid cells in5

the following. We randomly selected grid cells from the set of candidate grid cells to
perform grid cell- or PFT-level optimization experiments. Table 1 gives an overview of
all optimization experiments for LPJmL-OP and LPJmL-GSI with the number of used
grid cells. Grid cells that were selected for optimization experiments are also shown
in Fig. 3. The PFT-level optimization of LPJmL-OP (OP.pft) did not result in plausible10

posterior parameter sets because of structural limitations of the LPJmL-OP phenol-
ogy model for herbaceous PFTs (i.e. no water effects, calendar day as end of growing
season), raingreen PFT (i.e. binary phenology) and evergreen PFTs (i.e. constant phe-
nology) and was therefore excluded from further analysis.

Parameter sensitivities and uncertainties were explored by analyzing the maximum15

likelihood and the posterior range of each parameter as derived from all parameter sets
from the genetic optimization algorithm (Appendix D3).

2.4.3 Model evaluation and time series analysis

Global model runs of LPJmL were performed in order to evaluate model results against
the integration data, against independent metrics of the integration data and against20

independent data streams. We evaluated results from LPJmL-OP with standard pa-
rameters (LPJmL-OP-prior), from LPJmL-OP with optimized productivity, albedo and
FAPAR parameters from grid-cell level optimization experiments (LPJmL-OP-gc) and
from LPJmL-GSI with optimized parameters from PFT-level optimization experiments
(Table 2). We did not use optimized phenology parameters in the LPJmL-OP-gc model25

run because we were not able to derive plausible phenology parameters in optimiza-
tion experiments of LPJmL-OP. All model runs were performed with dynamic vegetation
and prescribed burnt areas.
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We aggregated monthly FAPAR time series to mean annual FAPAR to evaluate inter-
annual variability and trends. Mean annual FAPAR time series were averaged from all
monthly values with mean monthly air temperatures> 0 ◦C to exclude potential remain-
ing effects of snow in the observed FAPAR time series. Trends in mean annual FAPAR
time series and trend breakpoints were computed using the “greenbrown” package for5

R software (Forkel et al., 2013). In this implementation, trends are computed by fitting
piece-wise linear trends to the annual FAPAR time series using ordinary least squares
regression. The significance of trends was computed using the Mann–Kendall trend
test (Mann, 1945).

3 Results and discussions10

3.1 Parameter optimization

3.1.1 Performance of phenology models

The newly developed LPJmL-GSI phenology model resulted in significantly higher cor-
relations with monthly GIMMS3g FAPAR than LPJmL-OP in all PFTs except in the
tropical broadleaved evergreen (TrBE) and boreal broadleaved summergreen (BoBS)15

PFTs (Fig. 4). LPJmL-OP with prior parameters had high correlations with monthly
GIMMS3g FAPAR in broad-leaved summergreen PFTs (TeBS median r = 0.87, BoBS
median r = 0.92) PFTs and medium correlations in boreal needle-leaved PFTs (BoNE
median r = 0.53, BoNS median r = 0.6). In all other PFTs, LPJmL-OP had low cor-
relations with monthly GIMMS3g FAPAR. The correlation against monthly GIMMS3g20

FAPAR did not significantly improve in all PFTs after grid cell-level optimization exper-
iments of LPJmL-OP (Fig. 4). The use of the newly developed LPJmL-GSI phenology
model already significantly improved the correlation with monthly GIMMS3g FAPAR in
all PFTs except in the temperate herbaceous (TeH) and BoBS PFTs. LPJmL-GSI had
significantly higher correlations with monthly GIMMS3g FAPAR after grid cell-level opti-25
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mization experiments in the TrBR, TeNE, TeBS, TeH, BoBS and BoNS PFTs. After PFT-
level optimization experiments, LPJmL-GSI had median correlation coefficients> 0.5 in
all PFTs except in broadleaved evergreen PFTs (TrBE, TeBE). These results prove that
the rain-green, evergreen and herbaceous phenology schemes of LPJmL-OP were
not able to reproduce temporal FAPAR dynamics despite the attempt of parameter5

optimization and that LPJmL-GSI can reproduce seasonal FAPAR dynamics in most
PFTs.

The low correlations coefficients between LPJmL-GSI and GIMMS3g FAPAR af-
ter optimization experiments in broadleaved evergreen PFTs (TrBE, TeBE) might be
caused by the specific properties of the FAPAR dataset in these PFTs. GIMMS3g FA-10

PAR does not have a clear seasonal cycle but a high short-term variability in tropical
broadleaved evergreen forests. These regions are often covered by clouds that inhibit
continuous optical satellite observations. The high short-term variability results ulti-
mately in low correlation coefficients between both LPJmL versions (LPJmL-OP and
LPJmL-GSI) and GIMMS3g FAPAR time series. Besides climatic factors, phenology15

in tropical forests is more driven by leaf age (Caldararu et al., 2012, 2014) and nutri-
ent availability (Wright, 1996). These affects are neither considered in the original GSI
phenology model (Jolly et al., 2005; Stöckli et al., 2011) nor in the LPJmL-GSI phenol-
ogy model. In temperate broadleaved evergreen forests, the GIMMS3g FAPAR dataset
might have a wrong seasonality. In these regions, the mean seasonal FAPAR cycles20

from the GIMMS3g and GL2 VGT FAPAR datasets are anti-correlated and FAPAR from
LPJmL-GSI agrees better with the GL2 VGT dataset. Because of these reasons, we
did not expect to improve seasonal FAPAR dynamics in broadleaved evergreen forests
with the current model-data integration setup.

All optimization experiments of LPJmL-OP and LPJmL-GSI resulted in a signifi-25

cant reduction of the cost in comparison to the respective prior models (Appendix D4,
Fig. D2). Nevertheless, the prior parameter set of LPJmL-GSI resulted already in a sig-
nificant lower cost than the grid cell-level optimized parameter sets of LPJmL-OP in
tropical and polar herbaceous PFTs, and in temperate broad-leaved summergreen and
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boreal needle-leaved summergreen PFTs. The reduction of the overall cost was in all
model optimization experiments usually associated with a significant reduction of the
annual GPP bias (Fig. D3). LPJmL-OP with prior parameters underestimated mean an-
nual GPP in the tropical broad-leaved evergreen PFT and overestimated mean annual
GPP in all other PFTs. Grid cell-level optimization experiments of LPJmL-OP resulted in5

a significant reduction of the GPP bias in all PFTs except in the polar herbaceous PFT
(PoH). We were not able to remove the GPP bias and to reduce the cost of LPJmL-OP
and of LPJmL-GSI in the PoH PFT (i.e. tundra) in optimization experiments because
of inconsistencies between the FAPAR and GPP datasets or in the LPJmL formulation.
LPJmL was not able to sustain the relatively high peak FAPAR in Tundra regions as10

seen in the GIMMS3g dataset given the low mean annual GPP of the MTE dataset
(Appendix D4). These inconsistencies might be related to higher uncertainties of the
GPP and FAPAR datasets in tundra regions where the MTE GPP dataset is not cov-
ered by many eddy covariance measurement sites, and where satellite-based FAPAR
observations are affected from high sun zenith angles (Tao et al., 2009; Walter and15

Shea et al., 1998). On the other hand, dominant tundra plant communities like mosses
and lichen are not represented in LPJmL (Appendix D4). All model optimizations exper-
iments kept growing season albedo within reasonable ranges in comparison to MODIS
albedo (Fig. D4). These results demonstrate an improved performance of optimized
model parameter sets over prior model parameter sets and of LPJmL-GSI over LPJmL-20

OP regarding a cost that is defined based on 30 years of monthly FAPAR, mean annual
GPP and 10 years of monthly vegetation albedo.

3.1.2 Parameter sensitivities and uncertainties

The uncertainty of productivity and albedo-related parameters was reduced after
optimization of LPJmL-GSI in most PFTs while the reduction of the uncertainty of25

phenology-related parameters depended often on plant functional type (Fig. 5). Prior
and posterior parameter values from each optimization experiment are listed in the
Appendix (Tables D2 to D5).
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The parameter αa (absorption of light at leaf level in relation to canopy level) was
sensitive within a narrow parameter range for all PFTs. The posterior αa parameter
range was smaller than the uniform prior range in all PFTs. In all optimization exper-
iments we found for the parameter αa a gradient from high values in tropical to low
values in boreal PFTs (Fig. D5). This pattern reflects the initial overestimation of mean5

annual GPP in temperate and boreal PFTs and underestimation of GPP in tropical re-
gions with the prior parameter set of LPJmL-OP. Thus, the low αa parameter values
accounts for nitrogen limitation effects on productivity in boreal forests (Vitousek and
Howarth, 1991) that are currently not considered in LPJmL. A future implementation of
nitrogen limitation processes in LPJmL requires a re-optimization of the αa parameter.10

The leaf albedo parameter βleaf was sensitive in all PFTs and the posterior βleaf
parameter range was smaller than the prior parameter range in evergreen PFTs. In
these evergreen PFTs the βleaf parameter was well constrained because albedo satel-
lite observations are less affected by variations in background albedo (soil, snow) than
in deciduous PFTs. In all other PFTs the βleaf posterior parameter range was equal15

the prior parameter range or the optimized parameter value was close to a boundary
of the prior parameter range. This result indicates that the albedo routines in LPJmL
should consider variations in background albedo caused by changes in soil properties,
soil moisture or snow conditions in order to accurately reproduce satellite-observed
albedo time series (see supplementary discussion in Appendix D5). Nevertheless, the20

optimization of the leaf albedo parameter βleaf resulted in values that differed espe-
cially between broadleaved and needle-leaved evergreen PFTs as well as herbaceous
PFTs (Figs. 5 and D6). Low leaf albedo parameters in needle-leaved evergreen PFTs
(TeNE and BoNE) and high leaf albedo parameters in broad-leaved summergreen and
herbaceous PFTs agree well with the patterns reported by Cescatti et al. (2012).25

The light extinction coefficient k was sensitive for all PFTs but the posterior pa-
rameter range was only in herbaceous PFTs and in the BoBS PFT smaller than the
prior parameter range (Fig. 5). In all PFTs this parameter had a large spatial variabil-
ity (Fig. D7). The parameter k affects mostly the FPC and thus the maximum FAPAR.
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Thus, this parameter cannot be well constrained for tree PFTs in the current optimiza-
tion setup because the maximum FPC of trees was prescribed from the land and tree
cover dataset. On the other hand, the maximum FPC of herbaceous PFTs was not
prescribed from observations which resulted in narrow k posterior parameter ranges
for herbaceous PFTs. The parameter k was optimized towards a very high value in5

the BoNS PFT (k = 0.7) due to high tree mortality rates after low-productivity years
(Appendix D5). This parameter would result in a overestimated PFT coverage in model
runs with dynamic vegetation. Thus, we performed a second optimization experiment
for this PFT (blue in Fig. 5) where kBoNS was limited to 0.65. This optimization ex-
periment resulted in similar posterior values for the other parameters. Although the k10

parameter was well constrained for the TrH, TeH and PoH PFTs, these parameters
cannot be used in the final parameter set of LPJmL-GSI. In dynamic vegetation model
runs, the relatively low k parameter values for the TrH and TeH PFTs and relatively high
values for the PoH PFT would result in an underestimation of herbaceous coverage in
temperate and tropical climates and an overestimation of herbaceous coverage in bo-15

real and polar climates, respectively. Therefore, we performed three more optimization
experiments for herbaceous PFTs where we fixed k at 0.5 (blue in Fig. 5). These opti-
mization experiments resulted in similar αa parameters but different albedo parameters
and phenology parameters in order to compensate for biases in FAPAR and albedo
that were introduced by the fixed k parameter. Thus, the high spatial variability and the20

large uncertainty of the light extinction coefficient k require re-addressing this param-
eter in a model optimization setup with dynamic vegetation using tree and vegetation
cover data or perhaps a replacement by a better representation of canopy architecture
and radiative transfer.

The sensitivity and posterior uncertainty of phenology-related model parameters de-25

pended often on plant functional type. The parameter basetmin which controls the effect
of cold temperature on phenology was sensitive in all PFTs except the TrBE and TrH
PFTs. The posterior parameter range was smaller than the prior parameter range in
temperate PFTs (TeNE, TeBS and TeH). The parameter baseheat which controls the
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effect of heat stress on phenology was sensitive in TrBR, TrH, TeH, BoNE and BoNS
PFTs while in other PFTs this parameter was only sensitive towards the boundaries
of the prior parameter range. Nevertheless, the posterior parameter range was only
smaller than the prior parameter range in TrBR and TrH PFTs. The parameter baselight
was sensitive in temperate and boreal PFTs. In tropical PFTs this parameter is only5

sensitive above a certain threshold (i.e. 60 W m−2 for TrBE and 100 W m−2 for TrBR).
The parameter basewater was sensitive in all PFTs. The posterior parameter range of
this parameter was smaller in all PFTs except in TeBS, BoNE, BoBS and BoNS PFTs.
Although, the parameter basewater had a large variability among PFTs, it was generally
optimized towards higher values in PFTs that are presumably water-controlled (TrBR,10

TeBS, TrH, TeH) and optimized towards lower values in PFTs that are presumably less
water controlled (TrBE, TeNE, BoNE, BoNS, PoH). This result indicates that FAPAR of
water-controlled PFTs reacts already to small decreases in water availability whereas
other PFTs react only to strong decreases in water availability. As the basewater param-
eter was the only phenology parameter which was sensitive in all PFTs, indicates that15

water availability is the only phenological control that acts in all PFTs.

3.2 Global model evaluation

3.2.1 GPP, ET, biomass and tree cover

LPJmL-GSI and LPJmL-OP-gc with optimized parameters better represented global
patterns of gross primary production, biomass and tree cover than LPJmL with origi-20

nal phenology and prior parameters (LPJmL-OP-prior) (Fig. 6). LPJmL-OP-prior over-
estimated mean annual GPP and biomass in most polar, boreal and temperate re-
gions. LPJmL-OP-prior underestimated mean annual GPP but overestimated mean
annual biomass in tropical regions around the Equator. These biases were reduced in
LPJmL-OP-gc and LPJmL-GSI. LPJmL generally overestimated GPP also in arid re-25

gions but these biases were reduced after optimization in LPJmL-OP-gc and LPJmL-
GSI (Fig. E1). We also found that the mean seasonal cycle of GPP from LPJmL-GSI

10943

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/10917/2014/bgd-11-10917-2014-print.pdf
http://www.biogeosciences-discuss.net/11/10917/2014/bgd-11-10917-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 10917–11025, 2014

Phenology controls
and model-data

integration

M. Forkel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

better agreed with the mean seasonal GPP cycle from the MTE estimate especially in
temperate forests and in tropical, temperate and polar grasslands (Fig. E2) although
no information about the seasonality of GPP was included in optimization experiments.
LPJmL-GSI still overestimated biomass in some tropical regions (African Savannas,
south-east Brazil, south and south-east Asia) (Fig. E3). These regions were mainly5

simulated as managed lands in LPJmL, i.e. as different crop functional types (CFTs).
The LPJmL-GSI phenology module was not applied and no parameter optimization
was performed for CFTs. Generally, LPJmL-GSI estimated global total carbon fluxes
and stocks that were closer to data-oriented estimates than the estimates from LPJmL-
OP-prior and LPJmL-OP-gc (Table E1, Appendix E1). These results demonstrate that10

besides the optimization of productivity parameters in LPJmL, the implementation of
the new GSI-based phenology improved estimates of spatial patterns, seasonal dy-
namics, and global totals of gross primary production and biomass.

Evapotranspiration from LPJmL agreed well with the data-oriented MTE estimate.
The implementation and optimization of the new GSI-based phenology did not affect15

much ET (Fig. 6b). Although LPJmL had lower mean annual ET than the data-oriented
MTE estimate in tropical and boreal regions, it followed the global pattern of ET. We de-
tected no major differences between the mean seasonal cycle of ET from LPJmL-OP
and LPJmL-GSI (not shown). These results show that evapotranspiration was not sen-
sitive to the implementation and optimization of the new GSI-based phenology model20

in LPJmL.
LPJmL-GSI with dynamic vegetation better represented spatial patterns of tree cover

in high latitude regions than LPJmL-OP-prior and LPJmL-OP-gc (Fig. 6d). LPJmL-OP-
prior highly overestimated tree cover in boreal and arctic regions and simulated a too
northern arctic tree line in comparison with tree cover from MODIS observations. Al-25

though this overestimation was reduced after optimization, LPJmL-OP-gc still highly
overestimated tree cover in boreal and temperate regions. The occurrence of trees was
shifted southwards in LPJmL-GSI. Although LPJmL-GSI still overestimated tree cover
in boreal regions, this overestimation was much lower than in LPJmL-OP-gc. LPJmL-

10944

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/10917/2014/bgd-11-10917-2014-print.pdf
http://www.biogeosciences-discuss.net/11/10917/2014/bgd-11-10917-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 10917–11025, 2014

Phenology controls
and model-data

integration

M. Forkel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

OP-prior and LPJmL-OP-gc slightly underestimated tree cover in temperate regions
around 45◦ N but this was well reproduced by LPJmL-GSI. We found no differences
in tree cover between LPJmL-OP and LPJmL-GSI in other parts of the world where
tree cover is highly affected from agricultural land use and thus implicitly prescribed
to LPJmL. These results demonstrate that additional to the optimization of productivity5

parameters in LPJmL-OP-gc, the newly developed GSI-based phenology model and
the optimized model parameters contribute to a better representation of tree cover in
high-latitude regions.

3.2.2 Improved spatial patterns of FAPAR

LPJmL with GSI-based phenology and optimized parameters better represents ob-10

served spatial patterns than LPJmL with original phenology module. LPJmL-OP-prior
and LPJmL-OP-gc overestimated mean annual FAPAR in high-latitude regions of North
America and Asia, in western North America, central Asia, the Mediterranean, China,
the Sahel and in northern Australia (Fig. 7). These overestimations were removed in
most regions in LPJmL-GSI. LPJmL-OP-gc and LPJmL-OP-prior overestimated FA-15

PAR especially in wet boreal and arctic regions with mean annual temperatures< 0 ◦C
in comparison to the GIMMS3g and GL2 VGT FAPAR datasets. Mean annual FAPAR
from LPJmL-GSI was close to mean annual FAPAR from both datasets and within the
uncertainty of the GL2 VGT FAPAR dataset under most climate conditions. Under wet
temperate and tropical conditions all three model versions had mean annual FAPAR20

close to both datasets and within the uncertainty of the GL2 VGT FAPAR dataset.
Mean annual FAPAR from the GIMMS3g and GL2 datasets clearly differed in dry re-
gions. GIMMS3g had in dry regions higher FAPAR and outside the uncertainty esti-
mate of the GL2 VGT dataset. Despite these differences of the datasets in dry regions,
LPJmL-OP-prior and LPJmL-OP-gc clearly overestimated FAPAR in dry regions. Al-25

though LPJmL-GSI overestimated mean annual FAPAR in temperate dry regions, this
overestimation was reduced in comparison to LPJmL-OP. In tropical dry regions mean
annual FAPAR from LPJmL-GSI was within the range of the datasets. These results
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demonstrate that LPJmL required an improved phenology model to represent spatial
patterns of mean annual FAPAR.

3.2.3 Improved seasonal to inter-annual FAPAR dynamics

LPJmL-GSI better reproduced seasonal cycles of FAPAR than LPJmL-OP in compar-
ison to the GIMMS3g and GL2 VGT FAPAR datasets (Fig. 8). The mean seasonal5

cycle of FAPAR from LPJmL-GSI was higher correlated with both datasets than the
mean seasonal cycle from LPJmL-OP in all PFTs. Only in the temperate broad-leaved
evergreen PFT, LPJmL-OP had a higher correlation with the GIMMS3g dataset than
LPJmL-GSI. Nevertheless, the mean seasonal cycle of both datasets was negatively
correlated (r = −0.48) in this PFT, which suggests that the GIMMS3g FAPAR dataset10

has a wrong seasonality in this PFT because LPJmL-GSI agreed better with the GL2
FAPAR dataset (r = 0.419) than with the GIMMS3g dataset (r = −0.131). In boreal
PFTs LPJmL-GSI was higher correlated with GIMMS3g FAPAR than with GL2 VGT
FAPAR. In these boreal PFTs, LPJmL-OP simulated a too late end of the growing sea-
son. In temperate PFTs, LPJmL-OP simulated a too early spring onset. LPJmL-GSI15

better reproduced the spring onset and the end of the growing season in temperate and
boreal PFTs than LPJmL-OP in comparison with the GIMMS3g FAPAR dataset. Nev-
ertheless, GIMMS3g FAPAR has an earlier spring onset in temperate and boreal forest
PFTs than the GL2 FAPAR dataset. As LPJmL-GSI was optimized against GIMMS3g
FAPAR it reproduced the early spring onset of the GIMMS3g dataset. LPJmL-OP had20

a too long growing season in temperate and polar herbaceous PFTs because the end
of the growing season is defined as fixed calendar date in LPJmL-OP. LPJmL-GSI does
not depend on calendar dates but on environmental conditions and thus more appropri-
ately reproduced the end of the growing season in herbaceous PFTs than LPJmL-OP.

LPJmL-GSI significantly better reproduced monthly FAPAR time series than LPJmL-25

OP in all PFTs in comparison with the GIMMS3g FAPAR dataset (Fig. 10). LPJmL-OP-
prior had low correlations with monthly GIMMS3g FAPAR in boreal forests of eastern
Siberia, in the North American tundra, in temperate and tropical grasslands of central
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Asia, North America, Australia and especially, in the Sahel (Fig. E4). LPJmL-GSI had
higher correlation coefficients with GIMMS3g than LPJmL-OP in all these regions. Only
in 11 % of the global land area LPJmL-OP-prior or LPJmL-OP-gc had a significantly
higher correlation (p < 0.05, Fisher z-transformation) with monthly GIMMS3g FAPAR
than LPJmL-GSI (Fig. 9a). These regions were located in agriculture-dominated grid5

cells in the central United States, eastern China and Argentina. In 10 % of the land area
the correlation coefficient of all LPJmL versions was smaller than 0.2 compared to the
GIMMS3g dataset. These grid cells were mostly located in the Amazon, the Kongo
Basis and the Sunda Islands where FAPAR time series of tropical forests do not ex-
hibit seasonal cycles and where optical satellite observations are often distorted from10

clouds. LPJmL-GSI better represents monthly FAPAR dynamics under all climate con-
ditions than LPJmL-OP-prior or LPJmL-OP-gc (Fig. 9b). The correlation coefficient im-
proved the most with LPJmL-GSI in boreal climates with mean annual air temperatures
between −15 ◦C and 0 ◦C and in temperate and tropical dry regions with mean annual
air temperatures> 5 ◦C. LPJmL-GSI had higher correlations with GIMMS3g FAPAR in15

boreal and cold temperate climates than the two datasets with each other. These re-
sults demonstrate that the implementation of a new phenology model in LPJmL was
needed to appropriately simulate seasonal and long-term FAPAR dynamics globally.

LPJmL-GSI better reproduced annual time series of mean annual FAPAR (averaged
for months> 0 ◦C mean monthly temperature) than LPJmL-OP in many regions in com-20

parison with the GIMMS3g FAPAR dataset (Fig. 10). Annual time series of mean annual
FAPAR from LPJmL-GSI were in 20 % of all global land areas significant higher cor-
related with the GIMMS3g dataset than LPJmL-OP (Fig. 10a). In 40 % of the global
land areas, LPJmL-GSI and LPJmL-OP-prior or LPJmL-OP-gc had equal correlations
with mean annual GIMMS3g FAPAR. Only in 15 % of the global land area, LPJmL-OP25

had a higher correlation with mean annual GIMMS3g FAPAR than LPJmL-GSI. These
regions were mostly located in agricultural regions in the eastern United States and
in parts of South America and south-eastern Asia where an improvement because of
the GSI-based phenology model was not expected. LPJmL-GSI better explained the
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inter-annual variability of GIMMS3g FAPAR especially in grasslands (western United
States, central Asia, the Sahel, southern Africa, and Australia) (Figure E5). Especially
in these temperate and tropical dry regions, LPJmL-GSI had the highest improvements
over LPJmL-OP regarding the inter-annual variability of FAPAR (Fig. 10b). Although
the absolute correlation coefficients between mean annual FAPAR from LPJmL and5

GIMMS3g were relatively low under all climate conditions, LPJmL was in arctic, boreal
and temperate climates usually higher correlated with the GIMMS3g dataset than the
GIMMS3g dataset with the GL2 VGT dataset. Only in subtropical and tropical climates
the two datasets were higher correlated with each other than LPJmL with the GIMMS3g
FAPAR dataset. These results demonstrate that datasets have large difference in term10

of inter-annual variability of FAPAR but LPJmL-GSI can explain the inter-annual vari-
ability of the GIMMS3g FAPAR dataset especially in temperate and boreal forests and
temperate and tropical grasslands.

3.2.4 Improved representation of FAPAR trends

LPJmL-GSI better represented observed trends and trend changes in mean annual15

FAPAR than LPJmL-OP-prior and LPJmL-OP-gc (Fig. 11). Spatial patterns of trend
slopes from LPJmL-GSI were higher correlated with the GIMMS3g FAPAR dataset
than from LPJmL-OP. LPJmL-OP and LPJmL-GSI both reproduced greening trends in
tundra, boreal and temperate forests. Nevertheless, LPJmL-GSI had higher correla-
tion coefficients with mean annual GIMMS3g FAPAR than LPJmL-OP in these regions.20

LPJmL-GSI reproduced observed browning trends in some parts of the boreal forests
of North America that were not reproduced by LPJmL-OP. In the Sahel, LPJmL-OP
simulated widespread browning trends while the GIMMS3g dataset shows greening
trends. Although LPJmL-GSI still underestimated the area extent of greening in the Sa-
hel, it reproduces the general greening in this region. These results demonstrate that25

the implementation of environmental controls like light, heat stress and water availabil-
ity in the LPJmL-GSI phenology model contributed to better explain regional greening
and browning trends.
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LPJmL-OP and LPJmL-GSI both reproduced observed greening trends in tundra re-
gions and in boreal forests of Siberia. In both model versions this greening is mostly
driven by annual changes in foliar projective cover and effects of temperature on spring
phenology. This agrees with observational studies that identified temperature increases
as drivers for an increasing shrub cover in tundra ecosystems (Blok et al., 2011; Forbes5

et al., 2010; Myers-Smith et al., 2011; Raynolds et al., 2013; Sturm et al., 2001) and
that found positive associates between warming, increasing tree ring widths and NDVI
greening in boreal forests of eastern Siberia (Berner et al., 2011, 2013). Parts of the bo-
real forests in North America had significant browning trends in the GIMMS3g dataset
but a tendency to positive trends in the GL2 dataset. LPJmL-GSI suggests that rather10

browning trends than greening trends are plausible given the considered environmen-
tal conditions although these browning trends were not that strong as in the GIMMS3g
dataset. In LPJmL-GSI these browning trends are caused by several factors like sea-
sonal light and water effects on phenology and by fire activity. In the GIMMS3g dataset
these browning trends were related to several environmental factors like fire activity15

(Goetz et al., 2005), temperature-induced drought stress (Beck et al., 2011; Bunn and
Goetz, 2006) and to snow-regulated changes in soil water availability (Barichivich et al.,
2014). The Sahel had widespread greening trends in the GIMMS3g FAPAR dataset.
Whereas LPJmL-OP simulated browning trends, the implementation of water avail-
ability effects on phenology enabled LPJmL-GSI to reproduce the observed greening20

trends. Increases in precipitation and rain-use efficiency were also identified in obser-
vational studies as the main drivers of positive trends in vegetation greenness in the
Sahel (Fensholt et al., 2013). These results suggest that LPJmL-GSI can be applied
in future studies to analyze the effects of different environmental controls on greening
and browning trends.25

3.3 Phenological controls on vegetation greenness

As the newly developed GSI-based phenology model of LPJmL can reproduce the sea-
sonality and monthly dynamics of observed FAPAR in most biomes, it can be used to
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identify phenological controls on seasonal FAPAR dynamics. The importance of phe-
nological controls differed by climate regions, ecosystems and season (Fig. 12). We
identified environmental controls on seasonal FAPAR dynamics by analyzing the mean
seasonal cycles of FAPAR, of the cold temperature, light, water availability and heat
stress limiting functions for phenology from the LPJmL-GSI model run. This analysis is5

comparable to previous investigations of limiting factors for vegetation phenology (e.g.
Jolly et al., 2005; Caldararu et al., 2014). FAPAR seasonality in high-latitude regions
(tundra, boreal forests) was mainly controlled by cold temperature (entire year) and
light (October to February). We also found an important control by water availability
in February to April in the tundra and in boreal forests of North America and east-10

ern Siberia. This water limitation in early spring was due to the seasonal freezing of
the upper permafrost layer in LPJmL. FAPAR seasonality in temperate grasslands in
western North America and central Asia was controlled from a mixture of cold temper-
ature (January to April), of water availability (May to November) and light (November
to January). FAPAR seasonality in temperate forests in Europe was mainly limited by15

cold temperature in spring and by a combination of cold temperature and light in au-
tumn. Additionally, heat stress and water availability contributed to a small reduction in
summer FAPAR in temperate and boreal forests. The FAPAR seasonality in savannas
(Sahel) was limited by water availability in the entire year and additionally by heat stress
before the beginning of the rain season. The FAPAR seasonality of temperate regions20

in South America was limited by water availability in the entire year. Cold temperature
was additionally limiting between May and September. Thus, water availability was the
only environmental factor in LPJmL-GSI that controlled phenology globally from tropical
to arctic biomes.

The implementation of the water limiting function on phenology in LPJmL-GSI re-25

sulted in unique patterns of phenological controls that were different from results re-
ported in similar analyses (Jolly et al., 2005; Caldararu et al., 2014). LPJmL-GSI
showed water limitation on phenology in many sub-tropical and dry temperate regions
(especially Mediterranean, Pampas and Patagonia in South America, Mongolia, and
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northern Great Plains). The original GSI model showed mainly temperature and light
limitation in these regions. In contrast to the original GSI, we prescribe water limitations
on phenological development as controlled by the plant available water and not on VPD
(Jolly et al., 2005). As considered by Caldararu et al. (2014), soil water availability ex-
erts a more direct control on phenology development, which has been demonstrated5

for Mediterranean ecosystems (Kramer et al., 2000; Richardson et al., 2013) and in dry
temperate grasslands (Yuan et al., 2007; Liu et al., 2013).

Interestingly, Caldararu et al. (2014) identify leaf age as the dominant factor for phe-
nology development in many permanent moist subtropical and tropical forests, but also
in several water limited regions which were here identified as seasonally controlled by10

water availability. We cannot identify a dominant control on seasonal FAPAR dynamics
in these regions, as leaf age is not explicitly simulated in LPJmL-GSI. We acknowledge
that the consideration of leaf age effects on phenology would clearly further enhance
the representation of ecosystem processes. However, the seasonal co-variation be-
tween LAI or FAPAR and environmental controls on phenology complicates the ability15

to disentangle the leaf aging signal from a temperature, light or water availability-driven
signal, especially in seasonally deciduous vegetation types, where climate-driven mod-
els explain a significant fraction of seasonal variability and the realized age of leaves
is shorter than a year. In addition, cloud cover contamination over the tropics pertain
usually a weak seasonal signal and a high short-term variability, hinging on the relia-20

bility of the seasonal signal in moist tropical or subtropical forests. Especially, Morton
et al. (2014) show that seasonal changes in MODIS LAI in the Amazon forests are
linked to insufficient corrections of the sun-sensor geometry, which challenge the rep-
resentation of vegetation phenology. However, in these tropical moist regions, where
we find no environmental seasonal controls, and the realized age of oldest leaves are25

higher than a year, leaf age may be an important contributor for further consideration
regarding the above-seasonal frequency of phenology. Hence, grasping the relevance
of leaf longevity, especially in tropical perennial systems, would necessarily require
ground observations of leaf development and litter fall to constrain leaf age parame-
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ters, as well as measurements of soil water content to address the appropriateness of
soil moisture effects.

Additionally, we identify water availability as an important limiting function for spring
phenology in boreal and arctic regions in LPJmL-GSI because of the seasonal freez-
ing of the upper active layer in permafrost soils. Although no relationships between ac-5

tive layer depth and vegetation greenness were found so far (Mcmichael et al., 1997),
frozen grounds limit the seasonal tree growth in boreal forests because of limited wa-
ter supply and nutrient uptake (Benninghoff, 1952; Jarvis and Linder, 2000). It also has
been observed that the seasonal freezing in permafrost regions limits soil moisture and
thus can contribute to drought conditions that regulate ecosystem evapotranspiration10

(Ohta et al., 2008) and that contribute to extreme fire events (Forkel et al., 2012). The
seasonal regulation of soil moisture through freezing and thawing in permafrost regions
contributes to spring leaf development in boreal summergreen forests. The heat stress
limiting function was newly introduced in LPJmL-GSI. Heat stress had no importance
for seasonal FAPAR dynamics in most regions except in temperate and tropical grass-15

lands. The heat stress function was highly correlated with the water availability func-
tion in temperate grasslands. This suggests that summer FAPAR is both regulated by
water-induced and temperature-induced drought conditions in temperate grasslands.
In contrary, heat stress and water availability were driving seasonal FAPAR dynam-
ics in temporal non-synchronized periods in tropical grasslands (Sahel). Whereas the20

FAPAR seasonality was driven by water availability in the entire year, heat stress reg-
ulated FAPAR seasonality only at the end of the dry season and before the beginning
of the rain season. These results suggest that soil moisture needs to be considered
in observational data analyses and in other ecosystem models as controlling factor for
vegetation phenology in all biomes.25
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4 Conclusions

We have demonstrated a major improvement of the LPJmL dynamic global vegetation
model by implementing a new set of phenological controls on vegetation greenness
and by integrating multiple decadal satellite observations. We have proven that the orig-
inal phenology model in LPJmL is unable to explain temporal dynamics of FAPAR. As5

an alternative we implemented a new phenology model (LPJmL-GSI) which considers
effects of cold temperature, heat stress, light, and water availability on vegetation phe-
nology. We developed a model-data integration approach for LPJmL (LPJmL-MDI) to
(1) constrain model parameters against observations, (2) to directly integrate observed
land cover fractions and burnt area time series and (3) to evaluate LPJmL against inde-10

pendent data streams. Specifically, phenology, productivity, and albedo-related model
parameters of LPJmL-GSI were optimized jointly against 30 year time series of satel-
lite observations of FAPAR, against 10 year time series of vegetation albedo and mean
annual patterns of gross primary production using a genetic optimization algorithm.

The new phenology model and the parameter optimization clearly improved LPJmL15

model simulations. LPJmL-GSI better reproduces observed spatial patterns of gross
primary production, tree cover, biomass and FAPAR than the original model. LPJmL-
GSI simulates global total carbon stocks and fluxes that are closer to independent esti-
mates than from the original model. LPJmL-GSI better represents observed seasonal,
monthly, inter-annual and decadal FAPAR dynamics than the original model. Never-20

theless, model optimization experiments and model evaluation demonstrated further
weaknesses of LPJmL that might need to be improved in future studies. To more ac-
curately simulate surface albedo in LPJmL it is necessary to implement time-varying
effects of snow conditions and surface moisture on albedo. The optimization of the light
extinction coefficient resulted in a large spatial variability and large parameter uncer-25

tainty. This model parameter needs to be addressed in future and perhaps needs to
be replaced by a more enhanced representation of canopy architecture and canopy
radiative transfer to improve simulations of tree coverage and peak FAPAR.
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The improvements of LPJmL in representing observed patterns and temporal dy-
namics of vegetation greenness allows assessing environmental controls on vegetation
phenology and greenness. Contrasting to previous studies (Jolly et al., 2005; Stöckli
et al., 2011), our results indicate that soil water availability is a major control of sea-
sonal FAPAR dynamics not only in water-limited biomes but also in boreal forests and5

the arctic tundra where water availability is regulated through seasonal thawing and
freezing of the active permafrost layer. Until now phenology of these ecosystems was
mostly considered as temperature-limited. The consideration of the effect of soil wa-
ter availability on phenology in LPJmL improved model simulations of greening trends
in the Sahel and of browning trends in boreal forests of North America. Our results10

demonstrate that improved phenology models that consider seasonal effects of water
availability are needed in order to correctly explain seasonal to long-term dynamics in
vegetation greenness.

Appendix A: LPJmL model details

A1 Original phenology model (LPJmL-OP)15

The phenology model in the original LPJmL formulation has three different routines for
summergreen (i.e. temperature-driven deciduous), evergreen (no seasonal variation)
and rain-green (i.e. water-driven deciduous) PFTs (Sitch et al., 2003). Evergreen PFTs
have a constant phenology status (Phen= 1). The daily phenology status of summer-
green PFTs depends on growing degree-days (GDD):20

∆T = T −GDDbase

GDDt = GDDt−1 +∆Tt if ∆T > 0
(A1)

Where T is the daily air temperature and GDDbase is the minimum temperature thresh-
old to start counting GDDs. Daily GDD is scaled to the phenology status using a pa-
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rameter ramp which is the amount of GDDs to get full leave cover:

PhenPFT|summergreen =


GDD/ramp if aphen < aphenmax

0 if aphen ≥ aphenmax

0 if aphen > aphenmin and ∆T < 0

(A2)

The daily phenology status is set back to 0 if the accumulated phenology status (aphen)
is larger than a parameter aphenmax or if aphen is greater than aphenmin and the daily5

temperature is below GDDbase. The daily accumulated phenology status is calculated
as:

aphent = aphent−1 +Phent (A3)

For rain-green PFTs the daily phenology status is calculated dependent on the daily10

water availability scaling factor Wscal in LPJmL (Appendix A2) (Gerten et al., 2004)
and a threshold value (Wscalmin):

PhenPFT|raingreen =

{
1 if Wscal ≥ Wscalmin

0 if Wscal < Wscalmin
(A4)

The phenology of rain-green PFTs has no smooth behaviour but is a binary switch15

between full leave cover and no leaves according to this formulation. For herbaceous
PFTs the same phenology scheme like for summergreen PFTs is used but the phe-
nology status is only set back to 0 at the end of the phenology year (i.e. on the 14th
day of the year for the Northern Hemisphere and on the 195th day of the year for the
Southern Hemisphere).20
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A2 Water availability scaling factor

The water availability scaling factor Wscal in LPJmL is a ratio between water supply S
and atmospheric water demand D for a dry canopy (Gerten et al., 2004):

Wscal =
S
D

(A5)
5

In the LPJmL-GSI phenology model the water availability scaling factor is expressed
as a percentage value:

W = Wscal×100 (A6)

Water supply is dependent on the maximum transpiration Emax under water saturation10

and relative soil moisture wr (Gerten et al., 2004):

S = Emax ×wr (A7)

Atmospheric water demand D for a dry canopy is calculated from potential evapo-
transpiration PET, maximum Priestley–Taylor coefficient αmax = 1.391, scaling canopy15

conductance gm = 3.26 mm s−1 and potential canopy conductance gpot (Gerten et al.,
2004):

D =
PET×αmax

1+ (gm/gpot)
(A8)

A3 Albedo20

Surface albedo and snow coverage routines have been implemented in LPJmL to use
it as a land surface scheme in a coupled vegetation-climate model (Strengers et al.,
2010). We used this implementation but made the albedo parameters PFT-dependent
as albedo differs between ecosystems (Cescatti et al., 2012). The albedo of a grid cell
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Albgc is the area-weighted sum of the vegetation albedo Albveg, bare-soil albedo Albbare
and snow albedo:

Albgc = Albveg + Fbare × (Fsnow ×βsnow + (1− Fsnow)×βsoil) (A9)

where Fbare and Fsnow are the coverage of bare soil and snow on top of bare soil in5

a grid cell and βsoil and βsnow are the soil and snow albedo parameters, respectively.
The parameters βsoil = 0.4 and βsnow = 0.7 were used as constants (Strengers et al.,
2010) and not further considered in this study. Although soil and snow albedo has
clear spatial and temporal variations which are due to changing moisture contents, an
improvement of these processes is not within the scope of our study. The vegetation10

albedo is computed as the albedo of each PFT AlbPFT and its corresponding FPC:

Albveg =
PFT=n∑
PFT=1

AlbPFT ×FPCPFT (A10)

The albedo of a PFT depends on the fraction of the PFT that is completely covered
by snow Fsnow, PFT and the albedo of the PFT without snow coverage (AlbPFT,nosnow)15

(Strengers et al., 2010):

AlbPFT = Fsnow, PFT ×βsnow + (1− Fsnow, PFT)×AlbPFT,nosnow (A11)

The albedo of a PFT without snow coverage is the sum of leaf, stem/branches and litter
(background) albedo:20

AlbPFT,nosnow = Albleaf, PFT +Albstem, PFT +Alblitter, PFT (A12)

The albedo of green leaves depends on the foliar projective cover, the daily phenology
status and the PFT-dependent leaf albedo parameter:

Albleaf, PFT = FPCPFT ×PhenPFT ×βleaf, PFT (A13)25
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The albedo of stems and branches depends on the fractional coverage of the ground by
stems and branches (cstem) and a PFT-dependent stem albedo parameter βstem, PFT:

Albstem, PFT = FPCPFT × (1−PhenPFT)× cstem×βstem, PFT (A14)

The parameter cstem = 0.7 (Strengers et al., 2010) was used as a constant and not5

further considered in this study. The background (i.e. litter) albedo of a PFT depends
additionally on a PFT-dependent litter albedo parameter βlitter, PFT:

Alblitter, PFT = FPCPFT × (1−PhenPFT)× (1− cstem)×βlitter, PFT (A15)

The parameters βleaf, PFT, βstem, PFT and βlitter, PFT were implemented as PFT-dependent10

albedo parameters which differs from the previous implementation (Strengers et al.,
2010). The fraction of snow in the green part of the canopy that is used to compute
FAPAR (Eq. 3) depends on the daily phenological status and the fraction of the PFT
that is covered by snow:

Fsnow, gv, PFT = PhenPFT × Fsnow, PFT (A16)15

The fraction of the PFT that is covered by snow depends on snow height and the daily
calculated snow water equivalent (Strengers et al., 2010).

Appendix B: FAPAR datasets

B1 Comparison of the Geoland2 and GIMMS3g FAPAR datasets20

We compared the Geoland2 and GIMMS3g FAPAR datasets to assess (1) the agree-
ment of two newly developed FAPAR products and (2) to evaluate the suitability of these
products for the optimization of FAPAR and phenology-related parameters in LPJmL.
We found important differences between the Geoland2 and GIMMS3g FAPAR datasets
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during our analyses. The differences are mostly related to inter-annual variability and
trends.

The GL2 FAPAR dataset had a higher inter-annual variability in most regions espe-
cially in northern Russia, central North America, Africa and eastern Australia (Fig. B1).
Despite the different amplitudes of inter-annual variability, the temporal dynamic of an-5

nual aggregated FAPAR values was well correlated in most regions (Fig. B2). Never-
theless, in some regions like in the North American Tundra, in parts of the Siberian
boreal forest and in the tropical forests the inter-annual temporal FAPAR dynamic was
weakly or even negatively correlated (Fig. B2).

The temporal dynamics of mean annual FAPAR agreed relatively well between10

GIMMS3g FAPAR and GL2 FAPAR in the AVHRR period. The temporal dynamic of
mean annual FAPAR agreed poorly between GIMMS3g and GL2 FAPAR in the VGT
period. Both datasets had higher biases in boreal needle-leaved evergreen forests
(Fig. B3). An offset between the GL2 AVHRR and GL VGT FAPAR time series in the
overlapping years 1999 and 2000 is evident in all biomes. Additionally, the GL2 VGT15

time series shows an abrupt jump from 2002 to 2003. Because of these reasons, the
Geoland2 FAPAR dataset cannot be used for a long-term analysis of FAPAR trends
and extremes.

B2 Estimation of uncertainty for the GIMMS3g FAPAR dataset

The GIMMS3g FAPAR dataset was used for parameter optimization. For parameter20

optimization it is necessary to consider data uncertainty in multiple data stream cost
functions. Unfortunately, the GIMMS3g dataset has no uncertainty estimates. On the
other hand the GL2 FAPAR dataset has uncertainty estimates but time series are not
well harmonized. Thus we were using the GIMMS3g dataset for parameter optimization
but estimated uncertainties by using regression to the uncertainty of the GL2 FAPAR25

dataset (Fig. B4). Therefore we fitted for each month polynomial quantile regressions
to the quantile 0.95 between FAPAR and FAPAR uncertainty from the GL2 VGT FA-
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PAR dataset. Then we were using these regressions to estimate uncertainties for the
GIMMS3g FAPAR dataset.

Appendix C: Land cover

C1 Creation of an observation-based map of plant functional types

Land cover maps from remote sensing products are not directly comparable with plant5

functional types in global vegetation models because they are using different legends
for the description of vegetation (Jung et al., 2006; Poulter et al., 2011a). Land cover
classes have to be reclassified into the corresponding PFTs. We were using the SYN-
MAP land cover map (Jung et al., 2006), the Köppen–Geiger climate classification
(Kottek et al., 2006) and tree coverage from MODIS (Townshend et al., 2011). We de-10

cided to use the SYNMAP land cover map because it offers fractional land coverage
and synergizes already the GLCC, MODIS and GLC2000 land cover maps (Jung et al.,
2006). PFTs in LPJmL are defined according to biome (tropical, temperate or boreal),
leaf type (needle leaved, broadleaved) and phenology (summergreen, evergreen, rain
green). We extracted the biome information from the Köppen–Geiger climate classifi-15

cation whereas leaf type and phenology were extracted from the SYNMAP land cover
map. The FPC of a PFT was derived from MODIS tree cover.

In a first step, we reclassified the Köppen–Geiger climate classification in to biocli-
matic zones (biomes) that correspond to the definition used in LPJmL (Fig. C1). This
reclassification followed to a large extent the rules of Poulter et al. (2011a):20

– The climate zone A was reclassified to the tropical biome.

– The climate regions BWh and BSh were reclassified to the tropical biome.

– The climate regions BWk and BSk were reclassified to the temperate biome.

– The climate region Cw was reclassified to the tropical biome.
10960
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– The climate regions Cf and Cs were reclassified to the temperate biome.

– The climate regions D and E were reclassified to the boreal biome.

In a second step, we created a land cover map with PFT legend by crossing the land
cover information from SYNMAP with the map of biomes following rules for each tree
PFT:5

– TrBE: EBF (evergreen broadleaved forest) AND tropical biome

– TrBR: DBF (deciduous broadleaved forest) AND tropical biome

– TeNE: ENF (evergreen needleleaved forest) AND temperate biome

– TeBE: EBF (evergreen broadleaved forest) AND temperate biome

– TeBS: DBF (deciduous broadleaved forest) AND temperate biome10

– BoNE: ENF (evergreen needleleaved forest) AND boreal biome

– BoBS: DBF (deciduous broadleaved forest) AND boreal biome

– BoNS: DNF (deciduous needleleaved forest) AND boreal biome

Although we translated in this step the land cover classes into PFTs, the fractions rep-
resent still fraction of land cover and not FPC. For example, a grid cell can be covered15

by 100 % forest but this forest contains only 70 % trees while the rest is covered by
herbaceous plants. This difference becomes evident by comparing the total coverage
of forest land cover classes from SYNMAP with tree cover from MODIS (Fig. C2).
MODIS tree cover is always lower than forest cover but shows more spatial variability.

In a third step, we need to correct the land cover fraction with tree cover to create20

a map of FPC. Thus, we calculated the FPC of each tree PFT by correcting the land
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cover fraction of a PFT (LCPFT) with the ratio of fractional tree coverage from MODIS
(FTree) and the total land coverage of all 8 forest PFTs:

FPCPFT = LCPFT ×
FTree∑PFT=8

PFT=1 LCPFT

(C1)

This calculation of FPC differs from the approach of Poulter et al. (2011a) who divided5

each land cover class in fixed fractions of tree and herbaceous PFTs.
In the last step we need to calculate the FPC of herbaceous PFTs:

FPCherb = 1− FTree −LCBarren −LCWater −LCSnow/Ice (C2)

which is the residual area by removing the fractional tree coverage from MODIS and10

the land cover fractions of bare soil and rocks, water and permanent snow and ice
from the total grid cell. Thus, grasslands, croplands and shrub lands were assigned to
herbaceous vegetation. Then we divided the herbaceous FPC into the TeH, PoH and
TrH PFTs according to biomes:

– TrH: FPCherb AND tropical biome15

– Old TeH: FPCherb AND temperate OR boreal biome

The TeH was further splitted in a new temperate herbaceous and a polar herbaceous
PFT to separate between temperate grasslands and tundra:

– TeH (new): old TeH AND temperate OR boreal biome AND boreal trees< 0.3

– PoH: old TeH AND (boreal biome OR Koeppen–Geiger E climate) AND boreal20

trees> 0.3

These steps yielded in observation-based maps of foliar projective cover for each PFT
(Fig. C3). As the input data (SYNMAP and MODIS VCF) is based on satellite data
from the years 2000/2001 the retrieved maps reflect the distribution of PFTs of the
year 2000.25
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C2 Comparison of simulated and observed PFT distributions

We compared the observation-based PFT map with the simulated PFT distribution
from LPJmL-OP for the year 2000. LPJmL with dynamic vegetation simulated usually
too high tree and too low herbaceous cover in all regions (Fig. C4). In the central tropi-
cal forests (Amazon, Kongo basin) LPJmL simulated too low cover of TrBE but too high5

cover of TrBR. The coverage of BoNE was too low in some regions in North America
and Eastern Siberia. The simulated distribution of BoNS did not agree much with the
observed distribution which is almost limited to eastern Siberia. Tree cover was espe-
cially overestimated in regions with only sparse tree cover (Savannahs, Steppe/boreal
forest transition, eastern Siberia). The extent of boreal forest PFTs (BoNE, BoBS,10

BoNS) is generally too large with far southward extensions into the Steppe and north-
ward extensions into the Tundra.

As expected, the prescription of the observed PFT maps into LPJmL generally im-
proved the representation of the observed PFT distributions (Fig. C4). The spatial pat-
terns of PFT distributions were highly correlated and the bias in comparison to the15

observed distribution was clearly reduced in comparison with the model run with dy-
namic vegetation. The PFT distribution of the LPJmL model run with prescribed land
cover does not perfectly agree with the observed PFT distribution which is due to the
applied prescription approach. Tree PFTs can have a lower FPC in LPJmL than the
prescribed FPC value because the trees are still growing or because mortality reduced20

the FPC. This effect especially happened in the BoNE PFT where fire reduced the
FPC in large regions in Canada and eastern Siberia (Fig. C4). Herbaceous PFTs can
have a higher FPC than the observed FPC value because these PFTs were allowed
to establish the entire grid cell (except the fraction that is barren, water or perma-
nent snow/ice in the observations). This happened for example when fires burnt tree25

PFTs and herbaceous PFTs succeeded afterwards in LPJmL. This is the reason for the
overestimation of herbaceous coverage in large regions in Canada and eastern Siberia
where the BoNE PFT was underestimated (Fig. C4). In summary, the prescription of
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land cover improved the representation of observed spatial patterns of PFTs in LPJmL.
Differences to the observed PFT distribution are due to the desired ability of LPJmL to
represent important processes of vegetation dynamics like mortality processes.

Appendix D: Model parameter optimization

D1 Parameter definitions and values5

This section documents the LPJmL parameters that were addressed in this study. The
parameters and their use in the model are described in Table D1. The information
sources from which prior parameter values were extracted for each optimization exper-
iment are shown in Fig. D1. Tables D2–D5 list prior and posterior parameter values of
each optimization experiment according to the logical flow of optimization experiments10

indicated in Fig. D1.

D2 Genetic optimization algorithm

We were using a genetic optimization algorithm to minimize the cost function J(d )
by optimizing the scaled parameter vector d . The GENOUD algorithm (genetic opti-
mization using derivatives) (Mebane and Sekhon, 2011) combines global genetic op-15

timization search with local gradient-based search algorithms. In genetic optimization
algorithms, each model parameter is called a gene and each parameter set is called
an individual. The fitness of this individual is the cost of the model against the observa-
tions. At the beginning of the optimization, a first generation of individuals is initialized
by random sampling of parameter sets within the prescribed parameter ranges. After20

the calculation of the cost of all individuals of the first generation, a next generation
is generated by cloning the best individuals, by mutating the genes or by crossing dif-
ferent individuals (Mebane and Sekhon, 2011). This results after some generations in
a set of individuals with highest fitness, i.e. parameter sets with minimized cost. Within
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the GENOUD algorithm we were using also the BFGS (Broyden–Fletcher–Goldfarb–
Shanno) gradient search algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970;
Shanno, 1970) to find an optimum parameter set. An optimized parameter set of the
BFGS algorithm is used as individual in the next generation. The BFGS gradient search
algorithm was first applied on the best individual of the second last generation to avoid5

a too fast convergence of the optimization algorithm towards a local optimum. For grid
cell-based optimization experiments we were applying the GENOUD algorithm with at
least 20 generations and a population size of 1000 individuals per generation, i.e. at
least 20 000 single model runs. For PFT-level optimization experiments we were ap-
plying the GENOUD algorithm with at least 15 generations and a population size of at10

least 700 individuals per generation, i.e. at least 10 500 single model runs.

D3 Parameter sensitivities and uncertainties

To explore the sensitivity and uncertainty of LPJmL-GSI parameters after PFT-level
optimizations, we computed the likelihood L and Akaikes Information Criterion AIC
from the cost J of each individual (i.e. parameter set d ) of the genetic optimization:15

L = e−J(d ) (D1)

AIC = 2×n−2× log(L) (D2)

Where n is the number of parameters. The optimum parameter set has the highest
likelihood and the lowest AIC. Then, we selected only these individuals with an AIC20

difference dAIC of< 2 in comparison to the best parameter set:

dAIC = AIC−AICbest (D3)

Parameter sets or model formulations with an AIC difference< 2 are usually consid-
ered as equally plausible like the best parameter set (Burnham and Anderson, 2002,25

p. 70). The relationship between likelihood and the value of each parameter provides
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both a qualitative insight in the uncertainty of parameters as expressed by the param-
eter range and in the parameter sensitivity as expressed by the maximum likelihood at
each parameter value.

D4 Supporting results and discussion on optimization performance

The optimization of LPJmL-OP and LPJmL-GSI resulted in a significant reduction of5

the cost in comparison to the respective prior models although there were differences
between plant functional types (Fig. D2). LPJmL-OP with prior parameters had high
costs especially in herbaceous PFTs (TrH and TeH) and in the boreal needle-leaved
summer green PFT (BoNS). The optimization of single grid cells in LPJmL-OP resulted
in a significant reduction of the cost in all PFTs (p ≤ 0.01, Wilcoxon rank-sum test) de-10

spite the polar herbaceous and tropical herbaceous PFTs. The global prior parameter
set of LPJmL-GSI resulted in a significant lower cost than the grid cell-level optimized
parameter sets of LPJmL-OP in TrH, TeBS, BoNS and PoH PFTs. The optimization
of single grid cells in LPJmL-GSI resulted in a significant reduction of the cost in all
PFTs except BoNS and PoH. PFT-level optimizations of LPJmL-GSI resulted in a sig-15

nificant lower cost than the LPJmL-GSI prior parameter set in all PFTs except TeBE,
BoNS and PoH. PFT-level optimizations of LPJmL-GSI resulted in a significant lower
cost than the standard LPJmL-OP prior parameter set in all PFTs except TeNE. These
results demonstrate an improved overall performance of optimized model parameter
sets over prior model parameter sets and of LPJmL-GSI over LPJmL-OP regarding20

a cost that is defined based on 30 years of monthly FAPAR, mean annual GPP and
10 years of monthly vegetation albedo.

Model optimization experiments resulted in a significant reduction of the annual GPP
bias of LPJmL in comparison to the MTE data-oriented GPP product (Fig. D3). LPJmL-
OP with prior parameters underestimated mean annual GPP in the TrBE PFT (median25

Pbias −13 %) and overestimated mean annual GPP in all other PFTs (up to 123 %
median Pbias in TeH). Grid cell-level optimization experiments of LPJmL-OP resulted
in a significant reduction of the GPP bias in all PFTs except in the PoH PFT. Especially
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in the TrBE, TrBR, TrH, TeNE, TeBE, TeBS and BoBS PFTs the bias of mean annual
GPP of LPJmL was removed almost completely (i.e. Pbias within 5 %). The LPJmL-
GSI prior parameter set had significant lower biases of mean annual GPP than the
prior parameter set of LPJmL-OP. This was because the median of each parameter
from the OP.gc experiments was used as prior parameter for LPJmL-GSI. Grid cell-5

level optimization experiments of LPJmL-GSI resulted in significant reductions of the
bias in mean annual GPP in most PFTs despite PFTs where the LPJmL-GSI prior
parameter set resulted already in GPP biases close to 0 (i.e. TrH, TeBE and PoH).
PFT-level optimization experiments of LPJmL-GSI resulted in significant lower biases
of mean annual GPP than the prior parameter set of LPJmL-OP in all PFTs except10

PoH. These results demonstrate that through the applied model optimization biases in
mean annual GPP were significantly reduced in all PFTs (except PoH) in LPJmL-OP
as well as in LPJmL-GSI.

We were not able to remove the GPP bias and to reduce the cost of LPJmL-OP
and of LPJmL-GSI in the PoH PFT (tundra) in optimization experiments because of15

inconsistencies between the FAPAR and GPP datasets or in the LPJmL formulation.
Although a complete removal of the GPP bias is in principle possible by adjusting the αa
parameter, this would result in a too low FPC of the PoH PFT. Such a low FPC cannot
explain the relatively high peak FAPAR values that are seen in the GIMMS3g FAPAR
dataset in Tundra regions. It is not possible to explain the low mean annual MTE GPP20

and the relatively high GIMMS3g peak FAPAR with the current LPJmL model structure
in tundra regions. The reasons for this mismatch can be caused by inconsistencies be-
tween the GPP and FAPAR datasets or by an insufficient model formulation. The MTE
data-oriented GPP product has been upscaled from FLUXNET eddy covariance mea-
surements (Jung et al., 2011). Nevertheless, not many eddy covariance measurement25

sites cover tundra regions with mean annual air temperatures< 0 ◦C. Thus, the MTE
GPP estimates are not well supported by measurements in tundra regions. But also
the FAPAR dataset might be more uncertain in tundra regions than in other parts of
the globe. Optical remote sensing in high-latitude regions is usually performed under
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high-sun zenith angles. Radiation can penetrate deeper into vegetation under high-
sun zenith angles which results in higher FAPAR (Tao et al., 2009; Walter-Shea et al.,
1998). Thus, the high FAPAR values in the GIMMS3g FAPAR dataset might be caused
by satellite observations under high-sun zenith angles. Finally, the inconsistencies be-
tween GPP and FAPAR might be also caused by an inappropriate representation of5

tundra plant communities in LPJmL. The PoH PFT in LPJmL was derived from a grass
PFT but does not include shrubs or the large functional diversity of mosses and lichen
that are the dominant plant communities in tundra ecosystems (Porada et al., 2013).
We currently cannot decide if the inconsistency between FAPAR and GPP in our op-
timization of productivity and FAPAR parameters in tundra regions is more caused by10

the specific properties of the datasets or by an insufficient model structure.
All optimization experiments resulted in reasonable albedo biases of LPJmL-OP and

LPJmL-GSI in comparison with monthly MODIS albedo time series (Fig. D4). LPJmL-
OP with prior parameters overestimated growing season albedo in all PFTs. Grid cell-
level optimization experiments of LPJmL-OP resulted in significant reductions of the15

bias in growing season albedo in TrBE, TeNE, TeBE, TeBS, BoNE, and BoNS PFTs
but not in TrBR, TrH, TeH, BoBS and PoH PFTs. The bias in growing season albedo of
the latter PFTs was significantly reduced with the LPJmL-GSI prior parameter set. The
optimization of LPJmL-GSI for single grid cells significantly reduced the bias in growing
season albedo in comparison to the LPJmL-GSI prior parameter set in all PFTs except20

in the TeH, BoNS and PoH PFTs. These results demonstrate that model optimizations
experiments kept growing season albedo within reasonable ranges in comparison to
MODIS albedo.

D5 Supporting results and discussion on parameter variability

The optimization of the leaf albedo parameter βleaf resulted in values that differed es-25

pecially between broadleaved and needle-leaved evergreen PFTs (Fig. D6). Needle-
leaved evergreen PFTs (TeNE and BoNE) had in all optimization experiments the
lowest βleaf parameter values while the broad-leaved summergreen PFTs (TeBS and
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BoBS) had the highest βleaf parameter values. After the PFT-level optimization of
LPJmL-GSI herbaceous PFTs had high βleaf parameters. The leaf albedo parame-
ter βleaf was sensitive in all PFTs (Fig. 5). The optimization resulted in many PFTs in
leaf and liiter albedo parameters that were close to the boundaries of the prior param-
eter ranges (Fig. 5). This indicates missing environmental controls on surface albedo.5

The albedo routines of LPJmL need to be further improved to account for moisture-
driven changes in surface albedo. Such improved albedo routines would allow a more
accurate and constrained estimation of albedo parameters. Because of these current
limitations in the LPJmL albedo routines, albedo simulations in regions or time periods
with low vegetation cover need to be assessed with care.10

The light extinction coefficient k had a large spatial variability in all PFTs and in both
grid cell-level optimization experiments of LPJmL-OP and LPJmL-GSI (Fig. D7). The
spatial variability was lower after grid cell-level optimization experiments of LPJmL-GSI
than after grid cell-level optimization experiments of LPJmL-OP. The largest variabil-
ity was found in evergreen PFTs (TrBE, TeBE, TeNE and BoNE). This result demon-15

strates that unique or PFT-dependent light extinction coefficient parameter values are
not meaningful. Moreover, the spatial variability of the light extinction coefficient needs
to be analyzed more detailed and perhaps replaced by a more advanced representa-
tion of canopy architecture.

The highest values of the light extinction coefficient were found in the BoNS PFT.20

This was caused by an overestimation of tree mortality in years with simulated low pro-
ductivity. Trees are killed in LPJmL as a result of negative net primary production which
reduces FPC and results in a lower peak FAPAR in the following year. Having occurred
more often in the simulated time period, it can explain why FAPAR is underestimated
in some years. To remove these biases, the light extinction coefficient was optimized25

towards higher values in the BoNS PFT to reach FAPAR values that are closer to the
observed FAPAR values after low-productivity years. However, such high values for
the light extinction coefficient would overestimate tree cover and FAPAR under aver-
age conditions and when LPJmL is applied with dynamic vegetation. The approach to
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simulate tree mortality in LPJmL needs further improvement by, e.g., considering for
example reserve carbon pools that helps the plants to endure low productivity condi-
tions (Galvez et al., 2011).

Appendix E: Global model evaluation

E1 Supporting results and discussion on carbon stocks and fluxes5

Although no information about temporal variations in GPP were used in optimization
experiments, the mean seasonal cycle of GPP from LPJmL-GSI and LPJmL-OP-gc
agreed better with the MTE data estimate than the mean seasonal GPP cycle from
LPJmL-OP-prior especially in temperate and boreal PFTs and tropical grasslands
(Fig. E2). GPP simulated by LPJmL-OP-prior increased too early and too fast in spring10

and decreased too late in autumn in TeNE, TeBS, BoNE, BoBS and TeH PFTs com-
pared to the MTE estimate. These wrong dynamics improved after parameter optimiza-
tion in both LPJmL-OP-gc and LPJmL-GSI. Additionally, LPJmL-GSI agreed better with
the data estimate than LPJmL-OP-gc in TeNE, TeBS, TrH, PoH, TrML and TeML. These
results demonstrate that the new GSI-based phenology model improved not only FA-15

PAR seasonality but also GPP seasonality especially in temperate forests and in tropi-
cal to polar grasslands.

LPJmL-GSI estimated global total carbon fluxes and stocks closer to data-oriented
estimates than LPJmL-OP-prior and LPJmL-OP-gc (Table E1). All three LPJmL model
versions overestimated global total GPP although LPJmL-GSI was close to the up-20

per uncertainty estimate of the data-oriented GPP estimate. Estimates of ecosystem
respiration from LPJmL were clearly larger than the data-oriented estimates. Although
LPJmL simulated global total fire carbon emissions within the magnitude of indepen-
dent estimates (van der Werf et al., 2010), LPJmL-OP-gc had higher and LPJmL-GSI
had lower fire carbon emissions despite the use of observed burnt areas in the SPIT-25

FIRE fire module. Data-oriented estimates of global total biomass have a large un-
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certainty. All three version of LPJmL were within these uncertainties. LPJmL-GSI esti-
mated global total biomass the closest to the data-oriented estimates. From Table E1 it
is obvious that LPJmL with the model settings as in (Schaphoff et al., 2013) (i.e. without
the BoNS and PoH PFTs and with simulated fire activity) resulted in global total GPP
and ecosystem respiration that were even closer to the data-oriented estimates. This5

is mostly because LPJmL simulates larger burnt areas than seen in the observations
and thus higher fire emissions but lower GPP and ecosystem respiration.
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Table 1. Overview of optimization experiments with information sources for prior and posterior
parameter sets. Parameter values and prior parameter ranges for each parameter set are listed
in Appendix D.

Experiment Description Number of randomly se-
lected grid cells

Prior parameter set and sources Posterior parameter set

OP.prior Parameters or model re-
sults of LPJmL-OP with
standard parameters

– Table D2
Sitch et al. (2003): αa, k, ramp,
aphenmin, aphenmax, Wscalmin
Strengers et al. (2010): sfc and
albedo parameters (partly esti-
mated from MODIS albedo)

–

OP.gc Optimization of single grid
cells of LPJmL-OP.

530 in total
TrBE 66, TrBR 51, TeNE
46, TeBE 32, TeBS 32,
BoNE 68, BoBS 40, BoNS
49, TeH 66, TrH 80

Table D2
Parameters as in OP.prior

One optimized parameter
set per grid cell. Median-
averaged values for PFTs
(Table D3)

OP.pft (results not shown) Optimization of multiple
grid of LPJmL-OP. Multiple
grid cells of the same dom-
inant PFT were optimized
at the same time.

673 in total
TrBE 50, TrBR 80, TeNE
50, TeBE 50, TeBS 80,
BoNE 50, BoBS 80, BoNS
158, TeH 50, TrH 25

Median-averaged values for PFTs
from posterior values of OP.gc (Ta-
ble D3)

– (No useful posterior param-
eter sets were found)

GSI.prior Parameters or model re-
sults of LPJmL-GSI with
standard parameters.

– Table D4
OP.gc: αa, k, sfc, βleaf, βlitter, and
βstem
Stöckli et al. (2011): parameters
for cold and light limiting functions
derived from fitting logistic func-
tions to stepwise functions as re-
ported in Stöckli et al. (2011)

–

GSI.gc Optimization of single grid
cells of LPJmL-GSI.

348 in total
TrBE 33, TrBR 33, TeNE
32, TeBE 22, TeBS 43,
BoNE 30, BoBS 41, BoNS
30, TeH 46, TrH 38

Parameters as in GSI.prior (Table
D4)

One optimized parameter set
per grid cell.

GSI.pft Optimization of multi-
ple grid of LPJmL-GSI.
Multiple grid cells of the
same dominant PFT were
optimized at the same
time.

500 in total
TrBE 30, TrBR 30, TeNE
30, TeBE 30, TeBS 30,
BoNE 50, BoBS 30, BoNS
60, TeH 70, TrH 70, PoH 70

Parameters as in GSI.prior (Table
D4)

Table D5 (one optimized pa-
rameter set per PFT)
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Table 2. Overview of global model runs that were used in this study for model evaluation.

Model run Phenology model Parameter set Further settings

LPJmL-OP-prior original phenology LPJmL standard parame-
ters as in the OP.prior ex-
periment (Table D2)

dynamic vegetation/no pre-
scribed land cover, pre-
scribed agricultural land
use, prescribed observed
burnt area

LPJmL-OP-gc original phenology Optimized productivity, FA-
PAR and albedo parame-
ters from the OP.gc op-
timization experiment, but
original phenology parame-
ters as in the OP.prior ex-
periment (Table D3)

dynamic vegetation/no pre-
scribed land cover, pre-
scribed agricultural land
use, prescribed observed
burnt area

LPJmL-GSI GSI-based phenology Parameters from the
GSI.pft optimization exper-
iment (Table D5)

dynamic vegetation/no pre-
scribed land cover, pre-
scribed agricultural land
use, prescribed observed
burnt area
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Table D1. Description of LPJmL model parameters that were addressed in this study.

Parameter Alternative name Use Description Unit

αa ALPHAA Photo-synthesis Leaf-to-canopy scaling parameter (amount
of radiation absorbed at leaf-level in com-
parison to total canopy)

–

βleaf ALBEDO_LEAF Albedo, FAPAR Albedo of green leaves –
βstem ALBEDO_STEM Albedo Albedo of stems and branches –
βlitter ALBEDO_LITTER Albedo Albedo of litter –
k LIGHTEXTCOEFF FPC, FAPAR Light extinction coefficient in Lambert–Beer

relationship
–

sfc SNOWCANOPYFRAC Albedo, FAPAR Maximum fraction of snow in the green
canopy

–

Wscalmin MINWSCAL Original phenology Minimum value of the water availability
scaling factor for leaf onset in rain green
PFTs

–

GDDbase GDDBASE Original phenology Minimum daily temperature to start count-
ing growing degree days

◦C

ramp RAMP Original phenology Number of growing degree days to reach
full leave cover in summergreen PFTs

◦C

aphenmin APHEN_MIN Original phenology Minimum accumulated phenology state
to allow senescence if temperature<
GDDBASE

–

aphenmax APHEN_MAX Original phenology Maximum accumulated phenology state.
Phenology is set back to 0 if this value is
passed.

–

sltmin TMIN_SL GSI phenology Slope of cold temperature limiting logistic
function for phenology

1/ ◦C

basetmin TMIN_BASE GSI phenology Inflection point of cold temperature limiting
logistic function for phenology

◦C

τtmin TMIN_TAU GSI phenology Change rate of actual to previous day cold
temperature limiting function value for phe-
nology

–

sllight LIGHT_SL GSI phenology Slope of light limiting logistic function for
phenology

1/(W/m2)

baselight LIGHT_BASE GSI phenology Inflection point of light limiting logistic func-
tion for phenology

W/m2

τlight LIGHT_TAU GSI phenology Change rate of actual to previous day light
limiting function value for phenology

–

slwater WATER_SL GSI phenology Slope of water limiting logistic function for
phenology

1/%

basewater WATER_BASE GSI phenology Inflection point of water limiting logistic
function for phenology

%

τwater WATER_TAU GSI phenology Change rate of actual to previous day water
limiting function value for phenology

–

slheat TMAX_SL GSI phenology Slope of heat limiting logistic function for
phenology

1/ ◦C

baseheat TMAX_BASE GSI phenology Inflection point of heat limiting logistic func-
tion for phenology

◦C

τheat TMAX_TAU GSI phenology Change rate of actual to previous day heat
limiting function value for phenology

–
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Table D2. Prior parameter values of LPJmL-OP (OP.prior). The values in brackets are ranges
of uniform parameter distributions that were used during optimization. Note: ∗ The parameter
GDDbase was changed to 0 ◦C. This value gave better agreements between simulated and
observed seasonal FAPAR dynamics than the original value of 5 ◦C. Nevertheless, GDDbase
was not included in optimization experiments because this parameter is highly correlated with
the parameter ramp.

TrBE TrBR TeNE TeBE TeBS BoNE BoBS BoNS TeH TrH

αa 0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

βleaf 0.15
(0.1–
0.2)

0.15
(0.1–
0.2)

0.15
(0.06–
0.23)

0.15
(0.09–
0.23)

0.16
(0.086–
0.23)

0.14
(0.05–
0.23)

0.15
(0.09–
0.21)

0.12
(0.1–
0.15)

0.14
(0.072–
0.22)

0.15
(0.09–
0.21)

βstem 0.15
(0.018–
0.29)

0.15
(0.073–
0.23)

0.13
(0–0.31)

0.15
(0.029–
0.28)

0.13
(0.038–
0.23)

0.14
(0–0.31)

0.14
(0.059–
0.23)

0.13
(0.052–
0.32)

– –

βlitter 0.15
(0.018–
0.29)

0.14
(0.058–
0.27)

0.13
(0.047–
0.21)

0.15
(0.044–
0.29)

0.14
(0.085–
0.2)

0.13
(0.035–
0.26)

0.14
(0.078–
0.22)

0.12
(0.088–
0.23)

0.14
(0.027–
0.38)

0.13
(0.02–
0.28)

sfc 0.4
(0.1–
0.9)

0.4
(0.1–
0.9)

0.4
(0.1–
0.9)

0.4
(0.1–
0.9)

0.4
(0.1–
0.9)

0.4
(0.1–
0.9)

0.4
(0.1–
0.9)

0.4
(0.1–
0.9)

0.4
(0.1–
0.9)

0.4
(0.1–
0.9)

k 0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

0.5
(0.1–
0.9)

GDDbase – – – – 0∗ – 0∗ 0∗ 0∗ 0∗

Wscalmin – 0.3
(0–1)

– – – – – – – –

Ramp – – – – 300
(0–
1000)

– 200
(0–
1000)

200
(0–
1000)

100
(0–
1000)

100
(0–
1000)

aphenmin – – – – 10
(1–600)

– 10
(1–600)

10
(1–600)

– –

aphenmax – – – – 210
(1–600)

– 210
(1–600)

210
(1–600)

– –
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Table D3. Posterior parameter values for LPJmL-OP based on grid cell-level optimization ex-
periments (OP.gc). Parameters written in italics were derived as the median value of the single
grid cell optimization experiments whereas all other parameters were derived from prior pa-
rameter sources. For the parameter ramp no plausible parameter was found. The parameter
GDDbase was changed to 0 but not included in the optimization.

TrBE TrBR TeNE TeBE TeBS BoNE BoBS BoNS TeH TrH

αa 0.6 0.56 0.38 0.41 0.38 0.28 0.34 0.27 0.32 0.39
βleaf 0.13 0.1 0.06 0.1 0.16 0.05 0.18 0.11 0.08 0.15
βstem 0.15 0.07 0.13 0.15 0.04 0.14 0.06 0.05 – –
βlitter 0.15 0.06 0.13 0.15 0.09 0.13 0.08 0.09 0.1 0.14
sfc 0.4 0.4 0.1 0.4 0.4 0.1 0.15 0.18 0.4 0.4
k 0.36 0.73 0.41 0.44 0.74 0.71 0.51 0.88 0.39 0.46
GDDbase – – – – 0 – 0 0 0 0
Wscalmin – 0.85 – – – – – – – –
Ramp – – – – 300 – 200 200 100 100
aphenmin – – – – 10 – 10 10 – –
aphenmax – – – – 201.97 – 181.62 105.78 – –
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Table D4. Prior parameter values for LPJmL-GSI (GSI.prior). Parameters marked with ∗ were
identified as insensitive and were not included in the optimization. The values in brackets are
ranges of uniform parameter distributions that were used during optimization. The values for the
first 6 parameters were derived from the single grid-cell optimization experiments of LPJmL-OP
(Table 3).

TrBE TrBR TeNE TeBE TeBS BoNE BoBS BoNS TrH TeH PoH

αa 0.6
(0.2–
0.8)

0.56
(0.1–
0.9)

0.38
(0.23–
0.49)

0.41
(0.1–
0.9)

0.38
(0.15–
0.6)

0.28
(0.16–
0.57)

0.34
(0.15–
0.61)

0.27
(0.16–
0.55)

0.39
(0.21–
0.83)

0.32
(0.1–
0.83)

βleaf 0.13
(0.1–
0.2)

0.1
(0.05–
0.2)

0.06
(0.01–
0.23)

0.1
(0.09–
0.23)

0.16
(0.13–
0.19)

0.05
(0.01–
0.23)

0.18
(0.09–
0.21)

0.11
(0.1–
0.14)

0.15
(0.09–
0.21)

0.08
(0.072–
0.22)

βstem 0.15
(0.018–
0.29)

0.07
(0.06–
0.23)

0.13
(0–0.31)

0.15
(0.029–
0.28)

0.04
(0.038–
0.23)

0.14
(0–0.31)

0.06
(0.059–
0.23)

0.05
(0.04–
0.32)

– –

βlitter 0.15
(0.054–
0.29)

0.06
(0.058–
0.27)

0.13
(0.047–
0.21)

0.15
(0.044–
0.29)

0.09
(0.085–
0.2)

0.13
(0.035–
0.26)

0.08
(0.078–
0.22)

0.09
(0.088–
0.23)

0.14
(0.02–
0.28)

0.1
(0.027–
0.38)

sfc 0.4∗ 0.4∗ 0.1
(0.01–
0.9)

0.4∗ 0.4
(0.1–
0.9)

0.1
(0.01–
0.9)

0.15
(0.1–
0.9)

0.18∗ 0.4∗ 0.4
(0.1–
0.9)

k 0.36
(0.2–
0.9)

0.73
(0.1–
0.9)

0.41
(0.1–
0.9)

0.44
(0.1–
0.9)

0.74
(0.1–
0.9)

0.71
(0.1–
0.9)

0.51
(0.1–
0.9)

0.88
(0.1–
0.9)

0.46
(0.1–
0.9)

0.39
(0.1–
0.9)

sltmin 0.24
(0.1–2)

0.24∗ 0.24
(0.1–2)

0.24
(0.1–2)

0.24
(0.1–2)

0.24
(0.1–2)

0.24
(0.1–2)

0.24
(0.1–2)

0.24
(0.1–2)

0.24
(0.1–2)

basetmin 8.8
(0–16)

8.8
(0–16)

−3.3
(−6–6)

−0.6
(−3–1)

7.4
(5–9)

3.7
(−6–6)

2.2
(0–5)

−4
(−6–6)

8.8
(0–16)

0.7
(−3–5)

τtmin 0.2∗ 0.2∗ 0.2∗ 0.2∗ 0.2∗ 0.2∗ 0.2∗ 0.2∗ 0.2∗ 0.2∗

slheat 0.24
(0.01–3)

0.24
(0.01–3)

0.24
(0.01–3)

0.24
(0.01–3)

0.24
(0.01–3)

0.24∗ 0.24∗ 0.24∗ 0.24
(0.01–3)

0.24∗

baseheat 35
(25–45)

35
(25–45)

35
(25–45)

35
(25–45)

35
(25–45)

35
(25–45)

35
(25–45)

35
(25–45)

35
(25–45)

35
(25–45)

τheat 0.2
(0.01–
0.9)

0.2∗ 0.2
(0.01–
0.9)

0.2∗ 0.2∗ 0.2∗ 0.2
(0.01–
0.9)

0.2∗ 0.2
(0.01–
0.9)

0.2∗

sllight 57
(0.05–
157)

23∗ 20∗ 0.2
(0.05–
40)

58∗ 14∗ 101
(0.05–
220)

95∗ 41
(0.05–
130)

23∗

baselight 125
(1–200)

62
(1–200)

73
(1–200)

23
(1–50)

123
(50–
200)

57
(1–100)

166
(50–
200)

156
(130–
180)

104
(1–150)

67
(1–180)

τlight 0.2
(0.01–
0.9)

0.2∗ 0.2∗ 0.2∗ 0.2∗ 0.2∗ 0.2∗ 0.2∗ 0.2
(0.01–
0.9)

0.2
(0.01–
0.9)

slwater 5
(0.1–10)

5
(0.1–10)

5∗ 5∗ 5
(0.1–10)

5∗ 5
(0.1–10)

5∗ 5
(0.1–10)

5
(0.1–10)

basewater 20
(1–99)

20
(1–99)

20
(1–99)

20
(1–99)

20
(1–99)

20
(1–99)

20
(1–99)

20
(1–99)

20
(1–99)

20
(1–99)

τwater 0.8
(0.01–
0.99)

0.8
(0.01–
0.99)

0.8∗ 0.8∗ 0.8∗ 0.8∗ 0.8∗ 0.8∗ 0.8
(0.01–
0.99)

0.8
(0.01–
0.99)
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Table D5. Final parameters for LPJmL-GSI. Parameters written in italics were derived from
PFT-level optimization experiments (GSI.pft) whereas all other parameters were derived from
prior parameter sources as described in Fig. D1.

TrBE TrBR TeNE TeBE TeBS BoNE BoBS BoNS TrH TeH PoH

αa 0.63 0.52 0.44 0.45 0.61 0.22 0.41 0.34 0.40 0.32 0.43
βleaf 0.13 0.12 0.12 0.12 0.18 0.10 0.16 0.12 0.24 0.18 0.07
βstem 0.10 0.10 0.04 0.04 0.04 0.06 0.06 0.04 0.15 0.15 0.15
βlitter 0.10 0.10 0.05 0.10 0.14 0.01 0.00 0.01 0.12 0.07 0.03
k 0.52 0.74 0.47 0.70 0.60 0.44 0.41 0.66 0.50 0.50 0.50
sltmin 1.01 0.24 0.22 0.55 0.26 0.10 0.22 0.15 0.91 0.31 0.13
basetmin 8.30 7.66 −7.81 −0.63 13.69 −7.52 2.05 −4.17 6.42 4.98 2.79
τtmin 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.01 0.20
slheat 1.86 1.63 1.83 0.98 1.74 0.24 1.74 0.24 1.47 0.24 0.24
baseheat 38.64 38.64 35.26 41.12 41.51 27.32 41.51 44.60 29.16 32.04 26.12
τheat 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
sllight 77.17 23.00 20.00 18.83 58.00 14.00 58.00 95.00 64.23 23.00 23.00
baselight 55.53 13.01 4.87 39.32 59.78 3.04 59.78 130.1 69.90 75.94 50.00
τlight 0.52 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.40 0.22 0.38
slwater 5.14 7.97 5.00 5.00 5.24 5.00 5.24 5.00 0.10 0.52 0.88
basewater 5.00 22.21 8.61 8.82 20.96 0.01 20.96 2.34 41.72 53.07 1.00
τwater 0.44 0.13 0.80 0.80 0.80 0.80 0.80 0.80 0.17 0.01 0.94

10991

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/10917/2014/bgd-11-10917-2014-print.pdf
http://www.biogeosciences-discuss.net/11/10917/2014/bgd-11-10917-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 10917–11025, 2014

Phenology controls
and model-data

integration

M. Forkel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table E1. Global total carbon fluxes and stocks from data-oriented estimates and from LPJmL
simulations. LPJmL-OP-Standard and LPJmL-GSI-Standard are LPJmL model runs with set-
tings as in (Schaphoff et al., 2013), i.e. without the use of the BoNS and PoH PFTs and with
using simulated fires instead of prescribed observed burnt areas. Data sources: 1 (Beer et al.,
2010; Jung et al., 2011), 2 (van der Werf et al., 2010), 3 (Saatchi et al., 2011; Thurner et al.,
2014).

Gross primary Ecosystem respiration Fire carbon Biomass Soil organic
production (Pg C a−1) (Pg C a−1) emissions (Pg C a−1) (Pg C) carbon (Pg C)

Data estimate 124.71 100–1103 2.02 451.23

Data lower uncertainty 110.71 208.83

Data upper uncertainty 138.31 695.93

LPJmL settings as in this study:
LPJmL-OP-prior 161.3 150.7 1.93 674.1 2723
LPJmL-OP-gc 153.8 143.9 2.45 581.1 2503
LPJmL-GSI 145.8 141.4 1.65 546.4 2508

LPJmL settings as in Schaphoff et al. (2013):

LPJmL-OP-Standard 138.9 125.8 3.48 597.8 2101
LPJmL-GSI-Standard 120.4 115.1 3.23 582.1 1392
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Figure 1. Structure of the model-data integration approach for LPJmL (LPJmL-MDI). The
LPJmL model structure is highly simplified.
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Figure 2. Examples of the cold temperature, heat stress, light and water limiting functions for
phenology in LPJmL-GSI. Depending on the chosen parameters the functions have different
shapes for each PFT.
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Figure 3. Map of the dominant PFT in each grid cell as derived from SYNMAP, Köppen–Geiger
climate zones and MODIS VCF. Grid cells that were used in any of the optimization experiments
are shown as black crosses. Some grid cells were used in multiple optimization experiments.
Grid cells that are dominated by agriculture were not used for optimization (TrML, tropical man-
aged lands and TeML, temperate managed lands).
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Figure 4. Distribution of the correlation coefficient between monthly LPJmL and GIMMS3g
FAPAR (1982–2011) for several grid cells in prior model runs and optimization experiments
grouped by plant functional types and biomes. (a) Correlation coeffcient for LPJmL-OP with de-
fault parameters (a, OP.prior), after grid cell-level optimizations (b, OP.gc), cost for LPJmL-GSI
with prior parameters (c, GSI.prior), after grid cell-level optimizations (d, GSI.gc) and after PFT-
level optimizations (e, GSI.pft). Biomes are Tr (tropical), Te (temperate) and Bo (boreal/polar).
(b) Legend for the plot. Each distribution is plotted according to usual boxplot statistics. The
point symbols indicate the plant functional type. The significance flag on top of each distri-
bution shows if a distribution is significant different (p ≤ 0.01) to the corresponding distribu-
tion of the same PFT in another optimization experiment. The significance is based on the
Wilcoxon rank-sum test. For example “acd” indicates a significant difference to the main cate-
gories (a) (OP.prior), (c) (GSI.prior) and (d) (GSI.gc) but no significant difference to (b) (OP.gc)
and (e) (GSI.pft).
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Figure 5. Uncertainty and sensitivity of LPJmL-GSI parameters derived from all individuals of
genetic optimizations at PFT level. Shown is the relationship between parameter values and
the likelihood of the corresponding parameter vector. The likelihood is normalized with the
likelihood of the optimum parameter set. Only individuals with dAIC< 2 are shown. Grey areas
indicate the uniform prior parameter range. Red crosses indicate the optimum parameter value.
The optimum parameter value is indicated as text in a plot if it is outside of the plotting range.
Results from two independent optimization experiments are shown for the BoNS, TrH, TeH and
PoH PFTs (black and blue colours, respectively) but not all parameters were included in both
experiments. The parameter ALBEDO_LITTER in the TrBE and TeBE PFTs was not considered
in optimization experiments.
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Figure 6. Latitudinal gradients of (a) gross primary production (GPP), (b) evapotranspiration,
(c) biomass and (d) tree cover from data-oriented estimates and from LPJmL model simula-
tions. Gradients were spatially averaged (median) from all 0.5◦ grid cells for latitudinal bands of
1◦ width. (a) The red areas represent uncertainty estimates for the data-oriented estimates.
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Figure 7. Comparison of mean annual FAPAR from LPJmL and remote sensing datasets. (a)
Difference in mean annual FAPAR between LPJmL-OP-prior and GIMMS3g. (b) Difference in
mean annual FAPAR between LPJmL-GSI and GIMMS3g. (c) Global spatial-averaged gradi-
ents of mean annual FAPAR from LPJmL and data sets. The uncertainty of the GL2 VGT FAPAR
dataset is shown as blue area. Dashed lines are dry regions with mean annual P/PET < 15 and
solid lines are wet regions with mean annual P/PET ≥ 15.
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Figure 8. Comparison of the mean seasonal FAPAR cycle from GIMMS3g, GL2 VGT and
LPJmL spatially averaged for regions with the same dominant PFT. The PFTs for which time
series were averaged are shown in Fig. 3. Numbers in the figures are correlation coefficients be-
tween GIMMS3g and the corresponding time series from GL2 VGT or from LPJmL simulations.
The significance of the correlation is indicated as point symbol: ∗∗∗ (p ≤ 0.001), ∗∗ (p ≤ 0.01), ∗

(p ≤ 0.05), . (p ≤ 0.1).
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Figure 9. Evaluation of monthly FAPAR dynamics (1982–2011). (a) Best LPJmL model run
regarding the correlation coefficient between monthly LPJmL FAPAR and GIMMS3g FAPAR. If
one model run is shown the correlation coefficient of this best model is significant higher than
of the second best model run. If two model runs are shown the correlation coefficients of the
first and second best model runs are not significantly different from each other (p > 0.05). (b)
Global spatial-averaged gradients of the correlation coefficient between monthly FAPAR time
series. Dashed lines are dry areas with mean annual P/PET < 15 and solid lines are wet areas
with mean annual P/PET ≥ 15.
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Figure 10. Evaluation of mean annual FAPAR dynamics (1982–2011). (a) Best LPJmL model
run regarding the correlation coefficient between mean annual LPJmL FAPAR and GIMMS3g
FAPAR. If one model run is shown the correlation coefficient of this best model is significant
higher than of the second best model run. If two model runs are shown the correlation coef-
ficients of the first and second best model runs are not significantly different from each other
(p > 0.05). (b) Global spatial-averaged gradients of the correlation coefficient between annual
FAPAR time series. Dashed lines are dry areas with mean annual P/PET < 15 and solid lines
are wet areas with mean annual P/PET ≥ 15.
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Figure 11. Comparison of trends in mean annual FAPAR from LPJmL and from satellite
datasets. Trends were computed between 1982 and 2011 as linear trends. The significance
of a trend was determined using the Mann–Kendall trend test. Only significant trends slopes
(p ≤ 0.05) are displayed in each map. Spatial correlations of trend slopes (Spearman coeffi-
cient) between LPJmL and the GIMMS3g dataset are given in the map titles. Time series are
showing mean annual FAPAR time series and trends spatially averaged for the regions as indi-
cated in the first map. The blue area in time series represents the uncertainty of the GL2 VGT
FAPAR dataset. Numbers in the time series plot are correlation coefficients between mean an-
nual FAPAR time series from GIMMS3g and from GL2 or LPJmL model runs, respectively. The
significance of a trend and of the correlation is indicated as point symbol: ∗∗∗ (p ≤ 0.001), ∗∗

(p ≤ 0.01), ∗ (p ≤ 0.05), . (p ≤ 0.1).
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Figure 12. Phenological controls on seasonal FAPAR dynamics. The maps are red-green-blue
composites of the mean monthly values for the water (red), light (green) and cold temperature
(blue) phenology limiting function values from the LPJmL-GSI-dyn model run. White regions in
the maps are without vegetation or dominated by croplands for which the LPJmL-GSI phenol-
ogy model was not applied. Time series represent the mean seasonal cycles (January to De-
cember) (averaged over 1982–2011) of simulated and observed FAPAR and phenology limiting
function values averaged for different regions as indicated in the first map. Phenology limiting
function values close to 0 indicate a strong control by phenology limiting functions whereas val-
ues close to 1 indicate no phenological control. The correlation coefficients of each time series
with the simulated FAPAR time series are shown in each time series plot. The significance of
the correlation is indicated as point symbol: ∗∗∗ (p ≤ 0.001), ∗∗ (p ≤ 0.01), ∗ (p ≤ 0.05), . (p ≤ 0.1).
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Figure A1. Effects on FAPAR in LPJmL for an example grid cell in Siberia. FAPAR in LPJmL is
computed from foliar projective cover (FPC), from snow coverage in the green canopy (Fsnow),
leaf albedo (βleaf) and phenology status (Phen).
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Figure B1. Standard deviation of mean annual FAPAR from the GIMMS3g and GL2 FAPAR
datasets in 1982–2011. The annual mean FAPAR was calculated for each year from each
monthly FAPAR value for months with monthly mean air temperatures > 0 ◦C. Areas with large
differences are highlighted with circles.
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Figure B2. Correlation between mean annual FAPAR time series from the GIMMS3g and GL2
(AVHRR+VGT) FAPAR datasets in 1982–2011. The map shows the Pearson correlation coef-
ficient between both datasets. Areas with large differences are highlighted with circles.
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Figure B3. Comparison of mean annual FAPAR from different datasets averaged for the extent
of boreal needle-leaved evergreen forests.
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Figure B4. Monthly quantile regressions between GL2 VGT FAPAR and the GL2 VGT FAPAR
fitted to the quantile 0.95. Each monthly quantile regression was applied to the GIMMS3g FA-
PAR dataset to estimate uncertainties for this dataset. Using 0.95 quantile regressions provides
conservative uncertainty estimates for the GIMMS3g FAPAR dataset.
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Figure C1. Reclassification of the Koeppen–Geiger climate classification in bioclimatic zones.
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Figure C2. Comparison of total forest coverage from SYNMAP and MODIS tree coverage for
a region in eastern Siberia.
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Figure C3. Observation-based maps of the foliar projective cover of plant functional types
(agricultural areas are included in the TrH and TeH PFTs).
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Figure C4. Comparison between simulated and observed PFT distributions for the year 2000.
The maps are difference maps between simulated FPC values from LPJmL-OP and observed
FPC values. The scatter plots show observed FPC values on the x-axis and simulated FPC
values on the y-axis. Left: LPJmL-OP with dynamic vegetation and prescribed burnt areas.
Right: LPJmL-OP with prescribed land cover and prescribed burnt areas.
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Figure D1. Information sources for prior and posterior parameter sets and overview of model
optimization experiments. Grey boxes indicate model parameters or parameter sets. White
boxes are information sources for parameters. Yellow boxes are optimization experiments.
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Figure D2. Distribution of the cost for several grid cells in prior model runs and optimization
experiments grouped by plant functional types and biomes. (a) Cost for LPJmL-OP with de-
fault parameters (a, OP.prior), after grid cell-level optimizations (b, OP.gc), cost for LPJmL-GSI
with prior parameters (c, GSI.prior), after grid cell-level optimizations (d, GSI.gc) and after PFT-
level optimizations (e, GSI.pft). Biomes are Tr (tropical), Te (temperate) and Bo (boreal/polar).
(b) Legend for the plot. Each distribution is plotted according to usual boxplot statistics. The
point symbols indicate the plant functional type. The significance flag on top of each distri-
bution shows if a distribution is significant different (p ≤ 0.01) to the corresponding distribu-
tion of the same PFT in another optimization experiment. The significance is based on the
Wilcoxon rank-sum test. For example “acd” indicates a significant difference to the main cate-
gories (a) (OP.prior), (c) (GSI.prior) and (d) (GSI.gc) but no significant difference to (b) (OP.gc)
and (e) (GSI.pft).
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Figure D3. Distribution of the percent bias between LPJmL and MTE mean annual GPP (1982–
2011) for several grid cells in prior model runs and optimization experiments grouped by plant
functional types and biomes. See Fig. D2 for a further explanation of this figure.
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Figure D4. Distribution of the percent bias between LPJmL and MODIS monthly growing sea-
son albedo (2000–2011) for several grid cells in prior model runs and optimization experiments
grouped by plant functional types and biomes. See Fig. D2 for a further explanation of this
figure.

11017

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/10917/2014/bgd-11-10917-2014-print.pdf
http://www.biogeosciences-discuss.net/11/10917/2014/bgd-11-10917-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 10917–11025, 2014

Phenology controls
and model-data

integration

M. Forkel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure D5. Prior and optimized values for the parameter α a (fraction of radiation absorbed at
leaf level relative to canopy level) grouped by plant functional types and biomes. The distribu-
tion of the parameter in the optimization experiments OP.gc and GSI.gc represents the spatial
variability of the parameter from different grid cell-level optimization experiments. See Fig. D2
for a further explanation of this figure.
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Figure D6. Prior and optimized values for the parameter β leaf (leaf albedo) grouped by plant
functional types and biomes. The distribution of the parameter in the optimization experiments
OP.gc and GSI.gc represents the spatial variability of the parameter from different grid cell-level
optimization experiments. See Fig. D2 for a further explanation of this figure.
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Figure D7. Prior and optimized values for the parameter k (light extinction coefficient) grouped
by plant functional types and biomes. The distribution of the parameter in the optimization
experiments OP.gc and GSI.gc represents the spatial variability of the parameter from different
grid cell-level optimization experiments. See Fig. D2 for a further explanation of this figure.
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Figure E1. Comparison of patterns of mean annual total gross primary production from LPJmL
and the data-oriented MTE estimate for the period 1982–2011. (a) Difference in mean an-
nual total GPP between MTE and LPJmL-OP-prior. (b) Difference in mean annual total GPP
between MTE and LPJmL-GSI. (c) Global spatial-averaged gradients of mean annual GPP
against mean annual temperature. Dashed lines are dry areas with mean annual P/PET < 15
and solid lines are wet areas with mean annual P/PET ≥ 15. The red area represents the un-
certainty of the data-oriented GPP estimate expressed as the inter-quartile range of the MTE
ensemble.
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Figure E2. Comparison of the mean seasonal GPP cycle (averaged over 1982–2011) from
MTE and LPJmL spatially averaged for regions with the same dominant PFT.
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Figure E3. Comparison of biomass from data-oriented estimates (Thurner and Saatchi
datasets) and from LPJmL (averaged 2009–2011). (a) Difference in biomass between LPJmL-
OP-prior and datasets. (b) Difference in biomass between LPJmL-GSI and datasets. (c) Global
spatial-averaged gradients of biomass against mean annual temperature. Dashed lines are
dry areas with mean annual P/PET < 15 and solid lines are wet areas with mean annual
P/PET ≥ 15. The red area represents the uncertainty of the data-based biomass estimates
expressed as the 0.05 to 0.95 quantile range of the data ensemble.
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Figure E4. Correlation coefficients between monthly FAPAR time series from GIMMS3g, GL2
VGT datasets and LPJmL model simulations.

11024

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/10917/2014/bgd-11-10917-2014-print.pdf
http://www.biogeosciences-discuss.net/11/10917/2014/bgd-11-10917-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 10917–11025, 2014

Phenology controls
and model-data

integration

M. Forkel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure E5. Correlation coefficients between annual FAPAR time series (annual mean aver-
aged from monthly values with air temperatures> 0 ◦C) from GIMMS3g, GL2 VGT datasets
and LPJmL model simulations.
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