Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory

B. Aharmim et al. (SNO Collaboration)
Phys. Rev. D 80, 012001 – Published 10 July 2009

Abstract

Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth’s surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and unoscillated portion of the neutrino flux. A total of 514 muonlike events are measured between 1cosθzenith0.4 in a total exposure of 2.30×1014cm2s. The measured flux normalization is 1.22±0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cosθzenith>0.4 is measured to be (3.31±0.01(stat)±0.09(sys))×1010μ/s/cm2.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 16 February 2009

DOI:https://doi.org/10.1103/PhysRevD.80.012001

©2009 American Physical Society

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 80, Iss. 1 — 1 July 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×