Evolution of galaxy bias, generalized

Lam Hui and Kyle P. Parfrey
Phys. Rev. D 77, 043527 – Published 26 February 2008

Abstract

Fry (1996) showed that galaxy bias has the tendency to evolve towards unity, i.e. in the long run, the galaxy distribution tends to trace that of matter. Generalizing slightly Fry’s reasoning, we show that his conclusion remains valid in theories of modified gravity (or equivalently, complex clustered dark energy). This is not surprising: as long as both galaxies and matter are subject to the same force, dynamics would drive them towards tracing each other. This holds, for instance, in theories where both galaxies and matter move on geodesics. This relaxation of bias towards unity is tempered by cosmic acceleration, however: the bias tends towards unity but does not quite make it, unless the formation bias were close to unity. Our argument is extended in a straightforward manner to the case of a stochastic or nonlinear bias. An important corollary is that dynamical evolution could imprint a scale dependence on the large scale galaxy bias. This is especially pronounced if nonstandard gravity introduces new scales to the problem: the bias at different scales relaxes at different rates, the larger scales generally more slowly and retaining a longer memory of the initial bias. A consistency test of the current (general relativity+uniform dark energy) paradigm is therefore to look for departure from a scale-independent bias on large scales. A simple way is to measure the relative bias of different populations of galaxies which are at different stages of bias relaxation. Lastly, we comment on the possibility of directly testing the Poisson equation on cosmological scales, as opposed to indirectly through the growth factor.

  • Figure
  • Figure
  • Received 11 December 2007

DOI:https://doi.org/10.1103/PhysRevD.77.043527

©2008 American Physical Society

Authors & Affiliations

Lam Hui1,2,* and Kyle P. Parfrey1,3,†

  • 1Institute for Strings, Cosmology and Astroparticle Physics (ISCAP), Columbia University, New York, New York 10027, USA
  • 2Department of Physics, Columbia University, New York, New York 10027, USA
  • 3Department of Astronomy, Columbia University, New York, New York 10027, USA

  • *lhui@astro.columbia.edu
  • kyle@astro.columbia.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 77, Iss. 4 — 15 February 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×