Dynamical properties of Bianchi-I spacetimes in f(R) gravity

Saikat Chakraborty, Kazuharu Bamba, and Alberto Saa
Phys. Rev. D 99, 064048 – Published 28 March 2019

Abstract

We present a dynamical analysis in terms of new expansion-normalized variables for homogeneous and anisotropic Bianchi-I spacetimes in f(R) gravity in the presence of anisotropic matter. With a suitable choice of the evolution parameter, the Einstein’s equations are reduced to an autonomous five-dimensional system of ordinary differential equations for the new variables. Further restrictions lead to considerable simplifications. For instance, we show that for a large class of functions f(R), which includes several cases commonly considered in the literature, all the fixed points are polynomial roots, and hence they can be determined with good accuracy and classified for stability. Moreover, typically for these cases, any fixed point corresponding to isotropic solutions in the presence of anisotropic matter will be unstable. The assumption of a perfect fluid as source and the vacuum cases imply some dimensional reductions and even more simplifications. In particular, we find that the vacuum solutions of f(R)=R1+δ, with δ a constant, are governed by an effective bidimensional phase space which can be analytically constructed, leading to an exactly soluble dynamics. Finally, we demonstrate that several results already reported in the literature can be reobtained in a more direct and easy way by exploring our dynamical formulation.

  • Figure
  • Figure
  • Received 11 August 2018
  • Revised 25 January 2019

DOI:https://doi.org/10.1103/PhysRevD.99.064048

© 2019 American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Saikat Chakraborty1,*, Kazuharu Bamba2,†, and Alberto Saa3,‡

  • 1Department of Physics, Indian Institute of Technology, Kanpur 208016, India
  • 2Division of Human Support System, Faculty of Symbiotic Systems Science, Fukushima University, Fukushima 960-1296, Japan
  • 3Department of Applied Mathematics, University of Campinas, 13083-859 Campinas, São Paulo, Brazil

  • *snilch@iitk.ac.in
  • bamba@sss.fukushima-u.ac.jp
  • asaa@ime.unicamp.br

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 99, Iss. 6 — 15 March 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×