• Open Access

Laser-induced periodic surface structures: Arbitrary angles of incidence and polarization states

Hao Zhang, Jean-Philippe Colombier, and Stefan Witte
Phys. Rev. B 101, 245430 – Published 23 June 2020

Abstract

We demonstrate that the finite-difference time-domain (FDTD) method can be used to study the formation of laser-induced periodic surface structures (LIPSSs) under oblique incidence and arbitrary polarization states. The inhomogeneous energy absorption below a rough surface at oblique incident angle is studied by the FDTD method and compared to the analytical efficacy theory developed by Sipe et al. [Phys. Rev. B 27, 1141 (1983)]. The two approaches show excellent agreement. The surface topographies of both low-spatial-frequency LIPSSs (LSFLs) and high-spatial-frequency LIPSSs (HSFLs) at oblique incidence and various polarization states (linear, circular, radial, and azimuthal) are simulated by taking into account topography-driven interpulse feedback effects. For s- and mixed s- and p-polarized beams at large incident angles, the simulated LSFLs show orientations that are neither perpendicular nor parallel to the laser polarization. Their physical origin is explained by a nonzero angle between the in-plane wave vector of the incident light and the scattered light. By using circularly-polarized beams, the simulated surface topographies are further shown to be in excellent agreement with the triangular LSFLs and the fine-dot nanoscaled structures reported in the literature. In addition, the simulation of HSFLs suggests that their periods have almost no dependence on the incident angle nor the polarization angle, while their surface topographies resemble that of blazed gratings at large incident angles for p-polarized and mixed s- and p-polarized beams. The origin is explained by the appearance of asymmetry in the scattered near-field light. The extension to oblique incidence and arbitrary polarization states demonstrates that the FDTD approach on LIPSSs is a highly versatile and powerful technique which has the potential to be one of the foundations for a complete modeling and understanding of LIPSSs under various irradiation conditions.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 19 March 2020
  • Revised 29 May 2020
  • Accepted 15 June 2020

DOI:https://doi.org/10.1103/PhysRevB.101.245430

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied PhysicsAtomic, Molecular & OpticalGeneral Physics

Authors & Affiliations

Hao Zhang1,*, Jean-Philippe Colombier2, and Stefan Witte1,3,†

  • 1Advanced Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, Netherlands
  • 2University of Lyon, UJM-St-Etienne, CNRS, Institute of Optics Graduate School, Laboratoire Hubert Curien UMR 5516, F-42023 Saint-Etienne, France
  • 3Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, Netherlands

  • *H.Zhang@arcnl.nl
  • S.Witte@arcnl.nl

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 101, Iss. 24 — 15 June 2020

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×