The 2023 MDPI Annual Report has
been released!
 
14 pages, 17634 KiB  
Article
Design of Multi-Functional Bio-Safe Dental Resin Composites with Mineralization and Anti-Biofilm Properties
by Jiaojiao Yun, Michael F. Burrow, Jukka P. Matinlinna, Hao Ding, Sin Man (Rosalind) Chan, James K. H. Tsoi and Yan Wang
J. Funct. Biomater. 2024, 15(5), 120; https://doi.org/10.3390/jfb15050120 (registering DOI) - 30 Apr 2024
Abstract
This study aims to develop multi-functional bio-safe dental resin composites with capabilities for mineralization, high in vitro biocompatibility, and anti-biofilm properties. To address this issue, experimental resin composites consisting of UDMA/TEGDMA-based dental resins and low quantities (1.9, 3.8, and 7.7 vol%) of 45S5 [...] Read more.
This study aims to develop multi-functional bio-safe dental resin composites with capabilities for mineralization, high in vitro biocompatibility, and anti-biofilm properties. To address this issue, experimental resin composites consisting of UDMA/TEGDMA-based dental resins and low quantities (1.9, 3.8, and 7.7 vol%) of 45S5 bioactive glass (BAG) particles were developed. To evaluate cellular responses of resin composites, MC3T3-E1 cells were (1) exposed to the original composites extracts, (2) cultured directly on the freshly cured resin composites, or (3) cultured on preconditioned composites that have been soaked in deionized water (DI water), a cell culture medium (MEM), or a simple HEPES-containing artificial remineralization promotion (SHARP) solution for 14 days. Cell adhesion, cell viability, and cell differentiation were, respectively, assessed. In addition, the anti-biofilm properties of BAG-loaded resin composites regarding bacterial viability, biofilm thickness, and biofilm morphology, were assessed for the first time. In vitro biological results demonstrated that cell metabolic activity and ALP expression were significantly diminished when subjected to composite extracts or direct contact with the resin composites containing BAG fillers. However, after the preconditioning treatments in MEM and SHARP solutions, the biomimetic calcium phosphate minerals on 7.7 vol% BAG-loaded composites revealed unimpaired or even better cellular processes, including cell adhesion, cell proliferation, and early cell differentiation. Furthermore, resin composites with 1.9, 3.8, and 7.7 vol% BAG could not only reduce cell viability in S. mutans biofilm on the composite surface but also reduce the biofilm thickness and bacterial aggregations. This phenomenon was more evident in BAG7.7 due to the high ionic osmotic pressure and alkaline microenvironment caused by BAG dissolution. This study concludes that multi-functional bio-safe resin composites with mineralization and anti-biofilm properties can be achieved by adding low quantities of BAG into the resin system, which offers promising abilities to mineralize as well as prevent caries without sacrificing biological activity. Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations—Volume II)
Show Figures

Figure 1

11 pages, 837 KiB  
Article
Changes in the Carotenoids of Zamia dressleri Leaves during Development
by Enrique Murillo, Veronika Nagy, Dania Menchaca, József Deli and Attila Agócs
Plants 2024, 13(9), 1251; https://doi.org/10.3390/plants13091251 (registering DOI) - 30 Apr 2024
Abstract
It has been observed that the leaves of some Zamia species undergo a kind of “reverse ripening”; that is, they change from their original brown color to green during development. We assumed that this strange color change was due to the change in [...] Read more.
It has been observed that the leaves of some Zamia species undergo a kind of “reverse ripening”; that is, they change from their original brown color to green during development. We assumed that this strange color change was due to the change in carotenoid composition, so we followed the changes for several weeks. The detailed carotenoid composition and content at different stages of development of the leaves was determined with HPLC-DAD focusing on the changes in red and yellow carotenoids. The total and relative amounts of red and yellow carotenoids were determined simultaneously from one measurement from a saponified and/or unsaponified extract. At the beginning of development, the concentration of red carotenoids was higher than that of the yellow ones; it decreased drastically until 22 days and continued to decrease slowly until they completely disappeared. The concentration of yellow carotenoids decreased at the beginning as well, but after 22 days it started to increase. The amount of red carotenoids started to decrease when the leaflet stopped growing. Lutein is the main component in old leaflets, which is not a red carotenoid precursor. Red carotenoids can always be found in their esterified form in the leaves. These findings support the hypothesis that red and yellow carotenoid accumulation are independent and probably have different functions in the leaflet. The strange color change was explained based on the compartmentalization of red and yellow carotenoids and on the changing activity of the enzyme capsanthin–capsorubin synthase responsible for the synthesis of red carotenoids capsorubin and capsanthin. Full article
(This article belongs to the Section Phytochemistry)
19 pages, 3328 KiB  
Article
Dimension Prediction and Microstructure Study of Wire Arc Additive Manufactured 316L Stainless Steel Based on Artificial Neural Network and Finite Element Simulation
by Yanyan Di, Zhizhen Zheng, Shengyong Pang, Jianjun Li and Yang Zhong
Micromachines 2024, 15(5), 615; https://doi.org/10.3390/mi15050615 (registering DOI) - 30 Apr 2024
Abstract
The dimensional accuracy and microstructure affect the service performance of parts fabricated by wire arc additive manufacturing (WAAM). Regulating the geometry and microstructure of such parts presents a challenge. The coupling method of an artificial neural network and finite element (FE) is proposed [...] Read more.
The dimensional accuracy and microstructure affect the service performance of parts fabricated by wire arc additive manufacturing (WAAM). Regulating the geometry and microstructure of such parts presents a challenge. The coupling method of an artificial neural network and finite element (FE) is proposed in this research for this purpose. Back-propagating neural networks (BPNN) based on optimization algorithms were established to predict the bead width (BW) and height (BH) of the deposited layers. Then, the bead geometry was modeled based on the predicted dimension, and 3D FE heat transfer simulation was performed to investigate the evolution of temperature and microstructure. The results showed that the errors in BW and BH were less than 6%, and the beetle antenna search BPNN model had the highest prediction accuracy compared to the other models. The simulated melt pool error was less than 5% with the experimental results. The decrease in the ratio of the temperature gradient and solidification rate induced the transition of solidified grains from cellular crystals to columnar dendrites and then to equiaxed dendrites. Accelerating the cooling rate increased the primary dendrite arm spacing and δ-ferrite content. These results indicate that the coupling model provides a pathway for regulating the dimensions and microstructures of manufactured parts. Full article
21 pages, 24644 KiB  
Article
WaveSegNet: An Efficient Method for Scrap Steel Segmentation Utilizing Wavelet Transform and Multiscale Focusing
by Jiakui Zhong, Yunfeng Xu and Changda Liu
Mathematics 2024, 12(9), 1370; https://doi.org/10.3390/math12091370 (registering DOI) - 30 Apr 2024
Abstract
Scrap steel represents a sustainable and recyclable resource, instrumental in diminishing carbon footprints and facilitating the eco-friendly evolution of the steel sector. However, current scrap steel recycling faces a series of challenges, such as high labor intensity and occupational risks for inspectors, complex [...] Read more.
Scrap steel represents a sustainable and recyclable resource, instrumental in diminishing carbon footprints and facilitating the eco-friendly evolution of the steel sector. However, current scrap steel recycling faces a series of challenges, such as high labor intensity and occupational risks for inspectors, complex and diverse sources of scrap steel, varying types of materials, and difficulties in quantifying and standardizing manual visual inspection and rating. Specifically, we propose WaveSegNet, which is based on wavelet transform and a multiscale focusing structure for scrap steel segmentation. Firstly, we utilize wavelet transform to process images and extract features at different frequencies to capture details and structural information in the images. Secondly, we introduce a mechanism of multiscale focusing to further enhance the accuracy of segmentation by extracting and perceiving features at different scales. Through experiments conducted on the public Cityscapes dataset and scrap steel datasets, we have found that WaveSegNet consistently demonstrates superior performance, achieving the highest scores on the mIoU metric. Particularly notable is its performance on the real-world scrap steel dataset, where it outperforms other segmentation algorithms with an average increase of 3.98% in mIoU(SS), reaching 69.8%, and a significant boost of nearly 5.98% in mIoU(MS), achieving 74.8%. These results underscore WaveSegNet’s exceptional capabilities in processing scrap steel images. Additionally, on the publicly available Cityscapes dataset, WaveSegNet shows notable performance enhancements compared with the next best model, Segformer. Moreover, with its modest parameters and computational demands (34.1 M and 322 GFLOPs), WaveSegNet proves to be an ideal choice for resource-constrained environments, demonstrating high computational efficiency and broad applicability. These experimental results attest to the immense potential of WaveSegNet in intelligent scrap steel rating and provide a new solution for the scrap steel recycling industry. These experimental results attest to the immense potential of WaveSegNet in intelligent scrap steel rating and provide a new solution for the scrap steel recycling industry. Full article
(This article belongs to the Special Issue Artificial Intelligence and Data Science)
Show Figures

Figure 1

14 pages, 4022 KiB  
Article
Differential Colonization and Mucus Ultrastructure Visualization in Bovine Ileal and Rectal Organoid-Derived Monolayers Exposed to Enterohemorrhagic Escherichia coli
by Minae Kawasaki and Yoko M. Ambrosini
Int. J. Mol. Sci. 2024, 25(9), 4914; https://doi.org/10.3390/ijms25094914 (registering DOI) - 30 Apr 2024
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a critical public health concern due to its role in severe gastrointestinal illnesses in humans, including hemorrhagic colitis and the life-threatening hemolytic uremic syndrome. While highly pathogenic to humans, cattle, the main reservoir for EHEC, often remain asymptomatic [...] Read more.
Enterohemorrhagic Escherichia coli (EHEC) is a critical public health concern due to its role in severe gastrointestinal illnesses in humans, including hemorrhagic colitis and the life-threatening hemolytic uremic syndrome. While highly pathogenic to humans, cattle, the main reservoir for EHEC, often remain asymptomatic carriers, complicating efforts to control its spread. Our study introduces a novel method to investigate EHEC using organoid-derived monolayers from adult bovine ileum and rectum. These polarized epithelial monolayers were exposed to EHEC for four hours, allowing us to perform comparative analyses between the ileal and rectal tissues. Our findings mirrored in vivo observations, showing a higher colonization rate in the rectum compared with the ileum (44.0% vs. 16.5%, p < 0.05). Both tissues exhibited an inflammatory response with increased expression levels of TNF-a (p < 0.05) and a more pronounced increase of IL-8 in the rectum (p < 0.01). Additionally, the impact of EHEC on the mucus barrier varied across these gastrointestinal regions. Innovative visualization techniques helped us study the ultrastructure of mucus, revealing a net-like mucin glycoprotein organization. While further cellular differentiation could enhance model accuracy, our research significantly deepens understanding of EHEC pathogenesis in cattle and informs strategies for the preventative measures and therapeutic interventions. Full article
Show Figures

Figure 1

18 pages, 312 KiB  
Review
A Narrative Review of the Efficacy of Interventions for Emotional Dysregulation, and Underlying Bio–Psycho–Social Factors
by Thomas Easdale-Cheele, Valeria Parlatini, Samuele Cortese and Alessio Bellato
Brain Sci. 2024, 14(5), 453; https://doi.org/10.3390/brainsci14050453 (registering DOI) - 30 Apr 2024
Abstract
In this narrative, comprehensive, and updated review of the literature, we summarize evidence about the effectiveness of interventions aimed at reducing emotion dysregulation and improving emotion regulation in children, adolescents, and adults. After introducing emotion dysregulation and emotion regulation from a theoretical standpoint, [...] Read more.
In this narrative, comprehensive, and updated review of the literature, we summarize evidence about the effectiveness of interventions aimed at reducing emotion dysregulation and improving emotion regulation in children, adolescents, and adults. After introducing emotion dysregulation and emotion regulation from a theoretical standpoint, we discuss the factors commonly associated with emotion regulation, including neurobiological and neuropsychological mechanisms, and the role of childhood adverse experiences and psycho–social factors in the onset of emotion dysregulation. We then present evidence about pharmacological and non-pharmacological interventions aiming at improving emotion dysregulation and promoting emotion regulation across the lifespan. Although our review was not intended as a traditional systematic review, and the search was only restricted to systematic reviews and meta-analyses, we highlighted important implications and provided recommendations for clinical practice and future research in this field. Full article
18 pages, 1460 KiB  
Article
Endophytic Capacity of Entomopathogenic Fungi in a Pasture Grass and Their Potential to Control the Spittlebug Mahanarva spectabilis (Hemiptera: Cercopidae)
by Michelle O. Campagnani, Alexander Machado Auad, Rogério Martins Maurício, Ana Paula Madureira, Mauroni Alves Cangussú, Luiz Henrique Rosa, Marcelo Francisco A. Pereira, Mayco Muniz, Sebastião Rocha O. Souza, Natany Brunelli M. Silva, Ana Carolina Rios Silva and Wellington Garcia Campos
Agronomy 2024, 14(5), 943; https://doi.org/10.3390/agronomy14050943 (registering DOI) - 30 Apr 2024
Abstract
Pests in pastures have compromised the production of biomass for feeding livestock herds. Many strategies have been applied to sustainably solve this problem. One viable and innovative technique is the delivery of entomopathogenic fungi through endophytes. Therefore, this study aimed to (i) evaluate [...] Read more.
Pests in pastures have compromised the production of biomass for feeding livestock herds. Many strategies have been applied to sustainably solve this problem. One viable and innovative technique is the delivery of entomopathogenic fungi through endophytes. Therefore, this study aimed to (i) evaluate the endophytic capacity of two entomopathogenic fungi, Fusarium multiceps UFMGCB 11443 and Metarhizium anisopliae UFMGCB 11444, in Urochloa brizantha [(Hochst. ex A. Rich.) Stapf] (Poaceae) cultivar ‘Marundu’) via foliar inoculation or seed treatment, and (ii) measure their efficiency in controlling Mahanarva spectabilis Distant, 1909 (Hemiptera: Cercopidae) in U. brizantha. In the greenhouse, the fungi colonized the tissues of U. brizantha plants when inoculated via foliar spraying or seed treatment. The fungi F. multiceps and M. anisopliae caused 88% and 97.1% epizootic effects via seed inoculation, respectively, and 100% epizootic effects via foliar inoculation. In the field, the lowest fungal dose of 0.5 kg/ha had the same effect as a fourfold greater dose, with a >86% decrease in insect pest infestation observed. In summary, the fungi F. multiceps and M. anisopliae have endophytic effects and can effectively control M. spectabilis in U. brizantha pastures. Full article
(This article belongs to the Special Issue Biological Pest Control in Agroecosystems)
Show Figures

Figure 1

34 pages, 1699 KiB  
Article
On the Accurate Estimation of Information-Theoretic Quantities from Multi-Dimensional Sample Data
by Manuel Álvarez Chaves, Hoshin V. Gupta, Uwe Ehret and Anneli Guthke
Entropy 2024, 26(5), 387; https://doi.org/10.3390/e26050387 (registering DOI) - 30 Apr 2024
Abstract
Using information-theoretic quantities in practical applications with continuous data is often hindered by the fact that probability density functions need to be estimated in higher dimensions, which can become unreliable or even computationally unfeasible. To make these useful quantities more accessible, alternative approaches [...] Read more.
Using information-theoretic quantities in practical applications with continuous data is often hindered by the fact that probability density functions need to be estimated in higher dimensions, which can become unreliable or even computationally unfeasible. To make these useful quantities more accessible, alternative approaches such as binned frequencies using histograms and k-nearest neighbors (k-NN) have been proposed. However, a systematic comparison of the applicability of these methods has been lacking. We wish to fill this gap by comparing kernel-density-based estimation (KDE) with these two alternatives in carefully designed synthetic test cases. Specifically, we wish to estimate the information-theoretic quantities: entropy, Kullback–Leibler divergence, and mutual information, from sample data. As a reference, the results are compared to closed-form solutions or numerical integrals. We generate samples from distributions of various shapes in dimensions ranging from one to ten. We evaluate the estimators’ performance as a function of sample size, distribution characteristics, and chosen hyperparameters. We further compare the required computation time and specific implementation challenges. Notably, k-NN estimation tends to outperform other methods, considering algorithmic implementation, computational efficiency, and estimation accuracy, especially with sufficient data. This study provides valuable insights into the strengths and limitations of the different estimation methods for information-theoretic quantities. It also highlights the significance of considering the characteristics of the data, as well as the targeted information-theoretic quantity when selecting an appropriate estimation technique. These findings will assist scientists and practitioners in choosing the most suitable method, considering their specific application and available data. We have collected the compared estimation methods in a ready-to-use open-source Python 3 toolbox and, thereby, hope to promote the use of information-theoretic quantities by researchers and practitioners to evaluate the information in data and models in various disciplines. Full article
(This article belongs to the Special Issue Approximate Entropy and Its Application)
14 pages, 5170 KiB  
Article
Development of a New Vertical Dynamic Model of a Rail Vehicle for the Analysis of Ride Comfort
by Yusuf Çati, Mesut Düzgün and Frédéric Etienne Kracht
Appl. Sci. 2024, 14(9), 3848; https://doi.org/10.3390/app14093848 (registering DOI) - 30 Apr 2024
Abstract
The rail vehicle industry wants to produce vehicles with higher speeds, to maintain and increase its market share. However, when the speed of the vehicle increases, it may have an undesirable effect on ride comfort, in terms of ride dynamics. Recent developments towards [...] Read more.
The rail vehicle industry wants to produce vehicles with higher speeds, to maintain and increase its market share. However, when the speed of the vehicle increases, it may have an undesirable effect on ride comfort, in terms of ride dynamics. Recent developments towards lighter and faster vehicles make the problem of ride comfort at higher speeds increasingly important. Focusing on the behavior of flexible rather than rigid body behavior should not be neglected when designing long and light car bodies. There are several approaches to incorporate body flexibility in multibody simulations and they have some superiorities and weaknesses. In this study, an efficient and accurate vertical dynamic model for the ride comfort analysis is developed and implemented in a commercial object-oriented modeling (OOM) software Dymola (2015 FD01) which uses the open-source code Modelica. This model includes car body flexibility with the assembling of a rigid body approach. The developed model is compared to a three-dimensional vehicle model in the commercial Vampire software (Pro V5.50) at different velocities. For the vertical ride comfort analysis, the ISO 2631-1 standard was used for both the developed model and the three-dimensional model. The results are presented as acceleration history and awrms—weighted r.m.s (root mean square) of accelerations—as required by the standard. The developed model has shown its feasibility in terms of its efficiency and accuracy for the vertical ride comfort analysis. The accuracy of the model is evidenced by the fact that the car body vibration level at high speeds shows minor differences compared to the results of the Vampire, which is a validated commercial software in the area of rail vehicle dynamics. The approach involving the assembly of rigid bodies is applied for the first time for high-speed trains in dynamical modelling, with flexible car bodies for ride comfort analysis. Furthermore, it can be used for parametrical studies focusing on ride comfort, thereby offering a quite beneficial framework for addressing the challenges of ride comfort analysis in high-speed rail vehicles. Improvements for and analyses of other aspects are also possible, since the optimization and other useful libraries are readily available in Dymola/Modelica. Full article
(This article belongs to the Topic Vehicle Dynamics and Control)
Show Figures

Figure 1

23 pages, 6120 KiB  
Article
Analysis of Wind Field Response Characteristics of Tethered Balloon Systems
by Ce Pang, Zeqing He, Kaiyin Song and Shenghong Cao
Aerospace 2024, 11(5), 360; https://doi.org/10.3390/aerospace11050360 (registering DOI) - 30 Apr 2024
Abstract
Tethered balloon systems encounter various complex wind field environments during flight. To investigate the conditions under which the system can operate safely and smoothly, a longitudinal dynamic model for tethered balloon systems is established. The model incorporates a streamlined balloon shape with its [...] Read more.
Tethered balloon systems encounter various complex wind field environments during flight. To investigate the conditions under which the system can operate safely and smoothly, a longitudinal dynamic model for tethered balloon systems is established. The model incorporates a streamlined balloon shape with its aerodynamic center at the body’s center. Steady-state aerodynamic force coefficients are calculated through simulations and fitted to a function based on the angle of attack within a specified range. The complex cable model is simplified using the lumped mass method, considering the influence of branch cables on the main node position. Experimental results from windless oscillation tests on scaled tethered balloon systems are compared with numerical solutions obtained using the dynamic model under the same conditions, validating the feasibility of the model for simulating different wind field scenarios. Finally, the motion characteristics of tethered balloon systems in different wind fields are analyzed. The numerical simulation results show that in a horizontal step wind field, the cable tension and cable inclination angle increase with the wind speed, and the slower the wind field changes, the shorter the time required for system stabilization. Updrafts greatly increase the likelihood of balloon escape, while downdrafts greatly increase the likelihood of the system making contact with the ground. The findings of this study can provide a basis for selecting suitable wind field conditions and issuing risk warnings for tethered balloon systems. Full article
19 pages, 806 KiB  
Article
Digital Health Support: Current Status and Future Development for Enhancing Dialysis Patient Care and Empowering Patients
by Bernard Canaud, Andrew Davenport, Hélène Leray-Moragues, Marion Morena-Carrere, Jean Paul Cristol, Jeroen Kooman and Peter Kotanko
Toxins 2024, 16(5), 211; https://doi.org/10.3390/toxins16050211 (registering DOI) - 30 Apr 2024
Abstract
Chronic kidney disease poses a growing global health concern, as an increasing number of patients progress to end-stage kidney disease requiring kidney replacement therapy, presenting various challenges including shortage of care givers and cost-related issues. In this narrative essay, we explore innovative strategies [...] Read more.
Chronic kidney disease poses a growing global health concern, as an increasing number of patients progress to end-stage kidney disease requiring kidney replacement therapy, presenting various challenges including shortage of care givers and cost-related issues. In this narrative essay, we explore innovative strategies based on in-depth literature analysis that may help healthcare systems face these challenges, with a focus on digital health technologies (DHTs), to enhance removal and ensure better control of broader spectrum of uremic toxins, to optimize resources, improve care and outcomes, and empower patients. Therefore, alternative strategies, such as self-care dialysis, home-based dialysis with the support of teledialysis, need to be developed. Managing ESKD requires an improvement in patient management, emphasizing patient education, caregiver knowledge, and robust digital support systems. The solution involves leveraging DHTs to automate HD, implement automated algorithm-driven controlled HD, remotely monitor patients, provide health education, and enable caregivers with data-driven decision-making. These technologies, including artificial intelligence, aim to enhance care quality, reduce practice variations, and improve treatment outcomes whilst supporting personalized kidney replacement therapy. This narrative essay offers an update on currently available digital health technologies used in the management of HD patients and envisions future technologies that, through digital solutions, potentially empower patients and will more effectively support their HD treatments. Full article
(This article belongs to the Special Issue Kidney Replacement Therapy by Hemodialysis: 21st Century Challenges)
Show Figures

Figure 1

15 pages, 2221 KiB  
Article
Field Emission from Carbon Nanotubes on Titanium Nitride-Coated Planar and 3D-Printed Substrates
by Stefanie Haugg, Luis-Felipe Mochalski, Carina Hedrich, Isabel González Díaz-Palacio, Kristian Deneke, Robert Zierold and Robert H. Blick
Nanomaterials 2024, 14(9), 781; https://doi.org/10.3390/nano14090781 (registering DOI) - 30 Apr 2024
Abstract
Carbon nanotubes (CNTs) are well known for their outstanding field emission (FE) performance, facilitated by their unique combination of electrical, mechanical, and thermal properties. However, if the substrate of choice is a poor conductor, the electron supply towards the CNTs can be limited, [...] Read more.
Carbon nanotubes (CNTs) are well known for their outstanding field emission (FE) performance, facilitated by their unique combination of electrical, mechanical, and thermal properties. However, if the substrate of choice is a poor conductor, the electron supply towards the CNTs can be limited, restricting the FE current. Furthermore, ineffective heat dissipation can lead to emitter–substrate bond degradation, shortening the field emitters’ lifetime. Herein, temperature-stable titanium nitride (TiN) was deposited by plasma-enhanced atomic layer deposition (PEALD) on different substrate types prior to the CNT growth. A turn-on field reduction of up to 59% was found for the emitters that were generated on TiN-coated bulk substrates instead of on pristine ones. This observation was attributed exclusively to the TiN layer as no significant change in the emitter morphology could be identified. The fabrication route and, consequently, improved FE properties were transferred from bulk substrates to free-standing, electrically insulating nanomembranes. Moreover, 3D-printed, polymeric microstructures were overcoated by atomic layer deposition (ALD) employing its high conformality. The results of our approach by combining ALD with CNT growth could assist the future fabrication of highly efficient field emitters on 3D scaffold structures regardless of the substrate material. Full article
(This article belongs to the Special Issue The Research Related to Nanomaterial Cold Cathode II)
17 pages, 39075 KiB  
Article
Early-Stage ISC Fault Detection for Ship Lithium Batteries Based on Voltage Variance Analysis
by Yu Gu, Haishen Ni and Yuwei Li
Machines 2024, 12(5), 303; https://doi.org/10.3390/machines12050303 (registering DOI) - 30 Apr 2024
Abstract
With the progressive development of new energy technologies, high-power lithium batteries have been widely used in ship power systems due to their high-power density and low environmental pollution, and they have gradually become one of their main propulsion energy sources. However, the large-scale [...] Read more.
With the progressive development of new energy technologies, high-power lithium batteries have been widely used in ship power systems due to their high-power density and low environmental pollution, and they have gradually become one of their main propulsion energy sources. However, the large-scale deployment of lithium batteries has also brought a series of safety problems to ship operations, especially the battery internal short circuit (ISC). Battery ISC faults are very hidden and unpredictable at the initial stage and often fail to be detected in time, ultimately leading to overheating, fire or even an explosion of the ship’s power system. Based on this, this paper proposes a fast and accurate method for early-stage ISC fault location and detection of lithium batteries. Initially, voltage variations across the lithium battery packs are quantified using curvilinear Manhattan distances to pinpoint faulty battery units. Subsequently, the localized characteristics of voltage variance among adjacent batteries are leveraged to detect an early-stage ISC fault. Simulation results indicate that the proposed method can quickly and accurately locate the position of 5 Ω, 10 Ω and 15 Ω ISC faulty batteries within the battery pack, as well as detect the abnormal batteries in a timely manner with considerable sensitivity and reliability. Full article
(This article belongs to the Special Issue Data-Driven Fault Diagnosis for Machines and Systems)
31 pages, 7247 KiB  
Article
A Spatiotemporal Probabilistic Graphical Model Based on Adaptive Expectation-Maximization Attention for Individual Trajectory Reconstruction Considering Incomplete Observations
by Xuan Sun, Jianyuan Guo, Yong Qin, Xuanchuan Zheng, Shifeng Xiong, Jie He, Qi Sun and Limin Jia
Entropy 2024, 26(5), 388; https://doi.org/10.3390/e26050388 (registering DOI) - 30 Apr 2024
Abstract
Spatiotemporal information on individual trajectories in urban rail transit is important for operational strategy adjustment, personalized recommendation, and emergency command decision-making. However, due to the lack of journey observations, it is difficult to accurately infer unknown information from trajectories based only on AFC [...] Read more.
Spatiotemporal information on individual trajectories in urban rail transit is important for operational strategy adjustment, personalized recommendation, and emergency command decision-making. However, due to the lack of journey observations, it is difficult to accurately infer unknown information from trajectories based only on AFC and AVL data. To address the problem, this paper proposes a spatiotemporal probabilistic graphical model based on adaptive expectation maximization attention (STPGM-AEMA) to achieve the reconstruction of individual trajectories. The approach consists of three steps: first, the potential train alternative set and the egress time alternative set of individuals are obtained through data mining and combinatorial enumeration. Then, global and local potential variables are introduced to construct a spatiotemporal probabilistic graphical model, provide the inference process for unknown events, and state information about individual trajectories. Further, considering the effect of missing data, an attention mechanism-enhanced expectation-maximization algorithm is proposed to achieve maximum likelihood estimation of individual trajectories. Finally, typical datasets of origin-destination pairs and actual individual trajectory tracking data are used to validate the effectiveness of the proposed method. The results show that the STPGM-AEMA method is more than 95% accurate in recovering missing information in the observed data, which is at least 15% more accurate than the traditional methods (i.e., PTAM-MLE and MPTAM-EM). Full article
(This article belongs to the Section Signal and Data Analysis)
18 pages, 16136 KiB  
Article
Learning Event Representations for Zero-Shot Detection via Dual-Contrastive Prompting
by Jiaxu Li, Bin Ge, Hao Xu, Peixin Huang and Hongbin Huang
Mathematics 2024, 12(9), 1372; https://doi.org/10.3390/math12091372 (registering DOI) - 30 Apr 2024
Abstract
Zero-shot event detection aims to involve the automatic discovery and classification of new events within unstructured text. Current zero-shot event detection methods have not considered addressing the problem more effectively from the perspective of improving event representations. In this paper, we propose dual-contrastive [...] Read more.
Zero-shot event detection aims to involve the automatic discovery and classification of new events within unstructured text. Current zero-shot event detection methods have not considered addressing the problem more effectively from the perspective of improving event representations. In this paper, we propose dual-contrastive prompting (COPE) model for learning event representations to address zero-shot event detection, which leverages prompts to assist in generating event embeddings using a pretrained language model, and employs a contrastive fusion approach to capture complex interaction information between trigger representations and sentence embeddings to obtain enhanced event representations. Firstly, we introduce a sample generator to create ordered contrastive sample sequences with varying degrees of similarity for each event instance, aiding the model in better distinguishing different types of events. Secondly, we design two distinct prompts to obtain trigger representations and event sentence embeddings separately. Thirdly, we employ a contrastive fusion module, where trigger representations and event sentence embeddings interactively fuse in vector space to generate the final event representations. Experiments show that our model is more effective than the most advanced methods. Full article
25 pages, 2473 KiB  
Article
Experimental Study on Anisotropic Mechanical Characteristics of Shale under Triaxial Loading
by Qian Dong, Jia Kang, Jinshan Sun, Jingjie Li and Zhen Zhang
Appl. Sci. 2024, 14(9), 3849; https://doi.org/10.3390/app14093849 (registering DOI) - 30 Apr 2024
Abstract
Shale is composed of a rock matrix and bedding planes with a layered structure, resulting in significant anisotropy in its mechanical properties. In order to study the anisotropic mechanical properties of shale, the shale samples were prepared in different orientations with respect to [...] Read more.
Shale is composed of a rock matrix and bedding planes with a layered structure, resulting in significant anisotropy in its mechanical properties. In order to study the anisotropic mechanical properties of shale, the shale samples were prepared in different orientations with respect to the bedding planes, and the composition and microstructure of shale were first analyzed by X-ray diffractometer (XRD) and scanning electron microscope (SEM), and then the uniaxial and triaxial compression experiment on shale samples with five different bedding angles (the angle between the loading direction and the normal direction of the bedding planes, 0°, 30°, 45°, 60°, and 90°) were conducted under five confining pressures (0, 10, 20, 30, and 40 MPa), respectively; meanwhile, the acoustic emission (AE) test was carried out in the uniaxial test. The results indicate that the mechanical properties and parameters of shale have obvious anisotropy, and the AE characteristics of shale samples with different bedding angles are significantly different during uniaxial loading. Furthermore, the compressive strength and elastic modulus of the shale samples first decrease and then increase with the increase in the bedding angle under different confining pressures. Moreover, according to the anisotropic grade of compressive strength, the shale has moderate anisotropy. In addition, the failure mode of the shale samples is also anisotropic, and varies with the bedding angle and confining pressure. Full article
32 pages, 2080 KiB  
Review
Climate Change and Mycotoxins Trends in Serbia and Croatia: A 15-Year Review
by Jovana Kos, Bojana Radić, Tina Lešić, Mislav Anić, Pavle Jovanov, Bojana Šarić and Jelka Pleadin
Foods 2024, 13(9), 1391; https://doi.org/10.3390/foods13091391 (registering DOI) - 30 Apr 2024
Abstract
This review examines the 15-year presence of mycotoxins in food from Serbia and Croatia to provide a comprehensive overview of trends. Encompassing the timeframe from 2009 to 2023, this study integrates data from both countries and investigates climate change patterns. The results from [...] Read more.
This review examines the 15-year presence of mycotoxins in food from Serbia and Croatia to provide a comprehensive overview of trends. Encompassing the timeframe from 2009 to 2023, this study integrates data from both countries and investigates climate change patterns. The results from Serbia focus primarily on maize and milk and show a strong dependence of contamination on weather conditions. However, there is limited data on mycotoxins in cereals other than maize, as well as in other food categories. Conversely, Croatia has a broader spectrum of studies, with significant attention given to milk and maize, along with more research on other cereals, meat, and meat products compared to Serbia. Over the investigated 15-year period, both Serbia and Croatia have experienced notable shifts in climate, including fluctuations in temperature, precipitation, and humidity levels. These changes have significantly influenced agriculture, consequently affecting the occurrence of mycotoxins in various food products. The results summarized in this 15-year review indicate the urgent need for further research and action to address mycotoxin contamination in Serbian and Croatian food supply chains. This urgency is further emphasized by the changing climatic conditions and their potential to exacerbate public health and food safety risks associated with mycotoxins. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

25 pages, 1819 KiB  
Review
From the Gut to the Brain: Is Microbiota a New Paradigm in Parkinson’s Disease Treatment?
by Cristiana Vilela, Bruna Araújo, Carla Soares-Guedes, Rita Caridade-Silva, Joana Martins-Macedo, Catarina Teixeira, Eduardo D. Gomes, Cristina Prudêncio, Mónica Vieira and Fábio G. Teixeira
Cells 2024, 13(9), 770; https://doi.org/10.3390/cells13090770 (registering DOI) - 30 Apr 2024
Abstract
Parkinson’s disease (PD) is recognized as the second most prevalent primary chronic neurodegenerative disorder of the central nervous system. Clinically, PD is characterized as a movement disorder, exhibiting an incidence and mortality rate that is increasing faster than any other neurological condition. In [...] Read more.
Parkinson’s disease (PD) is recognized as the second most prevalent primary chronic neurodegenerative disorder of the central nervous system. Clinically, PD is characterized as a movement disorder, exhibiting an incidence and mortality rate that is increasing faster than any other neurological condition. In recent years, there has been a growing interest concerning the role of the gut microbiota in the etiology and pathophysiology of PD. The establishment of a brain–gut microbiota axis is now real, with evidence denoting a bidirectional communication between the brain and the gut microbiota through metabolic, immune, neuronal, and endocrine mechanisms and pathways. Among these, the vagus nerve represents the most direct form of communication between the brain and the gut. Given the potential interactions between bacteria and drugs, it has been observed that the therapies for PD can have an impact on the composition of the microbiota. Therefore, in the scope of the present review, we will discuss the current understanding of gut microbiota on PD and whether this may be a new paradigm for treating this devastating disease. Full article
Show Figures

Figure 1

21 pages, 4423 KiB  
Article
Spatiotemporal Evolution Characteristics of 2022 Pakistan Severe Flood Event Based on Multi-Source Satellite Gravity Observations
by Lilu Cui, Jiacheng Meng, Yu Li, Jiachun An, Zhengbo Zou, Linhao Zhong, Yiru Mao and Guiju Wu
Remote Sens. 2024, 16(9), 1601; https://doi.org/10.3390/rs16091601 (registering DOI) - 30 Apr 2024
Abstract
In the summer of 2022, Pakistan experienced a severe flood event that brought great destruction to the local people and ecosystem. However, there is no comprehensive study on the process, spread and causes of this flood. Therefore, we combined multiple satellite gravity data, [...] Read more.
In the summer of 2022, Pakistan experienced a severe flood event that brought great destruction to the local people and ecosystem. However, there is no comprehensive study on the process, spread and causes of this flood. Therefore, we combined multiple satellite gravity data, meteorological data, hydrological data, and satellite remote sensing data to conduct a thorough investigation and study of this flood. The results show that a 20-year time series of the terrestrial water storage change based multiple gravity data has the high accuracy and reliability, which is used for detecting the flood. The flood propagated through meteorological system (three months), agricultural system (six months) and terrestrial ecosystems (five months), respectively, and the two southern provinces (Balochistan and Sindh) are the most affected by the flood, whose flood severity is 6.955 and 9.557, respectively. The center of the severe flood is located at the border region between the above two province. The severe flood is attributed primarily to the global extreme climate events (La Niña and negative Indian Ocean Dipole events) that altered the transport path of water vapor in the Indian Ocean, causing large amounts of water vapor to converge over Pakistan, resulting in heavy precipitation, and secondarily to the melting of extensive glacier in the mountainous of northern Pakistan as a result of the high temperature in March-May 2022. The above results contribute to the understanding of the mechanism of the impact of extreme climate events on the regional climate, and provide some references for the study of severe floods. Full article
Show Figures

Figure 1

17 pages, 1871 KiB  
Article
Endophytic Fungi Residing within Cornus florida L. in Mid-Tennessee: Phylogenetic Diversity, Enzymatic Properties, and Potential Role in Plant Health
by Asha Maheshwari and Margaret T. Mmbaga
Plants 2024, 13(9), 1250; https://doi.org/10.3390/plants13091250 (registering DOI) - 30 Apr 2024
Abstract
Endophytic fungi that reside internally in healthy, asymptomatic plants often benefit their hosts by promoting plant growth and/or providing plant protection against abiotic and biotic stresses. However, only a small fraction of the estimated 1.5 million fungal endophytes have been identified. In this [...] Read more.
Endophytic fungi that reside internally in healthy, asymptomatic plants often benefit their hosts by promoting plant growth and/or providing plant protection against abiotic and biotic stresses. However, only a small fraction of the estimated 1.5 million fungal endophytes have been identified. In this study, a total of 369 isolates of fungal endophytes in 59 distinct taxa were isolated from stem samples of Cornus florida (flowering dogwood). All isolates belonged to species of phyla Ascomycota and Basidiomycota distributed across five orders and 11 genera. Isolates belonging to the same family clustered together in a phylogenetic tree generated from a cluster analysis using MEGA 7 software. Diversity indices of the fungi revealed a rich and diverse community that included several species associated with leaf spots, blight, cankers, and/or dieback diseases. Pathogenicity tests confirmed 16 fungal endophytes as C. florida pathogens, including some well-known destructive pathogens Botryosphaera dothidea, Colletotrichum acutatum, and C. gleosporoides. Isolates of the fungal endophytes possess the capacity to produce extracellular hydrolytic enzymes (cellulase, amylase, pectinase, laccase, chitinase, and protease) that are known to function in tissue penetration, plant colonization, nutrient acquisition, and disease suppression in both plant pathogens and endophytes These results support the interchangeable pathogenic–endophytic roles for some taxa. Full article
(This article belongs to the Special Issue Fungal Endophytes against Plant Pathogenic Fungi)
Show Figures

Graphical abstract

20 pages, 4042 KiB  
Article
Assessing the Theoretical, Minimal Intervention Potential of Floating Solar in Greece: A Policy-Oriented Planning Exercise on Lentic Water Systems of the Greek Mainland
by Despoina Athanasiou and Dimitrios Zafirakis
Energies 2024, 17(9), 2144; https://doi.org/10.3390/en17092144 (registering DOI) - 30 Apr 2024
Abstract
According to the recent revision of the Greek National Energy and Climate Plan, the country sets out to accomplish an ambitious target concerning the integration of renewables in the local electricity mix during the ongoing decade, at the levels of 80% by 2030. [...] Read more.
According to the recent revision of the Greek National Energy and Climate Plan, the country sets out to accomplish an ambitious target concerning the integration of renewables in the local electricity mix during the ongoing decade, at the levels of 80% by 2030. This implies the need to more than double the existing wind and PV capacity at the national level, which in turn introduces numerous challenges. Amongst them, spatial planning for new RES installations seems to be the most demanding, with the adoption of novel technological solutions in the field of RES potentially holding a key role. New technologies, like offshore wind and floating solar, are gradually gaining maturity and may offer such an alternative, challenged at the same time however by the need to entail minimum disruption for local ecosystems. To that end, we currently assess the theoretical potential of floating PVs for lentic water systems of the Greek mainland. We do so by looking into 53 different lentic water systems across the Greek territory that meet the constraint of 1 km2 minimum surface area, and we proceed with the estimation of the relevant floating PV capacity per system under the application of a minimal intervention approach, assuming PV coverage of 1% over the total lentic water system area. In this context, our findings indicate a maximum, aggregate theoretical capacity that could exceed 2 GWp at the national level, with the respective annual energy yield reaching approximately 4 TWh or, equivalently, >6% of the country’s anticipated annual electricity consumption in 2030. Finally, our results extend further, offering a regional level analysis and a set of policy directions and considerations on the development of floating solar in Greece, while also designating the energy merits of floating PVs against similar, land-based installations. Full article
(This article belongs to the Special Issue Floating PV Systems On and Offshore)
22 pages, 2669 KiB  
Article
Activation of the Anaphase Promoting Complex Restores Impaired Mitotic Progression and Chemosensitivity in Multiple Drug-Resistant Human Breast Cancer
by Mathew Lubachowski, Cordell VanGenderen, Sarah Valentine, Zach Belak, Gerald Floyd Davies, Terra Gayle Arnason and Troy Anthony Alan Harkness
Cancers 2024, 16(9), 1755; https://doi.org/10.3390/cancers16091755 (registering DOI) - 30 Apr 2024
Abstract
The development of multiple-drug-resistant (MDR) cancer all too often signals the need for alternative toxic therapy or palliative care. Our recent in vivo and in vitro studies using canine MDR lymphoma cancer cells demonstrate that the Anaphase Promoting Complex (APC) is impaired in [...] Read more.
The development of multiple-drug-resistant (MDR) cancer all too often signals the need for alternative toxic therapy or palliative care. Our recent in vivo and in vitro studies using canine MDR lymphoma cancer cells demonstrate that the Anaphase Promoting Complex (APC) is impaired in MDR cells compared to normal canine control and drug-sensitive cancer cells. Here, we sought to establish whether this phenomena is a generalizable mechanism independent of species, malignancy type, or chemotherapy regime. To test the association of blunted APC activity with MDR cancer behavior, we used matched parental and MDR MCF7 human breast cancer cells, and a patient-derived xenograft (PDX) model of human triple-negative breast cancer. We show that APC activating mechanisms, such as APC subunit 1 (APC1) phosphorylation and CDC27/CDC20 protein associations, are reduced in MCF7 MDR cells when compared to chemo-sensitive matched cell lines. Consistent with impaired APC function in MDR cells, APC substrate proteins failed to be effectively degraded. Similar to our previous observations in canine MDR lymphoma cells, chemical activation of the APC using Mad2 Inhibitor-1 (M2I-1) in MCF7 MDR cells enhanced APC substrate degradation and resensitized MDR cells in vitro to the cytotoxic effects of the alkylating chemotherapeutic agent, doxorubicin (DOX). Using cell cycle arrest/release experiments, we show that mitosis is delayed in MDR cells with elevated substrate levels. When pretreated with M2I-1, MDR cells progress through mitosis at a faster rate that coincides with reduced levels of APC substrates. In our PDX model, mice growing a clinically MDR human triple-negative breast cancer tumor show significantly reduced tumor growth when treated with M2I-1, with evidence of increased DNA damage and apoptosis. Thus, our results strongly support the hypothesis that APC impairment is a driver of aggressive tumor development and that targeting the APC for activation has the potential for meaningful clinical benefits in treating recurrent cases of MDR malignancy. Full article
(This article belongs to the Special Issue Molecular Insights into Drug Resistance in Cancer)
Show Figures

Figure 1

26 pages, 2674 KiB  
Article
Estimating the Duration of Construction Works Using Fuzzy Modeling to Assess the Impact of Risk Factors
by Irene A. Ladnykh and Nabi Ibadov
Appl. Sci. 2024, 14(9), 3847; https://doi.org/10.3390/app14093847 (registering DOI) - 30 Apr 2024
Abstract
One of the most pressing issues in the implementation of construction projects is the extension of planned deadlines, significantly impacting project costs. This situation often arises due to inaccurate estimation of construction durations, which rely on normative values without accounting for factors hindering [...] Read more.
One of the most pressing issues in the implementation of construction projects is the extension of planned deadlines, significantly impacting project costs. This situation often arises due to inaccurate estimation of construction durations, which rely on normative values without accounting for factors hindering construction progress. Consequently, this article aims to develop an innovative approach for assessing construction durations, considering specific risk factors and their influence on construction activities. Given the difficulty of determining risk factors and their effects during the design phase using classical probability theory, characterized by unknown probability distributions, it is highlighted that this scenario represents planning and implementation under conditions of non-statistical uncertainty. Therefore, the article proposes an approach utilizing elements of fuzzy set theory, particularly fuzzy rules and linguistic variables, to determine delays in individual construction tasks. The proposed approach involves estimating extensions of construction timelines based on a specified probability level of occurrence for risk events and their impact. Additionally, the article provides a theoretical description of the proposed approach and practical calculation examples, demonstrating that the authors’ approach significantly enhances the accuracy of construction timeline forecasts, providing more reliable data for project planning and management. Full article
(This article belongs to the Special Issue Application of Fuzzy Sets in Civil Engineering)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop