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Abstract

We computed high-resolution (1◦ latitude × 1◦ longitude) seasonal and annual nitrous
oxide (N2O) concentration fields for the Arabian Sea surface layer using a database
containing more than 2400 values measured between December 1977 and July 1997.
N2O concentrations are highest during the southwest (SW) monsoon along the south-5

ern Indian continental shelf. Annual emissions range from 0.33 to 0.70 Tg N2O and
are dominated by fluxes from coastal regions during the SW and northeast monsoons.
However, the tendency to focus on measurements in locally restricted features in com-
bination with insufficient seasonal data coverage leads to considerable uncertainties of
the concentration fields and thus in the flux estimates, especially in the coastal zones10

of the northern and eastern Arabian Sea.

1. Introduction

Nitrous oxide (N2O) is an atmospheric trace gas that influences, directly and indirectly,
the Earth’s climate (Prather et al., 2001). Source estimates indicate that the world’s
oceans play a major role in the global budget of atmospheric N2O (Seitzinger et al.,15

2000). Upwelling regions, such as the eastern tropical Pacific and the Arabian Sea,
are sites of high N2O production via denitrification and/or nitrification processes that
occur at the boundaries of the oxygen depleted water masses (Codispoti et al., 1992).
Following the studies of Law and Owens (1990) and Naqvi and Noronha (1991), it
has been speculated that the Arabian Sea, especially its upwelling-dominated north-20

western part, represents a hot spot for N2O emissions and makes a substantial con-
tribution to the global budget of atmospheric N2O. However, the situation is apparently
somewhat more complicated, because recent data show seasonal N2O emissions from
the continental shelf area of India also to be important (Naqvi et al., 2000). Previous
N2O flux estimates are compromised by significant temporal and spatial biases. More-25

over, we recognize that in efforts to model global oceanic N2O emissions, the Arabian

168

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/1/167/acpd-1-167_p.pdf
http://www.atmos-chem-phys.org/acpd/1/167/comments.php
http://www.copernicus.org/EGS/EGS.html


ACPD
1, 167–192, 2001

Nitrous oxide
emissions

H. W. Bange et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Print Version

Interactive Discussion

c© EGS 2001

Sea appears to be under-represented mainly owing to the relatively low spatial resolu-
tion of the applied models and/or missing data from this region (Nevison et al., 1995;
Seitzinger et al., 2000; Suntharalingam and Sarmiento, 2000). Here we present a com-
prehensive compilation of N2O measurements from the Arabian Sea surface layer from
1977 to 1997. These data were used to calculate mean seasonal and annual climato-5

logical N2O fields with a 1◦ latitude × 1◦ longitude resolution. On the basis of the N2O
surface concentration fields, N2O emissions from the Arabian Sea were reassessed.

2. Data sources

For our study we compiled N2O measurements from 0–10 m water depth within the
study area (44◦−80◦ E, 0◦−27◦ N) excluding the Persian Gulf and the Red Sea (Fig. 1).10

The majority of the data were collected during individual national contributions to the
international Joint Global Ocean Flux Study (JGOFS) – Arabian Sea Process Study
between 1994 and 1997. Pre-JGOFS data were from cruises in 1977/1978, 1986,
and 1988. An overview of the data sources is given in Table 1. (Unfortunately, data
from the 1992 Netherlands Indian Ocean Program were unavailable for this reassess-15

ment.) N2O concentrations are typically reported in nmol L−1, however, the data listed
in Weiss et al. (1992) are in dry mole fractions. We recalculated the Weiss et al. (1992)
N2O concentrations with the reported water temperature, a mean seasonal salinity of
35.75, as calculated from climatological salinity data (see below), and an atmospheric
pressure of 1 atm (Weiss and Price, 1980). We are aware that this procedure intro-20

duces an additional error; however, the dependence of the N2O solubility on salinity
and pressure is small and the resulting uncertainty of about ± 1% is acceptable for our
purposes.

Weekly averaged wind speeds for the period July 1987 to December 1995 were de-
rived from satellite-based Special Sensor Microwave / Imager measurements by using25

an algorithm developed by Schlüssel (1995). Weekly composites of 18 km × 18 km
gridded, day and night multichannel sea surface temperatures (SSTs) satellite data
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for the period 1986 to 1995 were provided by the Physical Oceanography Distributed
Active Archive Center of the Jet Propulsion Laboratory, California Institute of Tech-
nology, Pasadena, California (http://podaac.jpl.nasa.gov:2031/DATASET_
DOCS/avhrr_wkly_mcsst.html ). Monthly climatological salinities with a resolu-
tion of 1◦× 1◦ were obtained from the World Ocean Atlas 1998 (http://www.nodc.5

noaa.gov/OC5/data_woa.html ).

3. N2O fields

For the calculation of the N2O fields we applied a modified procedure originally de-
scribed by Conkright et al. (1994) and further developed by Kettle et al. (1999). The
original data sets were combined to form a database with 2463 values. The database10

was then divided into 12 monthly databases. A statistical checking procedure was im-
plemented, wherein the monthly database values were pooled into 5◦× 5◦ squares.
For each 5◦× 5◦ square a mean and standard deviation (sd) were calculated and in-
dividual data were compared with the mean. Values falling outside 3 times the sd of
the mean were omitted and the procedure was repeated until no further values were15

eliminated. In squares with 3 values or fewer, the checking procedure was omitted and
the remaining values accepted. This procedure removed 49 data points. The modi-
fied monthly databases were then subdivided into 1◦× 1◦ squares. Mean N2O values
(so-called N2O pixels) were calculated from the data in each square. If there was only
one value within the square, it was accepted as a pixel. Monthly N2O pixel data sets20

were then combined into four seasonal sets: northeast (NE) monsoon (December to
February, DJF), intermonsoon (March to May, MAM), southwest (SW) monsoon (June
to August, JJA), and intermonsoon (September to November, SON) (Figs. 2a–d). Fi-
nally, the four seasonal sets were combined to form an annual N2O pixel set. For
the annual and for each of the four seasonal and pixel sets, we calculated means for25

Arabian Sea biogeographic provinces, i.e. the Northwestern Arabian Upwelling, In-
dian Monsoon Gyres, and Western India Coastal provinces (INDW) (Longhurst, 1998).
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The biogeographic means were used to create a 1◦× 1◦ first-guess field which was
smoothed with a 9-point 2-dimensional operator (Shuman, 1957). A 1◦× 1◦ correction
field was computed for each of the seasonal and annual N2O pixel data by applying the
distance-weighted interpolation scheme of Conkright et al. (1994). In order to preclude
any smoothing of small-scale features, we reduced the influence radius from 555 km5

to 222 km. The correction field was then added to the first-guess field and smoothed
(Shuman, 1957), yielding the final 1◦× 1◦ annual and seasonal N2O fields. The final
seasonal and annual N2O concentration fields are available from the German JGOFS
data management (http://www.ifm.uni-kiel.de/jgofs/dm ).

4. Air-sea exchange10

The air-sea exchange flux density (F ) was parameterized as

F = kw(u)(Cw − Ca),

where kw is the gas transfer coefficient as a function of wind speed (u), Cw is the N2O
seawater concentration, and Ca is the equilibrium N2O concentration in seawater. Ca

was calculated using15

Cw + β(T, S)x′P,

where x′ is the atmospheric N2O dry mole fraction, P is the atmospheric pressure,
and β is the Bunsen solubility, which is a function of the water temperature (T ) and
salinity (S) (Weiss and Price, 1980). To calculate kw, we used the tri-linear kw − u
relationship of Liss and Merlivat (1986) (LM86), the quadratic kw − u relationship for20

climatological wind data of Wanninkhof (1992) (W92), and the combined linear and
quadratic kw − u relationship from Nightingale et al. (2000) (N00). kw was adjusted by
multiplying with (Sc/600)−n (n = 2/3 for wind speeds <3.6 m s−1 and n = 1/2 for wind
speeds >3.6 m s−1) for LM86, (Sc/660)−0.5 for W92, and (Sc/660)−0.5 for N00, where
Sc is the Schmidt number for N2O. Sc was calculated using empirical equations for the25
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kinematic viscosity of seawater (Siedler and Peters, 1986) and the diffusion coefficient
of N2O in water. The N2O diffusion coefficients (DN2O in m2 s−1) were calculated with
Eq. (1) derived from the data given in Broecker and Peng (1974) and, alternatively, with
the new Eq. (2) derived from a compilation of actual measurements (Rhee, 2000):

log10 DN2O = −1008.28/RT − 5.245 (1)5

DN2O = 3.16× 10−6 exp(−18370/RT ), (2)

where T is the water temperature in K and R is the universal gas constant.
Cw was taken from the 1◦× 1◦ seasonal N2O fields (DJF, MAM, JJA, SON). For the

calculation of β, Sc, and kw, seasonal 1◦× 1◦ fields of wind speed, SST, and salinity
were computed from the data sources given above. Atmospheric pressure was set to10

1 atm. A mean x′ of 307 ppb for the period July 1978–July 1997 was calculated from
the monthly mean values observed at the Cape Grim (Tasmania) and Adrigole/Mace
Head (Ireland) monitoring stations of the ALE/GAGE/AGAGE program (updated ver-
sion July 2000). The data are available from the anonymous ftp site cdiac.esd.ornl.edu
(subdirectory /pub/ale gage Agage/Agage/monthly) at the Carbon Dioxide Information15

Analysis Center in Oak Ridge, Tennessee. N2O fluxes were calculated by multiplying
the area of a 1◦× 1◦ square with its flux density calculated as described above. The
sum of the N2O fluxes of the 1◦× 1◦ squares yields the total N2O emissions from the
Arabian Sea (surface area: 6.8 × 1012 m2).

5. Results and discussion20

Derived seasonal N2O concentration fields are shown in Fig. 3. Elevated N2O con-
centrations occur in coastal areas of the Arabian Sea during JJA (Fig. 3c). During
DJF, N2O is higher in the eastern than in the western Arabian Sea, whereas during
MAM and SON these N2O distributions are rather similar (Figs. 3b and 3c). However,
the SON database is comparatively small, lending a note of caution to such a con-25

clusion (Fig. 2d). The seasonal variability in N2O concentrations is clearly dominated
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by coastal upwelling in the Arabian Sea. During the SW monsoon, N2O-rich subsur-
face waters are brought to the surface layer (see e.g., Bange et al., 2000; Patra et al.,
1999). Interestingly, maximum N2O concentrations are found on the eastern Indian
continental shelf, consistent with the observations by Patra et al. (1999). However, the
calculated N2O values in the eastern Arabian Sea (>70◦ E) during JJA and SON, 5.85

to 36.3 nmol L−1 (Figs. 3c and 3d), are considerably lower than the 5.3–436 nmol L−1

range recently reported by Naqvi et al. (2000). It is possible that the enormous N2O
accumulation observed along the Indian coast during the late summer and autumn is
in part due to an (anthropogenic?) intensification of the natural coastal hypoxic system
as a shift to anoxic conditions in the subsurface layers appears to have occurred in10

recent years (Naqvi et al., 2000). But if the N2O concentrations were high even before
this intensification, then our analysis would underestimate the N2O concentrations and
the associated fluxes from this region, especially during SON (see below).

Annual N2O emissions computed as the sum of the seasonal N2O emissions range
from 0.37 to 0.78 Tg N2O yr−1, depending on which air-sea transfer parameterization15

is used (Table 2). The use of the N2O diffusion coefficient of Rhee (2000) yielded about
10% lower N2O emissions (Table 3). Thus, we conclude that previous estimates using
the N2O diffusion coefficient of Broecker and Peng (1974) may be overestimated.

N2O emissions during the SW monsoon (JJA) dominate the annual emissions, ac-
counting for about 64–70% of the total. The second largest contribution occurs during20

the NE monsoon (DJF) (21–26%), whereas emissions from the intermonsoon period
MAM seems to be of minor importance (2–3%). Our revised estimate for the annual
N2O flux from the Arabian Sea is much more tightly constrained than the previous con-
sensus of 0.16–1.5 Tg N2O yr−1 derived using averaged in-situ data from a smaller
number of studies (Table 4) (Bange et al., 1996a; Bange et al., 2000; Lal and Patra,25

1998; Law and Owens, 1990; Naqvi and Noronha, 1991; Upstill-Goddard et al., 1999).
The data listed in Table 4 depict the “historical” development of published N2O flux es-
timates for the Arabian Sea and show a considerable divergence. However, the fluxes
listed are difficult to compare since they were extrapolated to different Arabian Sea sur-
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face areas and partly biased by the use of non-seasonal data sets and limited spatial
data coverage.

6. Conclusions

Our calculated seasonal N2O concentration fields and associated air-sea fluxes for the
Arabian Sea yield an annual N2O flux of 0.33–0.70 Tg N2O. This flux represents ap-5

proximately 2–35% of the currently estimated global oceanic N2O source of 2–17 Tg
N2O yr−1 (Bange et al., 1996b; Nevison et al., 1995; Suntharalingam and Sarmiento,
2000). The Arabian Sea is the most intensely studied region for N2O emissions in the
world ocean. Given its disproportionately large contribution to this total and the lack
of adequate coverage in other potentially important oceanographic regimes, the po-10

tential marine contribution to atmospheric N2O could be somewhat higher than these
estimates suggest. Future N2O flux estimates could be improved by using N2O con-
centration data from time series measurements at selected staions in the key regions
of the Arabian Sea such as the coastal upwelling areas and the central Arabian Sea.

Appendix A: Error estimate15

In order to evaluate the fit of the computed final N2O concentrations to the observa-
tions, we compared mean annual 1◦× 1◦ data with the smoothed first-guess field and
the final field along selected latitudes (Fig. 4). Figure 5 shows the relative error of the
predicted seasonal final fields (the so-called interpolation error), estimated as the dif-
ference between the final value in each 1◦× 1◦ square and the 1◦× 1◦ pixel data (see20

Fig. 2). There is a good agreement between predicted values and the observations in
the central Arabian Sea during MAM (Fig. 5b). For the monsoon seasons DJF and JJA
the relative errors of the predicted values are more variable, indicating a considerable
underestimation along the coasts of Oman and southwest India, and an overestimation
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(up to 74%) along the continental shelf of west India (Fig. 5c). The tendency to focus
on measurements in locally restricted features such as coastal upwelling in connection
with insufficient seasonal data coverage leads to a bias in the first-guess field. For
example, the mean for the INDW province, which covers the eastern coastal Arabian
Sea, is strongly influenced by high N2O concentrations observed in the southern Indian5

continental shelf. In contrast, data coverage for the northern continental shelf is poor,
and consequently the first-guess field determines the final N2O concentration, leading
to high uncertainties in this area as indicated by Figs. 5a–5d.

A further uncertainty is introduced by the fact that the N2O surface concentrations
are depending on SST, salinity, atmospheric pressure and the atmospheric N2O mixing10

ratio which are, at least partly, subject of long term trends due to global change (Barnett
et al., 2001; Levitus et al., 2000). For example, the mean tropospheric N2O dry mole
fractions (see data from the ALE/GAGE/AGAGE program available from the anony-
mous ftp site cdiac.esd.ornl.edu, subdirectory is given above) increased from about
300 ppb in the late 1970s to about 315 ppb in 1999 suggesting a trend of increasing15

N2O surface concentrations. However, a quantification of such trends in sea surface
N2O concentrations is not possible due to the lack of time series measurements in the
Arabian Sea. The seasonal northward shift of the Intertropical Convergence Zone in-
troduces air masses of southern hemispheric origin with lower N2O mole fractions to
the Arabian Sea region during the SW monsoon. However, since the mean interhemi-20

spheric gradient of N2O is only about 0.8 ppb (Prather et al., 2001) we did not account
for this effect.

Appendix B: Error propagation

A rough estimate of the mean error of the flux density (F ), introduced by the uncertain-
ties of the observables (i.e. T, S, u, P , and x′), was calculated according to the following25
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equations:

∆F =

√(
∂F

∂Cw
∆Cw

)2

+
(

∂F

∂Ca
∆Ca

)2

+
(

∂F

∂kw
∆kw

)2

+
(

∂F

∂Sc
∆Sc

)2

∆Ca =

√(
∂Ca

∂x′
∆x′

)2

+
(

∂Ca

∂β
∆β

)2

+
(

∂Ca

∂P
∆P

)2

∆β =

√(
∂β

∂T
∆T

)2

+
(

∂β

∂S
∆S

)2

∆kw =
∂kw

∂u
∆u5

∆Sc =

√(
∂Sc

∂DN2O
∆DN2O

)2

+
(

∂Sc

∂ν
∆ν

)2

where ν stands for the kinematic viscosity of seawater and the operator ∂/∂ depicts
the partial differential. For a strict treatment of the error propagation, the standard de-
viation of each parameter should be known. Since this was not the case, we replaced
the standard deviation partly with best estimates of the mean error (depicted by the10

∆ symbol, data listed in Table 5). For ∆Cw we used the mean relative error (i.e. the
interpolation error) calculated from the seasonal data shown in Fig. 5 (see also the
Appendix A: Error estimate). We calculated the relative error ∆F/F for each 1◦× 1◦

square of the four seasonal N2O fields. Table 6 gives an overview of the resulting mean
relative errors of the seasonal flux densities. Not surprisingly, the lowest mean relative15

error of Cw is associated with highest relative error of resulting flux densities. During
MAM the dissolved N2O concentrations are low and resulting in only small concentra-
tion differences (Cw −Ca) across the ocean-atmosphere interface which in turn lead to
high mean relative errors of the flux densities. During the monsoon season JJA, N2O
concentrations in the coastal upwelling zones are considerable higher causing a higher20

mean relative error of Cw and comparable low mean relative errors of the resulting flux
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density. The mean relative errors for the seasonal flux densities yield the overall mean
relative error of the annual N2O emissions from the Arabian Sea of at least 65%. Sys-
tematic errors caused by uncertainties in parameterizations such as N2O diffusion in
seawater (determination of the N2O diffusion have not been made in seawater-like sys-
tems (see literature compilation in Rhee, 2000)) and air-sea exchange approaches are5

not accounted for in this estimate (see Results and discussion). Moreover, it is impor-
tant to keep in mind that the calculation of any climatological data fields are biased by
the chosen smoothing and averaging routines (see e.g. Sterl, 2001).

A detailed analysis of errors introduced by different filling routines, averaging pro-
cedures etc. is beyond the scope of this study. Generally, gas exchange estimates10

suffer from the fact that a direct (i.e. at sea) determination of the processes responsi-
ble for the gas exchange across the ocean-atmosphere interface is still a technological
challenge (Frost and Upstill-Goddard, 1999; Jähne and Haußecker, 1998).
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Table 1. Overview of the N2O Source Data

Arabian Sea Region Cruise Dates Method N References

West, Central Dec 1977–Jan 1978 Con 668 Weiss et al. (1992)a

Northwest, Central Sep 1986 Dis 19 Law and Owens (1990)

East, Central Dec 1988 Dis 15 Naqvi and Noronha (1991)

East, Central Apr–May 1994, Dis 125 Lal and Patra (1998)b

Feb–Mar, Jul–Aug 1995,

Aug 1996, Feb 1997

Northwest, Central Sep, Nov–Dec 1994 Dis 47 Upstill-Goddard et al. (1999)

Northwest, Central May, Jul–Aug 1995, Con 1569 Bange et al. (1996a)c

Mar, May–Jul 1997 Bange et al. (2000)c

East Jul 1995 Dis 20 Naqvi et al. (1998)

Con stands for continuous measurements.
Dis stands for measurements of discrete samples. N stands for number of data points.
a Data are available from the anonymous ftp site cdiac.esd.ornl.edu (subdirectory /pub/ndp044)
at the Carbon Dioxide Information Analysis Center in Oak Ridge, Tennessee.
b Data are included in the JGOFS-India data compilation on CD-ROM available from the Indian
National Oceanographic Data Centre, Goa, India (ocean@csnio.ren.nic.in).
c Data are available from the German JGOFS data management
(http://www.ifm.uni-kiel.de/jgofs/dm ).
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Table 2. N2O fluxes from the Arabian Sea calculated with the N2O diffusion coefficient of
Broecker and Peng (1974)

N2O Fields Flux,a Percentage,a

Tg N2O %

DJF 0.08 / 0.13 / 0.19 22 / 25 / 24

MAM 0.01 / 0.01 / 0.02 3 / 2 / 3

JJA 0.25 / 0.33 / 0.51 68 / 65 / 65

SON 0.03 / 0.04 / 0.06 8 / 8 / 8

Sum 0.37 / 0.51 / 0.78

a First value calculated according to LM86; second value calculated according to N00, and third
value calculated according to W92.
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Table 3. N2O Fluxes from the Arabian Sea calculated with the N2O diffusion coefficient of Rhee
(2000)

N2O Fields Flux,a Percentage,a

Tg N2O %

DJF 0.07 / 0.12 / 0.17 21 / 26 / 24

MAM 0.01 / 0.01 / 0.02 3 / 2 / 3

JJA 0.23 / 0.30 / 0.45 70 / 64 / 64

SON 0.02 / 0.04 / 0.06 6 / 9 / 9

Sum 0.33 / 0.47 / 0.70

a First value calculated according to LM86; second value calculated according to N00, and third
value calculated according to W92.
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Table 4. Summary of various N2O flux estimates for the Arabian Sea

Source region Area, Flux, References
106 km2 Tg N2O yr−1

Central, west (>15◦ N) 1.6 0.22–0.39 Law and Owens (1990)

Central, east 6.2 0.44 Naqvi and Noronha (1991)

Central, west 6.2 0.8–1.5 Bange et al. (1996a)

Central, east 6.2 0.56–1.00 Lal and Patra (1998)

Central, west 8.0 (0.41–0.75)a Upstill-Goddard et al. (1999)

Central, west (> 6◦ N) 4.9 0.16–0.31 Bange et al. (2000)

>15◦ N 1.6 0.10–0.21 This studyb

> 6◦ N 4.4 0.28–0.60

> Equator 6.8 0.37c–0.78c

a Semi-annual flux.
b Data calculated with the diffusion coefficient of Broecker and Peng (1974). First value calcu-
lated according to LM86; second value calculated according to W92.
c Taken from Table 2.
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Table 5. Errors used for the error propagation

Observable quantity Mean error References, remarks

Water temperature, T ± 0.5 K McClain et al. (1985)

Salinity, S ± 0.1 Estimate

N2O dry mole fraction, x′ ± 2% Estimate

Atmospheric pressure, P ± 5% Estimate

Kinematic viscosity, ν ± 1% Estimate

Diffusion of N2O, D ± 10% Estimate

Wind speed, u ± 1.4 m s−1 Schlüssel (1995)
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Table 6. Overview of the mean relative errors of N2O surface concentrations and N2O flux
densities

Mean ∆Cw/Cw, Mean ∆F/F ,
± % ± %

DJF 11 75

MAM 4 330

JJA 14 79

SON 12 442
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Figure 1. 
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Fig. 1. Map of the Arabian Sea with locations of the N2O measurements in the surface layer
used in our study (see Table 1).
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Figure 2. 

 

(a)

(c)

(b)

(d)

 
Fig. 2. Seasonal maps of N2O pixels. (a) DJF, (b) MAM, (c) JJA, and (d) SON.
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Figure 3. 

(a) DJF (b) MAM

(c) JJA (d) SON

 

Fig. 3. Seasonal maps of the final N2O 1◦× 1◦ fields (in nmol L−1). (a) DJF, (b) MAM, (c) JJA,
and (d) SON. Contour labelling starts with 5 nmol L−1; minimum concentration range is shown
in dark blue (5-8 nmol L−1), maximum concentration range is shown in red (> 32 nmol L−1).
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Figure A1. 

 

( a )

( b )

( c )

Fig. 4. Annual mean N2O concentrations (in nmol L−1) along selected latitudes. The solid
line is the predicted N2O from the final 1◦× 1◦ field, the dashed line stands for the smoothed
first-guess field, and the solid squares represent the annual mean N2O with standard deviation
of all measurements within the 1◦× 1◦ squares along the given latitude. (When less than 3
values were available no standard deviation is given.) (a) 18.5◦ N, (b) 15.5◦ N, and (c) 10.5◦ N.
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FIGURES A2a and A2b. 
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Fig. 5. Relative errors of the final field 1◦× 1◦ values. (a) DJF, (b) MAM, (c) JJA, and (d) SON.
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FIGURES A2c and A2d. 
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Fig. 5. Continued. Relative errors of the final field 1◦× 1◦ values. (a) DJF, (b) MAM, (c) JJA,
and (d) SON.
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