Atmos. Chem. Phys. Disguss., 6, 7369-7406, 2006 - Atmospheric
www.atmos-chem-phys-discuss.net/6/7369/2006/ G Chemistry ACPD

© Author(s) 2006. This work is licensed 5 apd Phy_sics A T L S
under a Creative Commons License. _ Discussions ’ - =

Mesoscale
temperature
fluctuations

B. L. Gary

Mesoscale temperature fluctuations in the
stratosphere

B. L. Gary
Jet Propulsion Laboratory, 5320 E. Calle Manzana, Hereford, AZ 85615, Pasadena, CA, USA

Received: 18 May 2006 — Accepted: 19 June 2006 — Published: 4 August 2006
Correspondence to: B. L. Gary (blgary @ umich.edu)

i

EG

c

7369


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/7369/2006/acpd-6-7369-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/7369/2006/acpd-6-7369-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html

10

15

20

Abstract

An airborne instrument that measures altitude temperature profiles is ideally suited for
the task of characterizing statistical properties of the vertical displacement of isentrope
surfaces. Prior measurements of temperature fluctuations during level flight could not
be used to infer isentrope altitude variations because lapse rate information was miss-
ing. The Microwave Temperature Profiler instrument, which includes lapse rate mea-
surements at flight level as a part of temperature profiles, has been used on hundreds
of flights to produce altitude versus ground track cross-sections of potential tempera-
ture. These cross-sections show isentrope altitude variations with a horizontal resolu-
tion of ~3 km for a >6 km altitude region. An airborne isentrope-altitude cross-section
(IAC) can be compared with a counterpart IAC generated from synoptic scale data,
based on radiosondes and satellite instruments, in order to assess differences be-
tween the altitudes of isentrope surfaces sampled at mesoscale versus synoptic scale.
It has been found that the synoptic scale isentropes fail to capture a significant com-
ponent of vertical displacement of isentrope surfaces, especially in the vicinity of jet
streams. Under the assumptions that air parcels flow along isentrope surfaces, and
change temperature adiabatically while undergoing altitude displacements, it is pos-
sible to compute mesoscale temperature fluctuations that are not present in synoptic
scale back trajectory parcel temperature histories. It has been found that the mag-
nitude of the mesoscale component of temperature fluctuations varies with altitude,
season, latitude and underlying topography. A model for these dependences is pre-
sented, which shows, for example, that mesoscale temperature fluctuations increase
with altitude in a systematic way, are greatest over mountainous terrain, and are greater
at polar latitudes during winter.
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1 Introduction

The Microwave Temperature Profiler (MTP) was developed by NASA at the Jet Propul-
sion Laboratory (JPL) during the 1970s for airborne studies of clear air turbulence.
The MTP is the only airborne sensor system that provides altitude temperature profiles
throughout an altitude region that extends from several kilometers below to several
kilometers above flight level, and these measurements are provided in real-time at in-
tervals of 2 to 5 kilometers along the flight path. To date various MTP instruments have
flown on 7 aircraft (CV990, C141, ER-2, DC-8, WB57, L118C, M55) for 46 atmospheric
research missions, 739 flights and have accumulated 4176 flight hours of data.

In response to the discovery of the “ozone hole” in 1985 (Farman et al., 1985) NASA
organized an airborne mission to study the ozone depletion process (Airborne Antarctic
Ozone Experiment, or AAOE). One of the NASA atmospheric research aircraft used for
AAOE was the high-flying NASA ER-2 (19 to 21 km). An MTP was included in the ER-
2 payload for this first ozone hole mission, and it has been included in all subsequent
NASA missions involving the ER-2 for the study of ozone depletion. An MTP for the
NASA DC-8 atmospheric research aircraft has been included in the payload for all
airborne ozone depletion missions since 1991. The present analysis is based on data
from a subset of the ER-2 and DC-8 ozone depletion flights from 1988 to 1997.

As with any instrument that measures something for the first time new and unex-
pected things have been discovered from MTP data. The MTP aboard a NASA ER-2
aircraft was used in 1987 to show that mountain waves penetrate the polar vortex
tropopause and amplify with altitude in the lower stratosphere in approximate agree-
ment with a theoretical model (Gary, 1989). In 1987 and 1989 the same MTP mea-
sured an ever-present background of vertical displacements of isentrope surfaces hav-
ing mesoscale spatial frequencies. At polar latitudes, during winter, the amplitude of
this structure was found to be greater for flight over land than over ocean (Gary, 1989;
Bacmeister and Gary, 1990). Some of these findings have been reported in the lit-
erature but this is the first report of a systematic study of MTP-measured mesoscale
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fluctuations versus latitude, season, altitude and underlying terrain.

When altitude fluctuations of isentropes (surfaces of constant potential temperature)
were first reported at an ozone hole mission workshop in 1991 there was widespread
skepticism about their existence. In retrospect the mesoscale component should not
have been a surprise since earlier studies of temperature recordings using commercial
airplanes (Nastrom and Gage, 1985; Gage and Nastrom, 1986) showed that isentrope
surfaces were not smooth. However, these level-flight studies could not assign alti-
tude displacements to the isentropes because lapse rate information was lacking. The
MTP provides this missing information, and allows all nearby isentrope surfaces to be
assigned reliable altitudes along the flight path.

The concern at the 1991 workshop over the mesoscale temperature fluctuations re-
quired by MTP measurements was motivated by the fact that models were being used
to study the formation and evolution of polar stratospheric clouds (PSCs) using back
trajectories derived from an assimilated data base for temperature and wind fields.
Since assimilated data is based on radiosonde and satellite measurements they are
limited to spatial wavelengths longer than about 400 km. Hence, the back trajectories
used to study the role of PSCs in ozone depletion did not include mesoscale temper-
ature fluctuations, and it was not known whether this was a serious limitation for the
model studies.

The airborne MTP can be used to derive the temperature field within an alti-
tude/ground track cross-section, and this provides an ideal means for evaluating the
magnitude of the missing short time scale temperature fluctuations. Several studies of
the implications of mesoscale temperature fluctuations and the microphysics of polar
stratospheric cloud formation and evolution have been published (Wofsy et al., 1993;
Murphy and Gary, 1995; Tabazedeh et al., 1996; Gao et al., 2001; Doernbrack et al.,
2002; Fueglistaler et al., 2003). Murphy and Gary use microphysical arguments involv-
ing time constants for various effects to conclude that rapid temperature fluctuations
should affect the nucleation of polar stratospheric cloud droplets, and the large cool-
ing rates experienced by air parcels have important implications for denitrification and
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dehydration.

Karcher and Strom (2003) deduce that the high values for measured ice crystal
number density in young cirrus clouds can be explained by their measurements of a
mesoscale component of vertical winds that produce temperature fluctuations much
greater than inferred by synoptic scale simulations. Hoyle et al. (2005) quantify the
characteristics of the fluctuations in terms of energy spectral density and amplitudes.
The magnitude of these mesoscale temperature fluctuations is in agreement with the
findings of this study.

One purpose of this publication is to make available information on the magnitude of
short time scale temperature variations so that model studies that employ back trajec-
tories can include realistic mesoscale effects.

A second shortcoming of the synoptic temperature field is that it can have large errors
in the vicinity of jet streams. Satellite measurements of the temperature field at spatial
scales slightly shorter than synoptic have been reported by Wu and Waters (19963,
b). These measurements imply that vertical motions with horizontal wavelengths at
the long end of the mesoscale spectrum have greater amplitudes in the vicinity of jets
and over high mountain ranges. The MTP supports these findings using even shorter
spatial frequency information.

A third use for the quantitative model for mesoscale altitude structures presented
here is the shortcoming of current model studies of global circulation to accurately
estimate the amount of momentum that is transferred to the mesosphere and upper
stratosphere by breaking waves. Bacmeister (1993) pointed out the importance of
being able to predict the existence of atmospheric mountain waves and their amplitude
growth with altitude in order to calculate the altitude and magnitude of the momentum
flux. The MTP-based model for predicting most likely vertical wave amplitude from
a known setting (described below) allows for an additional input to models that need
to incorporate likely wave breakdown from the ever-present component of mesoscale
vertical motions.

MTP measurements have been made for a wide range of altitudes (7 to 22 km), lat-
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itudes (-72 to +80°), seasons (all months) and underlying topography. The present
analysis compares isentrope altitudes having mesoscale resolution with isentrope al-
titudes having only synoptic scale resolution in order to assess the amplitude of the
mesoscale component. The mesoscale amplitude is then correlated with several pos-
sible independent variables to determine which ones can be used to predict mesoscale
amplitude. It is found that most of the observed differences of mesoscale amplitude
from one flight segment to another can be accounted for using four independent vari-
ables: altitude, latitude, season and underlying topography.

The scope of this article is limited to a description of the magnitude of mesoscale
temperature (and altitude) fluctuations. No attempt is made to translate this informa-
tion to implications of the three possible uses for it noted in this introduction section
(back trajectory temperature calculations, missing mesoscale structures near wind jets,
and momentum transfer to the mesosphere and upper stratosphere caused by Kelvin-
Helmholtz wave breakdown). An assessment of these and other possible implications
of the ever-present mesoscale vertical motions is a task for qualified theoretical atmo-
spheric scientists and should not be attempted by an “observationalist” such as this
author.

2 Remote sensing concept

The MTP consists of a microwave radiometer that measures the intensity of thermal
radiation from the atmosphere at frequencies where oxygen molecules are highly ab-
sorptive and emissive. The frequency region 52 to 59 GHz is ideal for this purpose,
since oxygen absorption is dominant and varies two orders of magnitude within this
frequency range. At these frequencies water vapor and liquid water droplets have
negligible effects in the upper troposphere and lower stratosphere. At typical altitudes
there is sufficient oxygen to produce an optical depth of greater than one for views at all
elevation angles. Therefore, the microwave “brightness temperature” corresponds, to
first order, to the physical temperature of the air at a distance (the “applicable range”)
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where the weighting function of thermal emission is approximately 1/e.

The various MTP instruments used to date operate at either 2 or 3 frequencies.
For example, the MTP aboard the NASA DC-8, referred to hereafter as the MTP/DC8
instrument, operates at 55.51, 56.66 and 58.79 GHz. At typical altitudes these frequen-
cies afford applicable ranges of 2.8, 1.1 and 0.6 km. A horn antenna with a half-power
beam width of ~7.5 degrees is scanned through a set of 10 elevation angles, ranging
from near nadir to near zenith. In this way the MTP samples air throughout an alti-
tude region extending from more than 2.8 km below the aircraft to more than 2.8 km
above the aircraft. Since the measurements are influenced by thermal emission at dis-
tances beyond the applicable range it is possible to recover air temperature information
throughout an altitude region with a thickness much greater than twice the applicable
range. A brief description of the hardware can be found in Denning et al. (1989).

Many procedures can be used to convert brightness temperature “observables” to
“retrievables” that define a profile of air temperature versus altitude, T(z), as described
in Gary (1989). The simplest procedure is to treat each observed brightness tem-
perature as an air temperature at an altitude given by “applicable range times sine of
elevation angle.” This was done during the first years of using the MTP. Much better
performance can be achieved by using statistical retrieval procedures. This approach
requires that a large set of radiosondes be used to calculate what an MTP would ob-
serve if it were perfectly calibrated; a multiple regression analysis is then performed
to derive a set of coefficients that allow the temperature at an altitude of interest to be
derived by multiplying an observable vector by an appropriate set of coefficients. A set
of coefficients is obtained for each altitude of interest, which is called a “retrieval coef-
ficient matrix” Each row in this matrix corresponds to an altitude, so with many rows
of retrieval coefficients there will be many altitudes of derived air temperature. For the
data of this analysis it was possible to derive T(z) profiles using the MTP/DC8 that ex-
hibit an accuracy of <1.2K from 8 to 13 km (pressure altitude), and <2.0K from 6 to
17.5km. These accuracy estimates are based on comparisons of MTP T(z) profiles
with radiosonde profiles taken when the aircraft passed close to a radiosonde launch
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site (allowing for temporal interpolation between preceding and following radiosondes).
Improved performance for a greater range of altitudes has been achieved for recent
flight data by Mahoney and Gary (2003). For the purposes of this investigation these
improvements are not important since only isentropes at nearby altitudes are used to
establish mesoscale fluctuation statistics.

3 Tropical example of mesoscale versus synoptic scale isentropes

Figure 1 is used to show differences between synoptic scale and mesoscale “isentrope
altitude cross-sections” (IACs). The traces show the altitude of potential temperature
surfaces versus latitude along a ground track flown by NASA’s ER-2 aircraft on the date
27 March 1994. The smooth thick traces are a synoptic scale IAC derived from a file
of temperature versus altitude along the flight path that was produced by Schoeberl
et al. (1994) from a 3-dimensional field of assimilated data (based on radiosonde and
satellite temperature measurements). The file produced by Schoeberl et al. (1994)
of the NASA Goddard Space Flight Center were in support of the NASA-sponsored
mission called “Airborne Southern Hemisphere Ozone Experiment/Measurement for
Assessing the Effects of Stratospheric Aircraft” (ASHOE/MAESA).

The mesoscale IAC in Fig. 1 is shown by thin traces with altitude structure that should
not be mistaken for “noise.” They were constructed from measurements by an MTP
instrument aboard the NASA ER-2 aircraft, hereafter referred to as the MTP/ER2 in-
strument. Since the tropopause was at 16 km for this IAC the entire IAC in this figure is
for the stratosphere. The flight track "curtain cross-section” is oriented approximately
north-south for a flight from Hawaii (right side) to Fiji (left side). Although the wind
direction for these data is “out of the page,” it can nevertheless be used to estimate
the magnitude of isentrope slope values in an orthogonal (parallel to the wind) cross-
section. This can be done since cross-sections at a given location typically exhibit
isentropes with a similar “wrinkle character” in cross-sections of all azimuths, provided
mountain waves are not present.
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Considering first the synoptic scale isentropes in Fig. 1, and assuming adiabatic be-
havior for air parcels as they change altitude, this figure can be used to deduce that
as air parcels moved through this region they underwent altitude excursions of ~100m
with periods corresponding to spatial wavelengths of about 900 km (8 arc degrees).
The Meteorology Measurement System, MMS, (Scott et al., 1990) measured the wind
speed in this region to be 10 m/s, eastward. Combining this horizontal wind speed with
the synoptic isentrope structure leads to air parcel altitude variations of ~100m (tem-
perature fluctuations ~1 K) with periods of ~25h (900 km divided by 10 m/s). Adiabatic
heating and cooling rates for such air parcels would be ~2 or 3K/day. Trajectory anal-
yses based on assimilated data for this region therefore imply that air parcels would
undergo small temperature changes, with time scales of 1-day and longer, and experi-
ence relatively benign heating and cooling rates.

Considering the mesoscale isentropes in Fig. 1, air parcels following isentropes
would rise and fall by much greater amounts and with shorter timescales. Heating
and cooling rates of several hundred K/day, maintained for tens of minutes, are inferred
to exist at many locations. The airborne MTP/ER2 instrument measures an altitude
profile of temperature every 10s (for 1994 data). This corresponds to 2.1 km (or 0.02°
of latitude for north/south flight). Each T(z) profile extends from approximately 4 km be-
low flight altitude to 4 km above. Near flight level, where the MTP is most accurate, the
RMS difference between the mesoscale and synoptic scale altitudes is 1770 m, and the
maximum difference is 390 m. It is also apparent that the highest spatial frequencies
in the synoptic plots are misleading, which is to say that about half the time the small
structures in the synoptic isentropes do NOT correlate with features in the measured
isentropes. Because of the dramatic differences between the heating and cooling rates
for air parcels traveling along mesoscale and synoptic scale isentropes, and because of
the occasionally large altitude discrepancies of the two isentrope types, it is appropriate
to ask whether the MTP-measured mesoscale isentropes are accurate.
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4 Accuracy of MTP-based isentrope altitudes

There is always excellent agreement between the MTP temperature profile’s tempera-
ture at flight level and the MMS in situ air temperature record when the MMS 1 Hz data
is smoothed to correspond to the slower sampling of the MTP. The two temperature
series agree, with biases typically ~0.3 K and smaller differences on short time scales
(i.e., small offsets may exist, but the temporal structures are essentially identical). This
agreement assures that the MTP isentrope altitude structures near flight level are ac-
curate (i.e., that their vertical variations are correct). An additional consistency check
can be performed by combining MMS in situ temperature with MTP lapse rate to cal-
culate isentrope altitudes near flight level. When this is done the two sets of IACs near
flight level are invariably in excellent agreement, with an RMS difference of ~35m. This
implies that the MTP isentrope altitude accuracy is better than 35 m near flight altitude.

Comparisons have been made of MTP measurements with radiosonde-based pre-
dictions of what MTP should measure for times when the aircraft flies close to ra-
diosonde sites. Based on these comparisons it is estimated that RMS accuracy of
MTP temperature profiles is <1.0K for a 3km altitude region centered upon flight al-
titude, and that at the extremities of an 8 km region (centered upon flight altitude) the
RMS accuracy of MTP T(z) profiles is ~2.5K. For flight in an isothermal stratosphere,
for example, MTP temperature profiles can therefore be used to determine isentrope
altitudes with an accuracy of <100 m near flight altitude, <250 m at 4 km above and
below flight altitude (with intermediate accuracy for intermediate altitudes). For typi-
cal polar ozone conditions, with dT/dZ=—2 K/km, the isentrope altitude accuracies are
130 m and 320 m.

Since precision is always better than accuracy, assuming calibration errors vary
slower than measurement intervals, the altitude structure of isentropes is better than
would be implied by the accuracies just quoted. A conservative estimate of MTP isen-
trope altitude precision is ~30 m near flight altitude (based on comparisons with MMS)
and ~100m at 4km above and below flight altitude. These precision estimates are
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compatible with known MTP stochastic measurement uncertainties. The implication of
the analyses of MTP accuracy and precision is that essentially all of the MTP-derived
mesoscale structure in Fig. 1 is statistically significant and is therefore real.

5 Mid-latitude example of mesoscale versus synoptic isentropes

The previous example of isentrope “behavior” was at tropical latitudes, using data from
the 2-channel MTP. The next example covers a latitude region from Hawaii to Alaska,
using measurements of the MTP/DC8. This MTP employs an improved 3-channel
radiometer mounted on the NASA DC-8 aircraft and flown during 1995/96 flights for
TOTE/VOTE (Tropical Ozone Transport Experiment/Vortex Ozone Transport Experi-
ment). The measured isentrope altitude cross-section in Fig. 2 shows much more
structure than the assimilated version. In particular, a sub-polar jet has distorted the
isentrope field at about 53° north latitude, at 10.5 km. This feature is not present in the
synoptic isentropes. The sub-tropical jet produced steeper isentrope surfaces at 35
north latitude, at 10 to 12 km altitude.

This figure shows that not only do isentropes exhibit mesoscale structure in the real
world, but assimilated isentrope altitudes can be in error by as much as 900 m (e.qg.,
51° north latitude, 10 to 11km, and also at 21° latitude, 12 to 16km). Isentropes
in the vicinity of the sub-tropical jet, located at 35° north and 10.4km in Fig. 2, are
dramatically different when based on the MTP and assimilated synoptic data. Most of
the temperature field depicted in this figure is over the ocean, where few radiosonde
sites exist. This means that the assimilated temperature field relies more upon satellite
soundings than radiosondes, so it is possible that isentropes derived from synoptic
temperature fields over land will capture more structure near the short wavelength end
of the synoptic representation (400 km) than is shown here.

Figure 3 is a color-coded display of the MTP temperature field from which the pre-
vious IAC was determined. It is presented to lend credibility to the MTP-measured
mesoscale features. In the vicinity of the sub-polar jet in situ tracer measurements
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were used to define the tracer tropopause (ozone mixing ratio of 100 ppbv), and there
is corroboration that the temperature field is distorted at the same location as the tracer
field. In the vicinity of the sub-tropical jet both in situ and remote tracers are used to
define the tracer tropopause. The Langley Research Center DIAL ozone profiler (Brow-
ell, 1989) measured isopleths of ozone mixing ratio, which have been used to define
the “tracer tropopause” above the aircraft south of 36° north latitude. By combining
in situ and remote tracers it was possible to derive a very steep slope for the tracer
tropopause at 38° latitude, just poleward of the jet.

All tracer tropopause behaviors found in this figure are consistent with the expected
circulation of air in the vicinity of jets. The black arrows are a subjective suggestion of
a “residual circulation” pattern that could produce the temperature departures from a
smoother version. The length of the arrows is meant to represent the strength of the
motion, which in most cases is determined by the amount of the temperature anomaly.
This figure illustrates the MTP’s ability to determine an isentrope field with mesoscale
structure that is missing in assimilated temperature fields.

6 Measured temperature fluctuations for a single isentrope

The following cases are based on ER-2 MTP measurements at mid-latitudes. Figure 4
shows a method for studying isentrope structure using the altitude of a single isentrope.
The altitude of the 490 K isentrope is shown for a specific flight (2 November 1991) us-
ing two sources: a synoptic scale source (NMC analyzed grid, prepared by Schoeberl
et al.,, 1991) and a mesoscale source (the MTP/ER2). The top trace in Fig. 4 is from
a data assimilation and the bottom traces (smoothed and unsmoothed) are from the
MTP/ER2. The smoothed version of the MTP/ER2 trace (described in the Appendix)
is meant to allow the measurement of two components of error in isentropes based
on assimilated data: 1) an offset component, and 2) a missing mesoscale structure
component.

For this flight, California to Maine, the ER-2 encountered an eastward wind of 24 m/s
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(ranging from 18 to 30 m/s during level flight), which is parallel to the direction of flight.
Since an air parcel’s vertical excursions can be inferred from isentrope altitude excur-
sions, and assuming the vertical excursions produce adiabatic changes of temperature,
the 490K isentrope (always within 1 km of the aircraft) can be used to infer charac-
teristics of air parcel temperature fluctuations. The figure can be used to determine
statistical properties of the temperature history of air parcels traveling along the 490 K
isentrope. (It is unimportant for this example that we do not know how the isentrope
altitude changed shape during its 2-day trip since we are only interested in an assess-
ment of the importance of neglecting mesoscale structures when calculating parcel
temperature histories.)

Figure 5 is a histogram of mesoscale deviations from a synoptic scale air parcel
temperature history for the 2 November 1991 flight, derived from the differences of the
unsmoothed MTP isentrope altitude (lower trace in Fig. 4) from the assimilated data
base synoptic scale isentrope altitude (top trace in Fig. 4). The temperature differences
histogram can be fitted by an offset term and a Gaussian term. For this case the
Gaussian’s “full-width at half-maximum” (FWHM) is 2.6 K and it is offset 2.8 K from the
assimilated temperature history.

Note, however, that some of the 2.6 K FWHM is due to “offset wander.” The off-
set wander is actually an error component of synoptic temperature variations based
on shortcomings of the assimilated data base. The present study is not concerned
with the offset wander error component. Rather, the goal of this study is to evaluate
the magnitude of the missing mesoscale temperature fluctuations. Therefore, the de-
sired parameter is the FWHM of mesoscale departures from the smoothed version of
the MTP-measured isentrope altitude, converted to temperature units under the adia-
batic assumption. This FWHM parameter is 1.6 K. As expected, this is smaller than
the 2.6 K from Fig. 5. For convenience the present analysis has defined “mesoscale
fluctuation amplitude”, MFA, to be the FWHM of the mesoscale-only temperature fluc-
tuation histogram, where mesoscale departures from synoptic scale are defined using
a smoothed-version of the actual (measured) isentrope altitude instead of an isen-
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trope based on the assimilation temperature field. For the example just described
MFA=1.6K.

Since the adiabatic assumption involves the simple conversion “1 km corresponds
to 10K” MFA can be expressed using either temperature or altitude units. (Note that
MFA uses the word “amplitude” to describe a full-width, not a half-width.) Alternative
procedures for calculating MFA are given in Appendix A.

7 Model for mesoscale fluctuation amplitude

In the previous section it was shown that air parcel temperature history for a back tra-
jectory will differ from that calculated from an assimilated field of temperature and wind
in ways that can be described as having an offset component (that wanders) and a
missing mesoscale component. This investigation is limited to a study of the “miss-
ing mesoscale” component. Therefore, the following is an investigation of only the
mesoscale fluctuation component, and does not include the “assimilated trajectory alti-
tude wander component.” It should be kept in mind that by defining MFA as the FWHM
of the distribution of altitude departures of an isentrope surface from a smoothed ver-
sion of the actual isentrope altitude, MFA will always underestimate mesoscale de-
partures from the back trajectory inferred from an assimilated data base. Mesoscale
fluctuations would be as small as MFA only if the assimilated field was perfectly accu-
rate.

This study employs a synoptic averaging procedure that gives approximately the
same result as low-pass spatial frequency filtering. An isentrope altitude is averaged
using a double boxcar 400-km uniform weighting function, as described in the ap-
pendix. Histograms of departures from this synoptic scale representation are then
fitted to a Gaussian shape with manual adjustments of offset, height and width, using
a spreadsheet application (the use of hand-fitting introduces errors small compared
with the property being measured). The resulting MFA determinations are entered into
a data base, along with several independent variables: latitude, date, topography type
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and average altitude of the isentrope. Multiple regression analyses are performed using
various combinations of independent variables, with MFA as the dependent variable.

7.1  Sample flight

The following five figures are used to illustrate a typical analysis of a flight and the
determination of MFA entries into a data base. Figure 6 is the flight track of a typical
ER-2 flight (20 January 1989) used in the present analysis. It occurs under “polar
winter” conditions, and is based in Stavanger, Norway. The following list was used to
guide the choice for an underlying topography roughness parameter, referred to below
as “topography”:

Land Type Topography Parameter
Ocean 0.0

Flat Land 0.4

Coast 0.6

Coastal Mountains 0.5-0.8

Continental Mountains 0.6-1.0

The ER-2 flight on 20 January 1989 consists of two types of flight segments,
“coastal mountains” and “ocean”, with topography scores of 0.8 and 0.0, respectively.
Data are assigned to “coastal mountains” when the ER-2 was within 100 km of the
coast.

Figure 7 is an IAC for this flight, and it is used to choose a specific isentrope to
represent flight segments. In this example the 440K and 460 K isentropes are used to
represent the first and second halves of the flight (outbound and inbound). The 440K
isentrope altitude for the first half flight segment is shown in Fig. 8. The thick black
trace in this figure is a synoptic scale fit to the MTP data, derived using the double 400-
km boxcar procedure. The departures of the thin trace from the thick trace are used to
create a histogram of “mesoscale only” fluctuations. Since these data include flight over
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both “coastal mountains” and “ocean” categories it was necessary to create separate
histograms from carefully assigned segments. Examples of the two histograms are
shown in Fig. 9a and b.

7.2 ER-2 data

There are 49 ER-2 flights included in this analysis, from 31 December 1988 to 26
September 2001, yielding 73 MFA values corresponding to a range of latitudes, sea-
sons and underlying topographies. All isentrope altitudes are within the 17 to 21 km
altitude range, with an average altitude of 19.4km. Figure 10 shows 72 of the 73
MFA values plotted versus latitude (a 360 m “outlier” associated with a jet stream is
not used). The “winter” and “summer” data are plotted with different symbols in this
figure, and it is apparent that they vary with latitude differently. MFA is largest at high
latitude winter and lowest at high latitude summer. The straight lines correspond to the
following equations:

MFA=120-0.7 - Latitude, for summer data (1)
MFA=120 + 1.0 - Latitude, for winter data (2)

where MFA has units of meters and Latitude is in degrees. Whereas there appears
to be negligible seasonal variation in the tropics, the amplitude of seasonal variation
appears to increase linearly with latitude. In order to sort the data according to season
it was necessary to invent a “season parameter” based on the flight date’s day of year.
The parameter W (“Wintriness”) was defined according to the following equation:

1 . (m DOY - 295
W] Jreon (52202 @

where DOY = day of year. W varies smoothly in a sinusoidal manner from 0.0 on 22
July (one month after summer solstice) to a value of 1.0 on January 22 (one month
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after winter solstice). In Fig. 10 MFA data are categorized as “summer” or “winter” on
the basis of W being less than or greater than 0.5.

Figure 10 demonstrates that MFA at ER-2 altitudes depends upon latitude and sea-
son. A possible dependence upon underlying topography was investigated by per-
forming a 3-term least squares (LS) fit of measured MFA versus the following three
independent variables: 1) topography parameter, 2) Latitude, and 3) W-Latitude. The
following solution was obtained:

MFA’ = 116 + 18.4 -Topography — 1.17 - Latitude + 2.00 - W - Latitude @)
+ 11+ 86 +0.23 +0.17

where MFA’ [meters] is a model predicted MFA, “Topography” is the underlying to-
pography parameter (ranging from 0 to 1), “Latitude” is latitude [degrees] and W is
[dimensionless]. Formal standard errors for the coefficient solutions are shown below
each coefficient. This fit exhibits r2=0.68, and has a residual MFA of 30.5m. The
“open diamond symbols” in Fig. 11 show the relation between measured MFA (from
ER-2 flights only) and MFA predicted by the above equation.

The four constants in the above Eq. (4) have values significantly different from zero;
the ratios for “parameter value to parameter value uncertainty” are 2.17, 5.08 and
11.67. (When small adjustments are made for an altitude dependence, described be-
low, this 3-parameter solution is “stronger,” yielding a topography “parameter value to
uncertainty ratio” of 2.45) All independent variables are statistically significant. From
this analysis of ER-2 data it can be concluded that:

1) there is a strong latitude dependence,
2) there is a strong seasonal dependence, and

3) there is a moderately significant topography dependence.

7385

ACPD
6, 7369-7406, 2006

Mesoscale
temperature
fluctuations

B. L. Gary

i

EG

c


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/7369/2006/acpd-6-7369-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/7369/2006/acpd-6-7369-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html

10

15

20

25

7.3 DC-8 data and the altitude dependence of MFA

This section shows that MFA depends upon altitude as well as latitude, season and
underlying topography. Since the foregoing analysis was with ER-2 cruise flight data,
and is confined to a rather narrow altitude region (17 to 21 km), it should be possible
to investigate the altitude dependence of MFA by comparing the ER-2 MFA values
with MFA results from the lower-flying DC-8 aircraft. Gravity wave theory predicts that
mountain wave amplitude should increase with altitude in accordance with the relation:

D;\ 2
A=Ay (D_o) (5)
where A, is an amplitude constant, and D, and D, are air density at a standard level
and a level of interest. Since air temperature is approximately constant throughout
the altitude region between typical DC-8 and ER-2 flight altitudes, air density will be
approximately proportional to air pressure. This predicted dependence of wave am-
plitude versus altitude was observed by the ER-2 during encounters with mountain
waves over Antarctica (Gary, 1989). What is true of mountain waves may not be true
of the ever-present background of gravity waves, so it is hecessary to verify the ex-
pected dependence of MFA on altitude. To the extent that air density is proportional
to air pressure, which it will be when air temperature is uniform between the DC-8 and
ER-2 altitudes, air pressure at flight altitude can be used to represent air density. The
following analysis uses air pressure as an independent variable.

Two “outliers” in the DC-8 MFA data base were removed from consideration due to
their association with large amplitude mountain waves and a sub-tropical jet stream.
These two DC-8 outliers, and the ER-2 MFA outlier described above, suggest that the
MFA models developed in this analysis cannot be used in situations characterized by
jet streams or mountain waves.

To illustrate the necessity of invoking an altitude dependence of MFA, the combined
ER-2 and DC-8 data sets are plotted against a model that does NOT include an alti-
tude correction term, shown as Fig. 11. The model predictions are clearly too high for
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the DC-8 MFA data. When a “reciprocal of square-root of pressure” correction is in-
corporated in the model, in accordance with mountain wave theory, an acceptable plot
of measured versus model predicted MFA is produced. This is shown as Fig. 12. A
best fit value for the pressure exponent is approximately —0.40, with an uncertainty that
is estimated to be 0.10 (a formal uncertainty could not be obtained for this parameter
using the fitting procedure of this analysis). The MFA measurements are compatible
with an altitude exponent of —0.50.

The final equation for representing the combined ER-2 and DC-8 sets of measured
MFA involves four independent variables: 1) latitude, 2) a season/latitude parameter,
3) topography, and 4) an “altitude exponent” for use with the ratio of air pressure to
a reference air pressure (58.85 millibars, the ER-2 average). The fitting procedure
consisted of adopting various values for the altitude exponent and then performing a
standard LS fit for the remaining independent variables. The following equation was
obtained for relating MFA to the four independent variables:

MFA = (112 — 1.21 Latitude + 2.20 ¥ Latitude + 29.0 Topography) -(P[hPa]/58.85) >*° ©)
+0.27 +£0.20 +10.2 +0.10

where MFA has units of meters, P is air pressure [hPa], and the other parameters are
described above. This equation provides a fit to the combined ER-2 and DC-8 data
that exhibits r°=0.645 and a residual MFA of 36.6 m.

In every case the uncertainty of the solution coefficient is significantly smaller than
the coefficient value, with “value to SE uncertainty” ratios = 4.55, 11.27, 2.84 and
~4.3. The fact that the next-to-last ratio increased from its “ER-2 only” counterpart
(i.e., increased from 2.45 to 2.84) shows that the correlation of measured MFA with
underlying topography was strengthened by including the DC-8 data. More data is
needed to ascertain the statistical significance of the difference between the altitude
exponent fitted solution value of —0.40+0.10 (estimated SE) and the predicted value of
—-0.50.
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7.4 Specific procedure for simulating MFA

At this time Eq. (6) is the best model representing MFA values throughout a range of
altitudes, seasons, latitudes and topographies. Using this equation is probably a better
alternative than a total disregard of the MFA effect for investigations in which temper-
ature fluctuations are potentially important. This equation also provides a means for
superimposing realistic wave amplitudes on a synoptic field intended for use in cal-
culating gravity wave breakdown at high stratospheric altitudes. It has the virtue of
not requiring a detailed model for generating the waves and is therefore suitable for
operational use.

There are two ways to calculate a specific sequence for “vertical displacement versus
horizontal distance”, dZ(x), for adding to a back trajectory calculation of an isentrope
surface’s altitude. The difficult way is to request a copy (from the author) of a program
that does this. The program employs an empirical algorithm developed for this purpose.
The other way is to request a copy of a file “dZ(x)” from the author. The user may then
modify the dZ column by a multiplication factor to convert it from having the standard
MFA value of 100 m to the desired MFA. If a specific dZ(x) function is not required, but
a probability density distribution for dZ is adequate, then this can be easily calculated
from the following equation:

P(dZ) = o-(d2/(0.6MFA))® (7)

where dZ is altitude departure from a synoptic average. This equation is normalized
such that P(0)=1. MFA must be calculated from Eq. (2) before using this equation.
The following table of MFA values is based on the preceding analysis, and may be
convenient for casual users wishing to estimate the possible importance of the MFA
effect. To use the table choose a latitude region (left-most column), then choose a
season (center two columns), choose an underlying terrain (right-most column), and
read an MFA value from the body of the table. This is a “most likely” MFA for ER-2
altitudes (19.4km). For DC-8 altitudes, for example, multiply the MFA value by 0.60.
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For other altitudes, multiply the MFA value by (P[hPa]/58.85 [hPa])~*-*°.

8 Possible cause for observed correlations

The fact that MFA is greater for “winter high latitudes” suggests that the independent
variable created for the multiple regression analysis is merely a “proxy parameter” for
wind speed. Support for this comes from the fact that both of the high-value MFA
outliers were for flight along jet streams. The fact that clear air turbulence (CAT) occurs
preferentially during the winter season, which is conventionally attributed to the greater
wind speeds in winter, is also supportive of this interpretation — since CAT occurs when
Kelvin-Helmholtz waves are amplified by strong vertical wind shears in the presence of
insufficient static stability (provided by the temperature field).

The dependence of MFA on rough underlying terrain seems to require that the source
for MFA is air moving over underlying terrain, causing vertical displacements that grow
with altitude. This is supported by the near-absence of a correlation of MFA with un-
derlying terrain during the polar summer, when winds are light.

9 Conclusion

Back trajectory investigators wishing to assess the magnitude of mesoscale tempera-
ture fluctuations may use Eq. (6) or Table 1 to calculate MFA. The MFA value is needed
to scale sample sequences of dZ(x) (available from the author) which can then be
added to a synoptic scale version of an air parcel’s altitude versus back trajectory dis-
tance. Modelers wishing to calculate the altitude where wave breakdown occurs may
use this same MFA as a most likely value when it is not feasible to employ an explicit
calculation of wave amplitude versus altitude.

The fact that MFA depends upon season, latitude, underlying topography and altitude
should provide useful clues for guiding theoretical investigations into the origin of the
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atmospheric waves producing these ever-present mesoscale fluctuations.

Appendix A

There are several practical ways to derive MFA besides the one described in the text.
They all begin by establishing a smooth line through a measured isentrope surface’s
altitude versus distance. This can be done by performing a spatial Fourier analysis
of the altitude versus distance data (with proper “windowing”) and reconstituting the
altitude trace after omitting all spatial components with wavelengths shorter than about
400 km. It can also be done by employing a uniform weighting function that is 400 km
wide and sliding it through short flight path distance increments, and then repeating
the process. Use of the second boxcar average removes unwanted long wavelength
mesoscale spatial frequencies.

Deviations of the unsmoothed data from the smoothed data are used to construct a
histogram of mesoscale deviations. A “probable error (PE) difference” can be estimated
such that 50% of actual data exceed this probable difference. This PE value should be
multiplied by 3.33 to arrive at the “full-width half-maximum” estimate (which assumes a
Gaussian distribution).

An MFA estimate can also be obtained by noting that 76% of all data will be contained
within a region given by the “average minus MFA” to “average plus MFA”

Or, for one more alternative method, MFA can be computed by multiplying an RMS
difference by 2.27. RMS can either be calculated or estimated from the fact that in a
normal distribution 68% of deviations will have an absolute value less than the RMS;
the factor 2.27 has been empirically determined for MTP ‘data, and is close to the value
2.36 that corresponds to a perfect Gaussian distribution.

To convert an MFA in altitude units to temperature units, divide by 100 m/K. This
conversion is based on the adiabatic assumption that an air parcel’s changes in altitude
produce temperature changes at the rate of 1 K per 100 m (in dry air).
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Table 1. MFA for ER-2 Altitudes (19.4 km). Multiply by 0.58 for DC-8 Altitudes (11.4 km).

(Latitude Region) Winter Summer (Underlying Terrain)
POLAR 239m 68m Mountains

189~ 16” Ocean
MID-LATITUDE 173m 125m Mountains

121" 72”7 Ocean
TROPICAL 176m 173 m Mountains

124”7 120" Ocean
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Fig. 1. Isentrope altitude cross-sections for an ER-2 flight from Hawaii to Fiji, 27 March 1994.
The isentropes are 20K of potential temperature apart starting with 400K at ~17.5km. The
ER-2 altitude is shown by the light-gray trace. The thick, smooth black traces are isentropes
based on synoptic scale (assimilated) data. The thin colored traces, with detailed structure, are
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isentropes based on MTP/ER2 data.
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Fig. 2. Overlay of assimilated (thick black traces) and MTP-measured (thin color traces) IACs
for DC-8 flight from Alaska to Hawaii on 11 December 1995. The isentropes are 10K apart
starting at 310K at the altitude/latitude location 8 km and 43 North. The aircraft altitude (light-
gray trace) is 10.7 km for the flight segment north of 19° latitude, and 11.9 km for the southern

flight segment.
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Fig. 3. Color-coded air temperature derived from the MTP/DC8 during a 11 December 1995
flight from Alaska to Hawaii. The arrows are a subjective interpretation of a residual circulation
that would produce the measured temperature pattern. Arrow length suggests the magnitude
of motion, which in most cases is proportional to the temperature anomaly associated with the
arrow. The “J” at 34.5° latitude represents the sub-tropical jet. White dots show MTP-measured
tropopause altitudes. The heavy dashed line is a suggested “tracer tropopause” which is based
on the MTP tropopause at locations where tracers are compatible with it and is based on either
in situ tracers (52-56°) or remotely-sensed ozone (20-36°) elsewhere. The DC-8 aircraft’s
altitude is shown by a solid trace (11.9 km south of 28° and 10.7 km north of 28°).
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Fig. 4. Two versions of the 490 K isentrope altitude for the ER-2 flight of 2 November 1991 from
California to Maine. The upper trace (black) is based on an assimilated data archive. The thin
trace (red) is based on MTP/ER2 measurements. A filtered version of the MTP/ER2 measured
trace (blue) is shown to simulate synoptic scale resolution.
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Fig. 5. Histogram of temperature differences corresponding to altitude differences between
the measured (mesoscale) and assimilated (synoptic) altitudes in Fig. 4. The model fit is a

Gaussian with FWHM=2.55K.
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Fig. 9. (a) Histogram of mesoscale departures from synoptic scale smoothed version of
“coastal mountain” portions of the ER-2 20 January 1989 flight.
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Fig. 9. (b) Histogram of mesoscale departures from synoptic scale smoothed version of “ocean”

portions of the ER-2 20 January 1989 flight.
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Fig. 10. Measured “Winter” and “Summer” MFA versus latitude. All data are from ER-2 flights.
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