
ACPD
9, 24731–24753, 2009

Estimations of
climate sensitivity

B. Lin et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Atmos. Chem. Phys. Discuss., 9, 24731–24753, 2009
www.atmos-chem-phys-discuss.net/9/24731/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Chemistry

and Physics
Discussions

This discussion paper is/has been under review for the journal Atmospheric Chemistry
and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Estimations of climate sensitivity based
on top-of-atmosphere radiation imbalance
B. Lin1, L. Chambers1, P. Stackhouse Jr.1, B. Wielicki1, Y. Hu1, P. Minnis1,
N. Loeb1, W. Sun2, G. Potter3, Q. Min4, G. Schuster1, and T.-F. Fan2

1NASA Langley Research Center, Hampton, VA 23681, USA
2SSAI, One Enterprise Parkway, Hampton, VA 23666, USA
3University of California at Davis, Davis, CA 95616, USA
4State University of New York at Albany, Albany, NY 12222, USA

Received: 21 October 2009 – Accepted: 4 November 2009 – Published: 18 November 2009

Correspondence to: B. Lin (bing.lin@nasa.gov)

Published by Copernicus Publications on behalf of the European Geosciences Union.

24731

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/24731/2009/acpd-9-24731-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/24731/2009/acpd-9-24731-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 24731–24753, 2009

Estimations of
climate sensitivity

B. Lin et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Abstract

Large climate feedback uncertainties limit the accuracy in predicting the response of
the Earth’s climate to the increase of CO2 concentration within the atmosphere. This
study explores a potential to reduce uncertainties in climate sensitivity estimations us-
ing energy balance analysis, especially top-of-atmosphere (TOA) radiation imbalance.5

The time-scales studied generally cover from decade to century, that is, middle-range
climate sensitivity is considered, which is directly related to the climate issue caused
by atmospheric CO2 change. The significant difference between current analysis and
previous energy balance models is that the current study targets at the boundary con-
dition problem instead of solving the initial condition problem. Additionally, climate sys-10

tem memory and deep ocean heat transport are considered. The climate feedbacks
are obtained based on the constraints of the TOA radiation imbalance and surface
temperature measurements of the present climate.

Currently, there is a lack of high accuracy measurements of TOA radiation imbalance.
Available estimations indicate that TOA net radiative heating to the climate system is15

about 0.85 W/m2. Based on this value, a positive climate feedback with a feedback
coefficient ranging from −1.3 to −1.0 W/m2/K is found. The range of feedback coeffi-
cient is determined by climate system memory. The longer the memory, the stronger
the positive feedback. The estimated time constant of the climate is large (70∼120
years) mainly owing to the deep ocean heat transport, implying that the system may20

be not in an equilibrium state under the external forcing during the industrial era. For
the doubled-CO2 climate (or 3.7 W/m2 forcing), the estimated global warming would
be 3.1 K if the current estimate of 0.85 W/m2 TOA net radiative heating could be con-
firmed. With accurate long-term measurements of TOA radiation, the analysis method
suggested by this study provides a great potential in the estimations of middle-range25

climate sensitivity.
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1 Introduction

Large climate feedback uncertainties limit the ability of current general circulation mod-
els (GCMs) to predict the climate system change, including the response of the Earth’s
climate to the increase of CO2 concentration within the atmosphere. Current esti-
mates of global mean temperature increases for a doubled-CO2 (2×CO2) atmosphere5

range from ∼1.0 K up to more than 10 K (IPCC, 2007), which has remained virtually
unchanged for three decades. This wide envelope of climate projections is an obvious
result of the intrinsic sensitivity of climate prediction systems to the climate feedback
coefficient (Roe and Baker 2007). Development of advanced methods to reduce the
large feedback uncertainties is critical and urgent for both climate sciences and socio-10

economic policies.
Most projections of future climate scenarios are based on GCM results. Complicated

non-linear processes of the atmosphere, land, ocean, cryosphere, biosphere, and hu-
man activities, make the GCM simulated results difficult to understand. Incomplete
knowledge of these processes, especially those related to clouds and precipitation,15

causes considerable differences in parameterizations and representations of physical,
chemical and biological processes in individual GCMs. This, in turn, generates large
differences in projected climate feedbacks and responses.

Another way of predicting the climate change for a 2×CO2 atmosphere is to build
simplified or idealized models that focus on the variations of fundamental physical20

processes of the Earth’s climate system. Among these simplified/idealized models,
energy balance models based on perturbation theory have been used for decades.
These idealized models generally solve linear differential equations (LDEs) that ac-
count for the basic climate mean state, forcing, and response. Early investigations
(e.g., Dickinson, 1981; Hansen et al., 1984; Manabe et al., 1990) lacked specific infor-25

mation within the solutions of these LDEs owing to insufficient knowledge of the climate
feedbacks, climate transition time scales, and heat reservoirs. Based on energy bal-
ance approach, Schwartz (2007) recently estimated the climate effective heat capacity,
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time constant and feedback coefficient from ocean heat storage and surface temper-
ature measurements. The climate response time scale he found is generally about 5
years when an autoregressive technique was applied to the autocorrelation function of
the detrended surface temperature measurements. This response time scale of global
surface temperature results in that the climate system may have a feedback close to5

that of blackbody emission to the external forcing mainly caused by the CO2 increase
in the atmosphere, because a relatively short equilibrium time period is needed. The
short response can also be a direct result of an energy balance analysis that only con-
siders a small heat capacity of the climate system (such as that of only the mixed layer
of ocean). Although only the temperature of the ocean mixed layer is linearly related10

to surface temperature, the climate forcing driving the variations of the surface temper-
ature heats not only the ocean mixed layer but also the deep ocean owing to oceanic
vertical heat transport. This heat transport process would significantly increase the
time constant of the climate system. Actually, the autocorrelation function of the sur-
face temperature measurements is non-integrable (or non-convergent) even when the15

time lag reaches as long as 20 years, indicating that the integral of the autocorrelation
function cannot provide a reliable estimate of the time constant (Von Storch, 2004).
The non-integrable feature of the autocorrelation of the observed temperature data im-
plies that the surface temperature data series may be not long enough to describe the
actual climate system under current transient conditions if an autoregressive technique20

is used. Besides this short time scale issue, previous energy balance analyses tried to
solve an initial condition problem of LDEs, while the climate prediction for the increas-
ing CO2 atmosphere is clearly a boundary condition problem. Furthermore, the climate
feedbacks should include not only short-term (including instantaneous) responses but
also longer time scale (or historical) responses because the climate generally has cer-25

tain memories, which are omitted in these energy balance models.
With the problems in the estimation of climate feedbacks, especially for GCMs and

idealized energy balance models, innovative methods in determining climate sensitivity
are needed as called for by Aires and Rossow (2003). This study explores a potential
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method to reduce climate feedback uncertainties by considering the mean transient
climate states and addressing previously mentioned issues within the idealized energy
balance models. The climate model used here is both complicated enough to account
for major physical processes of the climate with an increasing external forcing and sim-
ple enough to understand the physics of the results and analyzed physical processes.5

Owing to the limitation of the observational data length and the simplification of the
modeled climate system, climate time scales either longer than multi-century involv-
ing deep ocean circulation and other even longer geological processes or shorter than
those of weather phenomena are not considered in this study. Thus, this study more
or less focuses on ‘middle-range’ climate sensitivity, the key problem of the Earth’s10

climate change caused by changing CO2 amount of the atmosphere. The solution of
the climate model is obtained using constraints from observations at the boundaries
of the Earth’s climate system, especially from the top-of-atmosphere (TOA) radiation
imbalance measurements. The uncertainties in current feedback estimates are quan-
tified. Because of the extreme importance of the climate energy imbalance for climate15

studies, long-term measurements of TOA radiation with both high precision and high
absolute accuracy are required. With these measurements and the method suggested
by this study, the uncertainty in climate feedback estimates could be significantly re-
duced.

2 Methodology20

In an idealized energy balance model (e.g., Manabe et al., 1990; Schwartz, 2007),
the response of the global mean climate to a radiative forcing F in a unit area can be
expressed as:

Cp
dT
dt

= F + ftotT, (1)

where T and t represent the small global mean surface temperature perturbation and25

the time, respectively; Cp is the climate heat capacity, assumed to be proportional to
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an effective depth of the ocean; and ftot is the total feedback coefficient. The time
constant in this case is Cp/ftot. Were the climate in a normal state (F =0 for long time),
any small temperature perturbation would cause at least a −3.3 W/m2/K of radiative
heat release to space mainly because of blackbody emission. Thus, the feedback
coefficient for the normal climate fn is −3.3 W/m2/K. For a forced climate, any total5

feedback coefficient ftot values larger (smaller) than fn would be the result of positive
(negative) climate feedbacks besides the blackbody thermal emission (Note: hereafter
the meaning of “positive” or “negative” climate feedbacks is based on this blackbody
emission concern). The evaluation of the idealized climate described by Eq. (1) is
clearly focused on the two parameters Cp and ftot as mentioned previously.10

Since the climate system described by Eq. (1) only deals with short-time scale (in-
cluding instantaneous) feedbacks and climate states, no historical (or memory) climate
state is involved. Thus, we call the feedback coefficients in the equation as short-term
feedback fS . For short-time scales and small climate perturbations, the changes in sur-
face net radiation, mainly from emission, would be radiated to space at TOA as a result15

of too little atmospheric heat capacity and the short time for the climate to adapt to
the surface change. Thus, the climate system has a strong tendency that pushes itself
back to its equilibrium state for small short-term climate perturbations mainly by radi-
ation adjustment. Evaluating TOA and surface radiation data, a short-term feedback
coefficient about −6 W/m2/K was found. This short-term feedback fS can be consid-20

ered as a result of the normal climate feedback fn superimposed by fast radiative heat
release processes of the climate system with a feedback coefficient f of −2.7 W/m2/K,
i.e., fS = fn + f .

The actual climate system also has certain memories for climate states. For exam-
ple, the soil moisture reservoir has a memory considerably longer than that of most25

atmospheric processes. The time scale of soil moisture memory is generally about
half a year with significantly longer times (longer than 1 year) for deep soil (Wu and
Dickinson, 2004). Other processes such as those in cold regions involving frozen soil,
snow and ice and wind driven and thermohaline ocean circulations have much longer
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memories (Blender et al., 2006). Evaluating global mean surface temperature anoma-
lies of the Goddard Institute for Space Studies (GISS; Hansen et al., 1996; updated
at http://data.giss.nasa.gov/gistemp/) shows that significant memories of the climate
system with 95% or higher confidence level can be detected from the autocorrelation
function of the surface data with time lags shorter than about 8 years (Note that the5

estimated autocorrelation function can be found in Schwartz, 2007). Thus, a feedback
term for system memory fm is added to Eq. (1). Since this system memory feed-
back comes from a non-instantaneous response of the climate system, the feedback
also represents long-term climate feedbacks, which has significant contributions to the
middle-range climate sensitivity. In this study, we use the average of surface temper-10

ature perturbations during previous time periods to represent the effect of the climate
feedbacks from memories.

An additional modification of Eq. (1) is required to separate the deep ocean from the
surface heat reservoir so that the heat capacity Cp only represents the ocean mixed
layer whose temperature tracks the surface temperature. The temperature variations of15

the thermocline and abyss of the ocean are different from those of the mixed layer and
surface, but the net radiation into the climate system generally not only heats the ocean
mixed layer but also transports into the deep ocean. Thus, a term to characterize this
deep ocean vertical heat transport process is added to Eq. (1) as:

Cp
dT
dt

= F + fsT +
fm
tm

∫ t

t−tm
Tdt ’−O, (2)20

where tm is the system memory length, and O is the deep ocean component of the heat
transport of TOA net radiation. When memory length tm approaches zero, the memory
term reduces to fmT , which can be merged to the short-term feedback fsT term, i.e.,
the system has no memory or long-term feedback effects. In this case, the difference
between our analysis and previous studies is that the deep ocean heat transports are25

included here.
For oceanic vertical heat transport, a simple parameterization using an exchange

coefficient in terms of mixed layer temperature or diffusive heat transfer is commonly
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used (Dickinson, 1981; Hansen et al., 1984; Lindzen and Giannitsis, 1998). Because
of extreme complicated sea water vertical movement such as oceanic overturn and
Ekman pumping, this simplification of heat transport may not be best representations
of ocean vertical heat exchange (Dickinson, 1981; Hansen et al., 1984). This study
assumes that the transported heat to deep ocean is proportional to TOA net radiation,5

i.e.,

O=µ(F + fsT +
fm
tm

∫ t

t−tm
Tdt′), (3)

where µ is the heat transport coefficient for the deep ocean. This assumption repre-
sents an integrated condition of the vertical heat transport over all ocean basins and
may be more straightforward for a system with small perturbations. Also, it results in10

similar ocean heat transports and long-term feedbacks as those from the parameteri-
zation in term of mixed layer temperature from our simulations of the energy balance
approach owing to nearly-linear relationship between TOA net radiation and tempera-
ture (c.f. Fig. 2 later).

Combining Eqs. 2 and 3, our energy balance model is derived as:15

Cp
(1−µ)

dT
dt

= F + fsT +
fm
tm

∫ t

t−tm
Tdt′, (4)

which can be rewritten as:

Cp′dT
dt

= F + fsT +
fm
tm

∫ t

t−tm
Tdt′, (5)

with

Cp′ =Cp/(1−µ)=Cp/η=ρSwD/η, (6)20

where η=1−µ is the factor of the net radiation that is trapped within the climate system
before being transported into the deep ocean, and ρ, Sw, as well as D are water
density, water specific heat, and ocean mixed layer depth, respectively.
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The key unknowns for the climate system described by Eqs. (5) and (6) are the co-
efficients fm and µ. Although certain knowledge about mixed layer depth is helpful in
understanding climate heat storage and transport processes, the solutions of feedback
fm and temperature T for these equations are not specifically dependent on the mixed
layer depth. For example, a set of fm, µ and T solutions that satisfy these equations5

for a depth D=50 m would have the same fm and T solutions as a climate system with
D=100 m. The only change for this set of solutions is the η (or 1−µ) that is proportion-
ally doubled since these cases with different mixed layer depths mathematically hold
the same governing equations. So, once these equations are resolved with a specified
mixed layer depth, the solution for any other depth is also resolved. This significantly10

reduces the complexity of the mathematical calculations. Furthermore, even though
Eq. (5) is not in a normal form of LDE, the total feedback coefficient of the climate
system can be obtained in a manner similar to a linear equation. For an example,
the asymptotical solution provides: T (t→∞)=−F (t→∞)/(fs + fm)=−F (t→∞)/ftot,
where the total feedback ftot is the combined result of fs and fm. This result implies the15

extremely important middle-range climate sensitivity, such as those for 2×CO2 atmo-
sphere, can be inferred after fm is estimated.

3 Results

To understand the basics of the change in climate states, we consider the mean tem-
perature perturbation and climate forcing during the last 120 years. For the modeled20

climate system (Eq. 5), we assume that there is no temperature perturbation before
time zero, or, T (t<0)=0. This t=0 can be considered as 120 years ago. Also, the
forcing is set to be zero before this time, that is, F (t<0)=0, because this study mainly
focuses on the climate change caused by anthropogenic processes, especially CO2
change, whose forcing was minimal at pre-industrial time. Because of the system25

memory, these boundary conditions before t=0 are critical in solving the governing
equation. After time 0, the forcing F is linearly increased to 1.8 W/m2 at the end of the
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120 years. This 1.8 W/m2 external forcing is consistent with current estimates of the
net change of effective forcing during the last 120 years (IPCC, 2007; Hansen et al.,
2005; Schwartz, 2007). In this study, a short-term feedback coefficient fs of −6 W/m2/K
is used in Eq. (5).

As mentioned in the previous section, the coefficients for the system memory feed-5

back and the deep ocean heat transport are the unknowns in Eq. (5). These unknowns,
especially the feedback from system memory, are the key to the prediction of future cli-
mates. To solve these unknowns, we apply two constraints on Eq. (5) for the last 10
years of the 120-year studied period. The first constraint is the observed average of
surface temperature increase TL, which is about 0.6 to 0.7 K (Hansen et al., 2005). A10

TL value of 0.65 K is used here. The uncertainty associated with this estimate is about
0.05 K. The other constraint is the imbalance of TOA radiation, QL, which has been
measured by satellites for more than two decades. Decadal TOA net radiation records
from satellite measurements show that the measurement precision is generally within
about 1 W/m2 for large-spatial-scale annual means (Wielicki et al., 2002; Lin et al.,15

2008). Unfortunately, there is a lack of high accurate absolute calibration for satellite
TOA radiation measurements, and, thus, the absolute accuracy of the radiation mea-
surements could be lower. Since there is almost no heat storage change within the
atmosphere and land at annual time scales owing to their negligible heat capacity and
temperature change, the TOA net radiation or the imbalance should be the same as20

ocean heat storage change. Actually, the measurements of interannual variations of
TOA net radiation and ocean heat storage are found to be very consistent (Wong et
al., 2006). From the ocean heat storage measurements, the TOA net radiation can
be inferred as about 0.85 W/m2 (Wong et al., 2006; Willis et al., 2004). Thus, the av-
erage value of 0.85 W/m2 for the annual means of the last 10 years is used in this25

study, following Hansen et al. (2005) and Trenberth et al. (2009). Since the uncer-
tainty of the annual means of the net radiation is about 0.4 W/m2 (Wong et al., 2006),
the uncertainty in the 10-year average of QL would be 0.13 W/m2 if the year-to-year
variations were independent. Considering potential physical processes beyond the
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year-to-year variability or decadal scale processes, an uncertainty of 0.2 W/m2, which
is about 50% higher than that (0.13 W/m2) of the assumed independent variability, is
assigned as the error bar for the random part (i.e., not including the systematic bias) of
the errors associated with the 10-year TOA radiation imbalance (0.85 W/m2) of current
analysis. We emphasize that at present, the estimates of the absolute errors (or the5

systematic biases) associated with these ocean heat storage measurements (or the
TOA radiation imbalances) are not available. Large errors as high as 1 W/m2 poten-
tially exist. This analysis uses those TOA imbalance and error bar values only as a
relevant observation-based case for our novel method in estimating the climate sensi-
tivity. Long-term TOA radiation measurements with high precision and high absolute10

accuracy in determining the TOA imbalance are critical for future climate predictions.
With these aforesaid two constraints and other basic information mentioned previ-

ously for the climate system model, Eq. (5) can be solved numerically. Actually, an
analytical solution for the climate system is also possible although this equation can-
not be solved in the normal LDE framework. But, to derive the analytical solution, a15

transcendental equation needs to be solved, which still requires numerical calculations
in addition to complicated analytical efforts. This is beyond the scope of this paper.
To focus on the understanding of physical processes of the climate system, numerical
calculations are therefore directly applied to Eq. (5).

Figure 1 shows the numerical solution of the coefficients of the deep ocean heat20

transport (left panel) and memory feedback (right panel) for a memory length tm of up
to 20 years. As mentioned previously, the results for fm are not specifically dependent
on mixed layer depth, so a 100 m mixed layer depth is used in solving fm and µ. Other
µ values for different mixed layer depths are calculated based on the proportionality
of η with the depth. The plotted µ values are for D=100 m (black curve), 75 m (blue25

curve) and 50 m (red curve), respectively. These mixed layer depths are equivalent
to the real Earth’s ocean mixed layer depths of 141 m, 106 m and 70 m, respectively,
since the ocean covers only about 71% of the Earth’s surface. Although there are not
enough measurements to determine the climatology of global averaged mixed layer
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depth, the actual global mean mixed layer depth would be generally within the range of
the calculated depths. Thus, these calculated results constrained by observations pro-
vide certain information about the first order heat transports to the deep ocean. From
Fig. 1, it can be seen that most of the heat (85 to 93% for tm<10 years) generated
by the climate forcing and feedbacks is transported to the deep ocean. The shallower5

the mixed layer the larger the percentage of heat transported because the surface
(or, mixed layer) temperature is constrained by current observations. In other words,
with the same amount of net heat into the climate system as that used in this study
(0.85 W/m2), more heat has to be removed from the mixed layer to the deep ocean for
a shallower mixed layer climate system to satisfy the observed temperature change.10

For a given mixed layer depth, changes in heat transport coefficients are generally
small (<∼2%). Small decreases of the coefficients with system memory length are
caused by increases in the feedbacks for climates with longer memories (right panel).
Stronger memory feedback under the constrained net radiation condition means that
more heat would be trapped in the mixed layer, thus, heat transport coefficient would be15

smaller to maintain the energy conservation. Generally, the long-term feedback coeffi-
cient fm from current estimation is positive and slightly increases with memory length
from 4.7 to 5.0 W/m2/K for tm changing from 1 to 10 years, which results in the critical
feedback coefficient ftot varies from −1.3 to −1.0 W/m2/K. This long-term feedback is
so strong that it even changes the total climate feedback from negative owing to short-20

term feedbacks to positive, that is, ftot = fs + fm>fn. This positive feedback is a direct
result of the observed temperature increase and TOA net heating for the climate. With-
out the net heating, the system would be within its quasi-equilibrium state as shown by
Schwartz (2007). Short-term feedback processes of the climate try to absorb external
forcings applied to the system. The potential TOA radiation imbalance (or ocean heat25

storage change) implies that there are certain physical processes that provide persis-
tent positive feedbacks to reduce the effect of short-term negative feedbacks and to let
the climate system adapt to long-term forcing influences.

Figure 2 shows the simulated TOA net radiation and surface temperature during
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the last 120 years for a climate system with memory length of 10 years. The current
0.85 W/m2 radiation imbalance could be built up from the entire history of the industrial
era (top panel), and may continue to grow if no limits on the increase of CO2 and other
greenhouse gas emissions are made. For the surface temperature plot (bottom panel),
our estimates (black line) are offset by 0.2 K in order to compare to the 5-year running5

mean of the observed GISS surface data (red curve). The two temperature time series
are very consistent. The detailed variability caused by climate processes such as
volcanoes and El Nino/Southern Oscillation in the observed surface temperature is
beyond the scope of the current analysis since this study only considers the changes in
the mean climate state forced by long-term forcing. Near-linear trends of the estimated10

results for both radiation and temperature are observed, which is clearly related to the
linear forcing F used in this analysis. Another reason for the near-linear results is the
large time constant obtained by this study.

The time constant (Fig. 3) of the modeled climate increases with memory length
and has a sharp change for memories beyond 10 years, especially for tm>15 years.15

Even within the range of significant climate memories (1 to 10 years), the time con-
stant is large, varying from 74 years for 1-year climate system memory to 117 years in
the case of 10-year memory. This is much longer than the time scales of most atmo-
spheric processes and climate system memory. Since the TOA radiation is significantly
imbalanced, and the ocean mixed layer is relatively shallow compared to the net heat-20

ing from the radiation, a large amount of heat (>85%) has to be transported to the
deep ocean in order to satisfy surface temperature observations. This continuous pro-
cess of dumping more and more heat to the deep ocean makes the surface and mixed
layer temperatures hardly reach equilibrium, which, along with a much smaller abso-
lute value of ftot compared to that in normal conditions, increases the time constant of25

the climate system. Although our estimates of the time constant are obtained based
on observational constraints, confirming these estimates is almost impossible because
observations related to long time scale processes are presently not available. Coupled
ocean-atmosphere GCM simulations (Hansen et al., 2007) show that the climate re-
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sponse for an instantaneous 2×CO2 forcing reaches 60% of the equilibrium response
after 100 years and 90% after 1000 years. The former system response corresponds
to a time constant of 109 years, which is consistent with current estimates, while the
latter indicates another even bigger time constant of the climate system of about 434
years. This longer time scale may be related to thermohaline circulations of the deep5

ocean, whose physical processes are beyond the scope of current study.
The effect of big time constant (∼70 to 120 years) of the climate system on climate

changes is illustrated in Fig. 4 for a hypothesized scenario in which a fixed external
forcing equal to the current value (or 1.8 W/m2) is applied to the climate system after
present day. In this figure, the present day is set to be 0, that is, the results for time10

>0 are projections. The black, red and blue curves represent the results for memory
length of 1, 5 and 10 years, respectively, which may cover the entire range of possible
memory length of the studied climate system. The constraints on the boundary con-
ditions of both pre-industrial era and present days cause the three simulated results
indistinguishable before time 0. A climate system with a shorter memory reaches its15

equilibrium state slightly earlier than those with longer memories. It can be seen that
even with a stabilized forcing, the system may need a few hundred years more to reach
its equilibrium state. The asymptotical temperature increase in this case varies from
1.4 to 1.8 K, because the total feedback coefficient ftot ranges from −1.3 to −1 W/m2/K.
Thus, potential warming of the climate could be stronger than what has been observed20

in the last decade or so if the 1.8 W/m2 TOA net radiation imbalance is confirmed.
With TOA radiation imbalance and surface temperature measurements, the key co-

efficients of climate feedback and deep ocean heat transport can be estimated, which
may potentially reduce the uncertainty of estimated climate sensitivity. However, cer-
tain factors within the current energy balance model, including the choice of the esti-25

mated short-term feedback coefficient fs as well as errors in the constraints of the last
10-year averages of the temperature and net radiation used in our 120-year calcula-
tions, may influence the estimations of these coefficients. Changes in fs values directly
affect our solutions of fm, but the effect of different fs values on total feedback coefficient
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ftot is small because the temperature and net radiation constraints force the modeled
climate system to generate similar amounts of net heat and temperature increases to
satisfy these boundary conditions. Thus, the basic conclusions about climate feedback
and sensitivity would not be affected much by the choice of fs. This also means that
the system constraints from the TL and QL observations are the most important error5

sources in this middle-range climate sensitivity analysis.
Figure 5 shows the results of sensitivity tests of the ocean heat transport (left panel)

and long-term climate feedback (right panel) to the constraints of TL and QL for the
climate system discussed for Fig. 1. In these sensitivity tests, we add ±0.1 K tempera-
ture and ±25% (or 0.2 W/m2) radiation uncertainties into the original TL and QL values,10

respectively. This temperature uncertainty is about twice as large as current estimates,
and the 0.2 W/m2 uncertainty is about 50% higher than the assumed independent QL
variability and consistent with the estimate of Kiehl (2007). We emphasize that the
TOA net radiation uncertainty used here may be underestimated, as discussed previ-
ously. Although the actual errors for the absolute TOA radiation imbalance or ocean15

heat storage change are not available, this study still provides the essential informa-
tion on the sensitivity of current method in the estimations of the climate feedback and
middle-range climate sensitivity. The black, red and blue curves in the figure represent
results of control, TL and QL tests, respectively. The µ changes with both TL and QL
uncertainties are small and basically within about 2∼3%. Clearly, the changes in µ with20

TL or QL changes are asymmetric because of the upper limit unity of µ values. Note
that lower TL constraints cause higher µ values than higher TL constraints since more
heat needs to be transported out for a constant heating condition. Unlike the µ values,
the higher the TL or QL constraints, the stronger the long-term feedbacks (or the bigger
the fm values). Also, the same variations in TL or QL generate almost the same fm25

changes. An additional critical point is that the fm changes caused by uncertainties in
QL are generally significant, while the potential errors caused by TL uncertainties may
not be so severe. For example, the change in fm is smaller for a TL uncertainty of 0.1 K
than those from a 0.2 W/m2 uncertainty in QL. Since the 0.1 K uncertainty added on
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TL is already about 100% of the increases in the estimated TL uncertainties, while the
0.2 W/m2 uncertainty imposed on QL is only a 50% of the increases in the assumed
independent QL variability and could still be underestimated owing to potential large
bias errors in the absolute TOA radiation imbalance estimate. Thus, it is more likely
that QL errors would create larger errors in the estimated fm. Based on the results of5

current sensitivity tests, we estimate that the error bars for fm are about ±0.4 W/m2/K
for the considered QL uncertainty of 0.2 W/m2.

4 Conclusions

Since for the modeled climate system (or for the climate variability on time scales about
a century) the climate memory is generally within 1 to 10 years, the estimated total10

climate feedback coefficient ftot would be in the range of −1.3 to −1.0 W/m2/K for the
currently estimated 0.85 W/m2 TOA radiation imbalance. Thus, for the 2×CO2 climate
(or 3.7 W/m2 forcing), the estimated global warming would be in the range between
2.8 K to 3.7 K. Since the best estimated memory length of the climate system is about
4 years owing to the time lag of the maximum autocorrelation beyond 0 lag of the15

GISS surface temperature data, the best estimates of fm and ftot would be 4.8 and
−1.2 W/m2/K, respectively, resulting in our estimated most likely warming of 3.1 K if the
radiation imbalance used here can be confirmed. These results are clearly in alignment
with previous projections around the peaks of climate sensitivity distributions obtained
from GCMs (IPCC, 2007). The difference between current estimates and previous20

results is that our estimates provide very straightforward physics, and have a great
potential to reduce the broad range of climate predictions from GCMs.

Because of the extreme importance of the climate energy imbalance for climate
studies as shown in this report, long-term measurements of the TOA radiation with
both high precision and high absolute accuracy are desperately demanded. These25

measurements will provide the key information to nail down the climate feedback and

24746

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/24731/2009/acpd-9-24731-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/24731/2009/acpd-9-24731-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 24731–24753, 2009

Estimations of
climate sensitivity

B. Lin et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

middle-range climate sensitivity. A great potential in accurate climate predictions, thus,
could be realized. Furthermore, with long-term, accurate global energy imbalance
measurements and the method suggested by this study, a physically-based tool for de-
cisions related to global warming policies can be offered to the public and policymakers,
which will have enormous socioeconomic impacts.5
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Figures 465 

Fig. 1. The estimated coefficients of deep ocean heat transport µ (left panel) and climate 466 

feedback fm (in unit W/m
2
/K, right panel) of the climate system for memory length tm up 467 

to 20 years. The f parameter in this and following figures represents the feedback 468 

coefficient of fast heat release processes (c.f. the text). 469 
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473 

Fig. 1. The estimated coefficients of deep ocean heat transport µ (left panel) and climate
feedback fm (in unit W/m2/K, right panel) of the climate system for memory length tm up to 20
years. The f parameter in this and following figures represents the feedback coefficient of fast
heat release processes (c.f. the text).
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Fig. 2. Calculated results of TOA net radiation (top panel) and surface temperature (lower panel) 474 

during the last 120 years for a climate system with memory length of 10 years. For the 475 

surface temperature plot, calculated results (black line) are offset by 0.2 K to compare to 476 

the 5-year running mean of the observed GISS surface data (red curve). 477 

 478 
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482 

Fig. 2. Calculated results of TOA net radiation (top panel) and surface temperature (lower
panel) during the last 120 years for a climate system with memory length of 10 years. For the
surface temperature plot, calculated results (black line) are offset by 0.2 K to compare to the
5-year running mean of the observed GISS surface data (red curve).
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Fig. 3. The change of estimated climate time constant with climate system memory.  483 

 484 

485 Fig. 3. The change of estimated climate time constant with climate system memory.
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Fig. 4. The effect of big time constants on climate change. A fixed external forcing equal to the 486 

current value (or 1.8 W/m
2
) is applied to the climate system from the present day (or time 0) 487 

forward. The black, red and blue curves represent the results for memory lengths of 1, 5 and 488 

10 years, respectively. 489 
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Fig. 5. Sensitivity tests of the deep ocean heat transport (left panel) and long-term climate 493 

feedback (in unit W/m
2
/K, right panel) on the constraints of TL and QL. 494 
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Fig. 4. The effect of big time constants on climate change. A fixed external forcing equal to the
current value (or 1.8 W/m2) is applied to the climate system from the present day (or time 0)
forward. The black, red and blue curves represent the results for memory lengths of 1, 5 and
10 years, respectively.
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Fig. 5. Sensitivity tests of the deep ocean heat transport (left panel) and long-term climate
feedback (in unit W/m2/K, right panel) on the constraints ofTL and QL.
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