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Abstract

In this paper we describe and summarize the main achievements of the European
Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI
started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy
including: (a) a comprehensive database with a year of observations of the physical,
chemical and optical properties of aerosol particles over Europe, (b) the first compre-
hensive aerosol measurements in four developing countries, (c) a database of airborne
measurements of aerosols and clouds over Europe during May 2008, (d) comprehen-
sive modeling tools to study aerosol processes fron nano to global scale and their ef-
fects on climate and air quality. In addition a new Pan-European aerosol emissions
inventory was developed and evaluated, a new cluster spectrometer was built and
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tested in the field and several new aerosol parameterizations and computations mod-
ules for chemical transport and global climate models were developed and evaluated.
This work enabled EUCAARI to improve our understanding of aerosol radiative forcing
and air quality-climate interactions. The EUCAARI results can be utilized in European
and global environmental policy to assess the aerosol impacts and the corresponding
abatement strategies.

1 Introduction
1.1 Background

The study of atmospheric physics and chemistry as a scientific discipline goes back
to the 18th century when the principal issue was identifying the major chemical com-
ponents of the atmosphere. In the late 19th and 20th century attention turned to the
so-called trace gases and aerosol particles. Recently, the importance of atmospheric
aerosols to global radiation, cloud formation, and human health effects has motivated
several investigations. Trace gases and atmospheric aerosols are tightly connected
with each other via physical, chemical, meteorological and biological processes occur-
ring in the atmosphere and at the atmosphere-biosphere interface (see e.g. Seinfeld
and Pandis, 1998; Fowler et al., 2009). Human actions, such as emission policy, for-
est management and land use changes, as well as various natural feedback mecha-
nisms involving the biosphere and atmosphere, have substantial impacts on the com-
plicated couplings between atmospheric aerosols, trace gases, air quality and climate
(Brasseur and Roeckner, 2005; Monks et al., 2009; Arneth et al., 2009; Raes and
Seinfeld, 2009; Carslaw et al., 2010).

Atmospheric aerosol particles affect the quality of our life in many different ways. First
of all, they influence the Earth’s radiation balance directly by scattering and absorbing
solar radiation, and indirectly by acting as cloud condensation nuclei (CCN) (e.g. Charl-
son et al., 1992). The interaction between atmospheric aerosols and climate system
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is the dominant uncertainty in predicting the radiative forcing and future climate (IPCC,
2007; Andreae and Rosenfeld, 2008; Myhre, 2009; Quaas et al., 2009; Isaksen et
al., 2009). The effects of aerosols on temperature and precipitation patterns can be
seen mainly over regional and continental scales. Secondly, aerosol particles deterio-
rate both human health and visibility in urban areas (Pope and Dockery, 2006; Hand
and Malm, 2007; Anderson, 2009). The interactions between air quality and climate
are largely unknown, although some links have been identified (e.g. Swart, 2004; Ar-
neth et al., 2009) or even quantified (Dentener et al., 2005). Thirdly, aerosol particles
modify the intensity and distribution of radiation that reaches the earth surface, having
direct influences on the terrestrial carbon sink (Gu et al., 2002). Better understand-
ing and quantifying of the above aerosol effects in the atmosphere requires detailed
information on how different sources (including those related to the biosphere) and
atmospheric transformation processes modify the properties of atmospheric particles
and the concentrations of trace gases. It also requires the development of advanced
instrumentation and methodologies for measuring and validating atmospheric compo-
sition changes and understanding key atmospheric processes (Laj et al., 2009)

The European Aerosol Cloud Climate and Air Quality Interactions project EUCAARI
is an EU Research Framework 6 integrated project focusing on understanding the in-
teractions of climate and air pollution (Kulmala et al., 2009). EUCAARI has integrated
in a multidisciplinary way atmospheric processes from the nano- to global scale. The
project brought together several leading European research groups, state-of-the-art in-
frastructure and some key scientists from non-EU countries to investigate the role of
aerosol on climate and air quality. Altogether 48 partners from 24 countries partici-
pated in the project. EUCAARI has established a pan-European measurement net-
work for Lagrangian studies and four stations in developing countries. Here we present
the main research achievements, improved scientific methods, and the answers to the
main scientific questions and objectives of EUCAARI. We focus on the quantification of
different processes related to aerosol radiative forcing of our climate. We also quantify
the side effects of possible air quality directives on aerosol concentrations and present
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the roadmap for future analysis. All of this is possible since we have improved the gen-
eral understanding of aerosol life cycle, which enabled us to improve the description of
radiative forcing and different feedbacks. It also allowed us to assess aerosol effects
on climate and air quality and analyze a range of abatement strategies.

We present first an overview of the main tools (Sect. 2) and results of the project
(Sect. 3). In Sect. 4 we focus on our objectives and specific questions (given in
Sect. 1.2). In Sect. 4 we also describe the major improvements of the description
of the aerosol life cycle, which resulted in major improvements of the climate and air
quality models. In Sect. 4 we also present our legacy including data banks, implemen-
tations of process-based parameterisations in chemical transport and global climate
models improving their performance.

1.2 Mission and objectives

Originally The EUCAARI mission and objectives were determined in 2005-2006 (Kul-
mala et al., 2009):

(1) Reduction of the current uncertainty of the impact of aerosol particles on climate
by 50 % and quantification of the relationship between anthropogenic aerosol particles
and regional air quality. To achieve this objective EUCAARI concentrated on the areas
of greatest uncertainty to:

1. ldentify and quantify the processes and sources governing global and regional
aerosol concentrations.

2. Quantify the physico-chemical properties of atmospheric aerosols.

3. Quantify the feedback processes that link climate change and atmospheric
aerosol concentrations with emphasis on the production and loading of natural
aerosols and their precursors.

(2) Quantification of the side effects of European air quality directives on global and
regional climate, and providing tools for future quantifications for different stakeholders.
17948
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EUCAARI also aimed to make technological developments by improving aerosol and
ion measurement techniques. This was achieved by using prototypes of new equip-
ment in field experiments, thus providing the relevant technological trials for product
development by small and medium companies (SME). EUCAARI also produced ad-
vanced aerosol and cloud models that can be used by the global and regional climate
and air quality modelling communities.

EUCAARI Objective 1 was achieved by improving our understanding of atmospheric
aerosol physics and chemistry. This improvement enhanced our ability to forecast
short-term regional air quality as well as to estimate the long-term aerosol effects on
current and future global climate. Objective 2 facilitated the linking of the air quality and
global climate change problems and provided the necessary tools for their quantifica-
tion for use by different stakeholders.

The impact of EUCAARI can be measured by its ability to achieve its objectives and
its contribution to (a) research, (b) technological improvements; (c) mitigation strategies
and (d) solution of air pollution problems.

During project planning the consortium identified 12 key scientific topics from
nanometre scale processes to the overall aerosol-cloud effect on climate. These were:

1. In-situ formation (nucleation) of aerosols.

2. Number and mass emissions of primary aerosol from natural and anthropogenic
sources at urban, regional, and global scales.

3. Formation of secondary organic aerosol and the partitioning of semi-volatile com-
pounds between the gas and aerosol phases.

4. Ageing of aerosols and evolution of their properties during their atmospheric life-
time.

5. Attribution of the different aerosol mass components in Europe to specific sources.

6. Current and future contributions of natural versus anthropogenic, and primary
versus secondary sources to particle number concentrations.
17949
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7. Long-range transport of aerosol particles and their precursors from and to Europe
as well as their transport within Europe.

8. Seasonal behaviour of aerosol particles in economically developing countries
9. Air quality and local climate interactions inside and outside Europe

10. The impact of aerosols and trace gases on cloud droplet activation, cloud lifetime,
and extent (the aerosol indirect effects).

11. Interactions between the aerosol cycle, the water cycle, and the biosphere.

12. Climatic feedbacks related to anthropogenic/biosphere-aerosol-cloud-climate in-
teractions

Highlights of EUCAARI contributions to our knowledge in these key areas are summa-
rized in Sect. 4 and Appendix E.

2 Scientific approach

In order to achieve our objectives and research question we performed multidisciplinary
research including both experimental and theoretical methods. Laboratory and field ex-
periments, including development of novel instrumental techniques, provided new infor-
mation about aerosol and cloud properties and processes, while developments in basic
theory, simulations, and models gave us a way to integrate and compare the results
in a broader context. EUCAARI utilized the long-term aerosol observation network
in Europe established by EUSAAR (European Super sites for Atmospheric Aerosol
Research), and also established long-term ground-based aerosol measurements in
economically growing countries in Asia, Africa, and South-America to plug significant
gaps in our global aerosol observation capability. In parallel, EUCAARI performed in-
tensive airborne measurements over Europe during May 2008. Additional details of the
technical approach are given in Sect. 2.2 and references therein.
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Figure 1 shows the research chain (the “EUCAARI arrow”) utilized as the backbone
of EUCAARI research. It begins at the molecular scale extending to the regional and
global scale. The scientific approach starts from basic theories of nucleation and chem-
ical processes followed by models of detailed aerosol dynamic/atmospheric chemistry
and vegetation-atmosphere exchange, laboratory experiments with continuous field
measurements at several research stations and global-scale modelling. Understand-
ing the highly non-linear processes related to the earth system at different spatial and
temporal scales gave insights that allowed us to achieve our objectives. The main cor-
responding disciplines are aerosol and environmental physics and technology, atmo-
spheric chemistry and physics, analytical chemistry, micrometeorology, climate mod-
eling and forest ecology. This multidisciplinarity provides an opportunity to add value
and gain synergy.

We have focused on those topics in the research chain where the uncertainties are
largest. At small scales, we used molecular simulations (Monte Carlo and molecular
dynamics) to understand nucleation and aerosol thermodynamic processes. These
microscopic processes of nucleation together with condensation/evaporation and co-
agulation are required to understand aerosol dynamics, particle concentrations and
composition. Significant advances in laboratory data and modeling techniques were
needed for a number of important aerosol systems. Fundamental aerosol processes
needed to be understood in order to quantify the aerosol radiative properties and the
influence of aerosols on cloud microphysics and dynamics at the scale of individual
clouds At larger scales, advances in our understanding of boundary layer meteorol-
ogy were needed to understand atmospheric aerosol transport, trace gas (e.g. CO,,
methane, N,O, O3, SO,, NO,, VOCs) and water vapor exchange and deposition pro-
cesses. Boundary layer studies form a link to regional-scale and global-scale pro-
cesses. To simulate global climate and air quality, the most recent progress in this
chain of processes was compiled, integrated and implemented into climate change
and air quality numerical models.
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The understanding of different processes and their inclusion in climate models is
crucial. For example, if only the aerosol mass loading in the atmosphere is simulated
based on emissions of precursor gases (like SO,) and primary emissions, the number
concentration of aerosol particles and further cloud condensation nuclei (CCN) con-
centration might be seriously under- or sometimes overestimated unless the size and
number of particles is considered (see e.g. Spracklen et al., 2006, 2008).

EUCAARI has built on available data from previous field campaigns and long-term
measurements in order to establish global datasets. The data integration within EU-
CAARI involved a combination of data analysis (accuracy, consistency and representa-
tiveness), modelling and field experiments. The experimental and model data was col-
lected in a web-based platform located at partner NILU in Norway. The EUCAARI ob-
servation system combines long-term and spatially extensive surface-based measure-
ments both in Europe and developing countries (China, India, Brazil, South-Africa), in-
cluding the European network of supersites for aerosol research (EUSAAR), with satel-
lite retrievals of key parameters. EUCAARI used west-east and north-south station-to-
station networks together with Lagrangian and Eulerian airborne measurements and
field measurements to quantify the effects on regional aerosol properties of emissions,
aerosol formation, transformation, transport and deposition. These measurements in-
cluded parameters relevant for climate change (the radiative fields in clear and cloudy
skies, and their susceptibility to aerosol fields) and air quality (particulate matter (PM)
mass, size-resolved aerosol chemical composition, ozone, and NO, ). During May 2008
an intensive campaign of airborne measurements over Europe was performed. During
2008-2009 a sub-network of supersites provided higher resolution data and detailed
chemical composition and extended the observations into the free troposphere.

Due the wide variety of experiments and studies done in EUCAARI, a comprehensive
description of technical solutions and methodologies can not be explained fully in single
document. More details are given in the EUCAARI Special Issue in the journal Atmos.
Chem. Phys..
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Here, we present some of the key methods used in the main studies of EUCAARI.
The laboratory studies focused on atmospheric nucleation, ice nucelation and sec-
ondary organic aerosol formation/ageing studies. In order to cover the time scales
involved in these processes from seconds to days flow tubes as well as atmospheric
simulation chambers of different sizes were applied. Table A1 in Appendix A. provides
information about the main laboratory infrastructures used in EUCAARI. Field studies
in EUCAARI used multiple stations in Europe and in developing countries. Table A2
in Appendix A summarizes the main field infrastructures used in the studies. Airborne
measurements in 2008 included two main airborne experiments named Intensive Cloud
Aerosol Measurement Campaign (IMPACT) and Long-range Experiment (LONGREX).
The airborne platforms are shown in Table A3 in Appendix A.

The computational methods span from simulations of the behavior of single modules
to compute rates of specific processes to Earth system models. Table A4 in Appendix A
show some of the main methods used in the small scale studies, and Table A5 in
Appendix A those used in the large scale studies. The used databanks and emission
inventories are described in Table A6 in Appendix A.

EUCAARI studies deployed an unprecedented array of instruments for in situ mea-
surements. Table A7 in Appendix A shows some of the main instruments used in
experiments concentrating on the current state-of-art instrumentation.

3 Main results

3.1 Emissions

3.1.1 Size-resolved anthropogenic carbonaceous aerosols and particle number
emission database for Europe

To assess the impact of air pollution on climate among the major knowledge gaps are
size resolved emissions of carbonaceous aerosols and particle numbers (PN). Both
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have been addressed in EUCAARI (see Denier van der Gon et al., 2010). European
emissions of anthropogenic particulate elemental carbon (EC) and organic carbon
(OC) were estimated and separated in <1 um, 1-2.5um and 2.5-10 um size classes.
More detailed mass particle size distributions for EC <1 pum and OC <2.5pum in the
range 20 nm—2.5 um by source sector are derived from the literature. Particle mass
size distributions show a maximum in the range of 80-200 nm, indicating that the car-
bonaceous aerosol emissions are highly relevant for long-range atmospheric transport.
The emission of OC <2.5um in Europe is dominated by the residential combustion of
wood and coal. The largest sources of EC <1 pum are transport (diesel use) and resi-
dential combustion. Total carbonaceous aerosol in the PM,, range for Europe in 2005
amounts to ~2000 kt/yr of which ~10 % is due to international shipping. For details see
Table 1.

A first size-resolved anthropogenic particle number (PN) emission inventory for the
reference year 2005 was compiled. The emission data base includes all particles in
the size range of 10—-300 nm and distributes the particle number emissions in 15 differ-
ent size bins. The preferred approach to calculate PN emissions uses direct emission
factors (EFs). For the key sources such EFs have been compiled from the literature
with specific emphasis on road transport and residential combustion. Especially wood
combustion is an uncertain source in Europe. The wood use data have been updated
and new PN emission factors have been compiled. A remarkable observation from
these data is that PM emission is highly dependent on the type of wood stove with
modern stoves emitting much less PM but that PN emissions are quite comparable.
The emissions are gridded on a 1/8°x1/16° longitude latitude resolution (or approxi-
mately 7x7 km) using especially prepared distribution maps. Particular attention has
been given to the spatial distribution of transport emission and emission due to resi-
dential combustion. An example is presented in Fig. 2.

In polluted areas, road traffic is usually the main source of particles evaluated by
number. In comparison to emission factors for mass, the particle number emission
factors are very poorly known. There are two sources of available information:
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— Emission factors determined from laboratory chassis dynamometer studies in
which particle number emissions from engines with a range of capacities, fu-
els and technologies have been measured. There has been only one systematic
study (the PARTICULATES project) from which data can be taken.

— Inversion of particle number concentrations measured in the field to infer the
source strength of particles from a known fleet of vehicles.

Whilst the latter approach has the attraction of deriving data from actual on-road vehi-
cles, it has the weakness that the highest level of disaggregation according to vehicle
type which can be achieved is between heavy duty and light duty vehicles, and the
method requires accurate knowledge of the source strength of another traffic gener-
ated pollutant such as NO,. The latter demands high quality emission factor infor-
mation combined with detailed knowledge of the traffic fleet composition. Whilst the
former approach of deriving data from chassis dynamometer studies is superficially
attractive, the measurements are sensitive to exhaust gas dilution conditions and may
not replicate well between different test facilities.

A number of published studies have used the field measurement approach to esti-
mate average emission factors for light duty and heavy duty vehicles. In some cases,
the vehicle fleet composition was published and has been used to infer emission fac-
tors. In other cases, it was not, and has been reconstructed from published data on
vehicle registrations and usage. By combining such data on the vehicle fleet with the
laboratory determined emission factors relating to different fuels and engine technolo-
gies, fleet average emission factors can be calculated which can then be compared
with those determined in the field (Beddows and Harrison, 2008).

3.1.2 Particle number emissions from biomass burning

Aerosol emissions from vegetation fires have a large impact on air quality and climate.

Dynamic particle number (EFPN, unit: number of particles per kg of burnt fuel) and

mass emission factors (EFPM, unit: mass of particles per kg of burnt fuel) as well as
17955

Jadedq uoissnosiq | Jadeq uoissnosigq |  Jadeq uoissnosiqg | Jaded uoissnosig

ACPD
11, 17941-18160, 2011

Integrating aerosol
research from nano
to global scales

M. Kulmala et al.

: II“ III


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

characteristic CO-referenced emission ratios (PN/CO, PM/CQO) were determined from
experimental data. For the particle number emission factor of vegetation fires, we found
no dependence on fuel type and obtained the following parameterization as a function
of modified combustion efficiency (MCE):

EFPN=34x 10" x (1 =MCE)kg™'+10"%kg™"

with regard to dry fuel mass (d.m.). For the fine particle mass emission factors
(EFPM) we obtained (86—85xMCE) g kg'1 +39 kg'1 as an average for all investigated
fires; (93-90xMCE)gkg+4gkg™' for forest; (67-65xMCE)gkg™'+2gkg™" for sa-
vanna; (63—62xMCE) g kg‘1i1 g kg'1 for grass (Janhall et al., 2009). For the PN/CO
emission ratio we obtained an average of (34+16)cm™2ppb~"' exhibiting no system-
atic dependence on fuel type or combustion efficiency. The average PM/CO emis-
sion ratios were (0.09:|:0.O4)gg’1 for all investigated fires; (0.135:0.05)gg'1 for for-
est; (0.08ﬂ:0.03)gg‘1 for savanna; and (O.O7ﬂ:0.03)gg'1 for grass. These results
based on a rather limited amount of experimental data and should be complemented
by additional measurements in the measurements. Nevertheless, the presented
parameterizations represent the current state of knowledge and appear sufficiently ro-
bust for exploring the influence of vegetation fires on aerosol particle number and mass
concentrations in regional and global model studies.

3.1.3 Particle emissions from oceans

Marine aerosols comprise the largest natural source of particulate matter globally. A
critical review of the production of aerosol from the ocean shows the current status of
knowledge, including extension of the source function to particles as small as 10 nm,
new insights in the production mechanisms and the contribution of organic matter to
the sea spray aerosol composition (de Leeuw et al., 2011a). Although the enrichment
of primary marine aerosol with organics compared to the average sea-water composi-
tion has been known for decades, before O’'Dowd et al. (2008) this organic fraction had
not been included in a source function. This EUCAARI contribution provides global
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emission inventories for number, mass and organic enrichment fraction of primary ma-
rine aerosol and presents a scheme to calculate these parameters online in chemical
transport models. The combined organic-inorganic sea-spray source function com-
bines 10 m wind speed, chlorophyll-a concentrations and sea-spray source function to
produce a size-resolved emission of number, mass and water insoluble organic matter
enrichment as a function of the wind speed and chlorophyll-a concentration. A key
finding of this research is that the organic enrichment is observed in submicron aerosol
sizes.

3.2 Aerosol microscale processes

In this section we summarise new aerosol process understanding obtained during EU-
CAARI combining theory, process models and laboratory experiments with field obser-
vations.

3.2.1 Nucleation and growth

The most important technical achievement of the EUCAARI nucleation studies was the
development of new instruments for measuring sub-3 nm particle populations, along
with the extensive application of these instruments in both the laboratory and the field
measurements. One of these instruments is the Neutral cluster and Air lon Spectrome-
ter (NAIS; Kulmala et al., 2007a; Manninen et al., 2009a, b), and a more sophisticated
version of it suitable for airborne operations at different altitudes (Mirme et al., 2010).

All the scientific results obtained during EUCAARI indicate that sulphuric acid plays a
central role in atmospheric nucleation (Kerminen et al., 2010). However, also vapours
other than sulphuric acid are needed to explain the nucleation and the subsequent
growth processes of particles, at least in continental boundary layers. Organic vapours
are seen to participate at least in the growth of freshly formed particles.

Both field and laboratory measurements demonstrate that the nucleation rate scales
to the first or second power of the nucleating vapour concentration(s). This agrees with
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the few earlier field observations, but is in stark contrast with the predictions of classical
thermodynamic nucleation theories. The average formation rates of 2-nm particles
were found to vary by almost two orders of magnitude between the different EUCAARI
field sites, whereas the formation rates of charged 2-nm particles varied very little
between the sites. Overall, our observations are indicative of frequent, yet moderate,
ion-induced nucleation usually outweighed by much stronger neutral nucleation events
in the continental lower troposphere.

The most concrete outcomes of the nucleation studies are the new semi-empirical
nucleation rate parameterizations for neutral and ion-induced nucleation based on
field observations, along with updated aerosol formation parameterizations (see
Sect. 3.4.3.8).

Laboratory experiments

Homogeneous nucleation experiments with various mixtures of sulphuric acid, water,
ammonia, amines and organic vapours were made in three laboratories by using two
different flow tubes (IfT in Leipzig, Finnish Meteorological Institute) and an environmen-
tal smog chamber (Paul Scherrer Institute). The conducted H,SO,-H,O nucleation ex-
periments resolved the apparent discrepancies between most earlier experiments is
largely a measurement artifact arising from the high sensitivity of the measured “nu-
cleation rate” to the temporal and spatial profile of the gaseous H,SO, concentration
inside the measurement device and the detection efficiency of the instrument used to
measure nucleated particles (Sipila et al., 2010). The new H,SO4-H,O nucleation ex-
periments are in line with EUCAARI field observations both predicting a slope between
about 1 and 2 in a plot of the nucleation rate versus gaseous H,SO, concentration.
Experiments with different inlet NH; concentrations showed that the presence of NH;
increased slightly the mean diameter of nucleated particles, as well as their total num-
ber concentration. The enhancing effect of NH5 addition on the nucleation was found to
be more pronounced under drier conditions. The presence of tert-butylamine enhanced
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nucleation rates more than NH; under similar conditions (Berndt et al., 2010). A se-
ries of photo-oxidation experiments in the presence of 1,3,5-trimethylbenzene (TMB),
NO, and SO, at various mixing ratios showed that the measurement data can only
be explained with a dependence of the nucleation rate on both sulphuric acid and a
nucleating organic compound (Metzger et al., 2010).

The UEF Kuopio plant chamber was used in experimental studies of nucleation and
growth resulting from oxidation of VOC’s emitted by Scots pine and Norway spruce
seedlings. It was found that ozonolysis products of the VOCs are more efficient than
OH products in causing new particle growth (Hao et al., 2009). On the other hand, the
new particle formation rates were several hundred times higher in the OH experiments
compared with the ozonolysis experiments. This suggests that at least in the former
case, organics participated in the nucleation even if trace amounts of SO, had been
present — the modeled peak OH concentration was 1.07x10°, and it is not likely that
sufficient sulfuric acid would have been formed to produce the observed particle for-
mation rate of 360cm s~ without any contribution from the organics. In a later set
of experiments (Hao et al., 2011) the ozonolysis products were somewhat surprisingly
found to be less volatile than the OH products.

Laboratory experiments on the effect of electric charge (both negative and posi-
tive) on the heterogeneous nucleation probability were performed at University of Vi-
enna (Winkler et al., 2008). The experiments showed that when the saturation ratio
of the vapour responsible for heterogeneous nucleation (here n-propanol) is gradu-
ally increased, the negatively-charged particles or clusters will activate first, then the
positively-charged ones, and finally also the neutral ones. This kind of behaviour was
evident in the sub-4 nm size range, and the effect was more pronounced for smaller
particle sizes.
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Atmospheric nucleation mechanism

In practically all lower-tropospheric environments, naturally charged particles, called
also air ions, were found to have an almost persistent and narrow mode of cluster ions,
close to the mobility diameter of 1 nm (e.g. Horrak et al., 2008; Hirsikko et al., 2011 and
the references therein). The aircraft measurements made during the LONGREX exper-
iment as well as the ground based-measurements at high elevation sites revealed that
this cluster ion mode can be seen in the free troposphere (Mirme et al., 2010; Boulon
et al., 2010). The first quantitative estimates on the concentrations of neutral sub-3nm
particles were obtained for both the continental boundary layer (Kulmala et al., 20073a;
Lehtipalo et al., 2009) and the free troposphere (Mirme et al., 2010). The concen-
trations of neutral sub-3 nm particles seem to exceed those of similar-size charged
particles in the lower troposphere (Manninen et al., 2010). During the LONGREX
aircraft measurements, concentrations of neutral particles in the diameter range 2—
10 nm were, on average, roughly two orders of magnitude larger than those of charged
particles throughout the tropospheric column (Mirme et al., 2010). First observations of
large scale particle production in the open ocean were detected (O’'Dowd et al., 2010).

The EUCAARI field measurements indicate that sulphuric acid plays a central role in
atmospheric nucleation. On the other hand, both field measurements and laboratory
experiments showed that vapours other than sulphuric acid are needed to explain the
nucleation process. Such vapours are very likely of organic origin, at least in the conti-
nental boundary layer. The in situ UFO-TDMA field measurements show that oxidized
organics dominate the fresh particle growth processes in a European polluted envi-
ronment (San Pietro Capofiume, Italy) too, in addition to previously observed organics
dominance in the boreal forest region. The field data indicate that the atmospheric nu-
cleation rate scales to the first or second power of the gaseous H,SO, concentration
or, more generally, of the nucleating vapour concentrations.

The field measurements brought plenty of new insight into the role of ions in atmo-
spheric nucleation (Laakso et al., 2007; Kerminen et al., 2007; Gagné et al., 2008,
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2010; Manninen et al., 2010; Mirme et al., 2010; Boulon et al., 2010). The contribution
of charged particles to the total formation rate of 2-nm particles was usually found to be
well below 10 %, but it showed substantial temporal variability both during a nucleation
event and between the different event days. In general, our observations are indicative
of frequent, yet moderate, ion-induced nucleation usually outweighed by much stronger
neutral nucleation in the continental lower troposphere. No evidence on the enhanced
role of ion-induced nucleation in the upper free troposphere, as suggested by some
theoretical studies, was obtained from our aircraft measurements, although a higher
contribution of ion-induced nucleation is found at high altitude sites compared to low
altitude sites (Manninen et al., 2010; Boulon et al., 2010).

Quantum chemical calculations

By using quantum chemical methods, atmospherically relevant molecular clusters were
studied, with the final aim of elucidating the molecular mechanism behind observed
atmospheric nucleation. Quantum chemical calculations provide evaporation rates, or
equivalently formation free energies, of different clusters that can be involved in nu-
cleation. Evaporation rates are needed to assess the stability of various clusters and
to identify the pathways through which clusters nucleate. The evaporation rates of a
wide variety of clusters were calculated, ranging from clusters containing only sulphuric
acid to clusters containing complex molecules like amines or large organic acids. Our
main findings can be summarized as follows: (i) ammonia can enhance neutral sul-
phuric acid-water nucleation to some extent, but has a smaller role in corresponding
ion-induced nucleation (Ortega et al., 2008), (ii) dimethylamine enhances neutral and
ion-induced sulphuric acid-water nucleation in the atmosphere more effectively than
ammonia (Kurtén et al., 2008; Loukonen et al., 2010), (iii) some of the organic acids
resulting from monoterpene oxidiation can form very stable clusters with sulphuric acid,
being good candidates to explain the pool of neutral clusters found in field measure-
ments, and (iv) organo-sulphates can be involved in ion-induced nucleation.
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3.2.2 BSOA formation and OA partitioning

Results from EUCAARI show that the yields of biogenic secondary organic aerosol
(BSOA) from emissions of Boreal and Mediterranean trees were between 5 and 10 %,
independent of the monoterpene mixture (Mentel et al., 2009; Lang-Yona et al., 2010;
Buchholz et al., 2011), whereas Hao et al. (2011) found a somewhat broader range for
the yields (1.9-17.7 %). The formed particle mass and number concentration increased
linearly with increasing monoterpene concentrations in accordance with the analysis of
Boreal field data by Tunved et al. (2008). Based on this result climate warming of a
few degrees leading to increasing monoterpene emissions will enhance future BSOA
formation. Via direct and indirect aerosol effects this will contribute to the negative
feedback as postulated by Kulmala et al. (2004a). Monoterpene emissions of Mediter-
ranean tree species are stronger dependent on temperature (Lang-Yona et al., 2010;
Staudt and Bertin, 1998) leading to stronger BSOA formation in the Mediterranean
compared to Boreal regions for the same degree of warming. However, the coupling
of increasing monoterpene emissions and enhanced BSOA formation is diminished, if
with the warming relatively more isoprene is emitted. The presence of isoprene sup-
pressed the nucleation as well as the formation of mass of BSOA (Kiendler-Scharr et
al., 2009b). The effect of stress induced emissions induced by droughts, heat waves,
or nutrition deficits in a changing climate still needs to be investigated. Moreover, we
observed indications that stress-induced emissions have the potential to enhance SOA
formation but also to suppress particle formation (Mentel et al., 2011).

EUCAARI included a complete set of chamber experiments of aerosol aging, where
the main results showed increase of O/C ratio of aged aerosol and good agreement
between different methodologies of organic aerosol analysis. A set of models and
chemical mechanisms have been developed that enable a consistent description of the
chemical transformation and aging of organic aerosol components under a wide range
of different conditions. Studies of surface chemistry, physics and laboratory studies of
aerosol aging, including a wide variety of modeling and measurements experiments

17962

Jadedq uoissnosiq | Jadeq uoissnosigq |  Jadeq uoissnosiqg | Jaded uoissnosig

ACPD
11, 17941-18160, 2011

Integrating aerosol
research from nano
to global scales

M. Kulmala et al.

: II“ III


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

are detailed in Appendix B.
3.2.3 Ice Nucleation Experiments

In terms of the ability of aerosols to act as ice nuclei (IN) significant progress was made.
Ice nucleation in supercooled water clouds with temperatures between 0 and —-35°C
can be initiated in four different ways: Deposition nucleation, immersion freezing, con-
densation freezing and contact freezing.

Deposition nucleation refers to the direct deposition of vapor onto an ice nucleus.
It requires that the saturation ratio with respect to ice exceeds 1. Deposition nucle-
ation is important for cirrus clouds, when vapor is deposited for instance onto mineral
dust particles that act as IN. Deposition nucleation does not seem to be important
for mixed-phase clouds, because lidar observations revealed that liquid clouds are re-
quired before ice crystals form via heterogeneous freezing mechanisms (Ansmann et
al., 2008). Immersion freezing refers to freezing that is initiated from within the droplet.
It requires that the IN is fully immersed in the droplet when the droplet reaches a
temperature at which it can freeze. Obviously, the liquid phase requires saturation with
respect to water. Sometimes condensation freezing is distinguished from immersion
freezing. It is thought that condensation freezing refers to a different pathway such that
the IN enters ambient conditions supersaturated with respect to water only at low tem-
peratures at which heterogeneous freezing of the forming droplet is likely. In that way,
the ice crystal can form in the liquid phase, but at the interface between the forming
droplet and the vapor phase. This has been shown theoretically to be energetically
more favorable than forming an ice crystal on a fully immersed IN (Djikaev, 2008).
Condensation freezing can be observed in laboratory studies on deposition nucleation
when the relative humidity exceeds water saturation (Welti et al., 2009). However, con-
densation freezing is very difficult to be unambiguously distinguished from other ice
nucleation mechanisms in an experiment. Therefore, it is still subject of ongoing re-
search to what extent condensation freezing is fundamentally different from immersion
freezing. Contact freezing refers to the collision of an IN with a supercooled cloud
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droplet. It requires saturation with respect to water.

We have built devices to perform experiments on all four modes of ice nucleation.
The continuous flow diffusion chamber ZINC (Zurich Ice Nucleation Chamber) can be
used to study ice nucleation in the deposition and condensation mode in the laboratory
(Stetzer et al., 2008; Welti et al., 2009) and the portable version PINC (Portable Ice
Nucleation Chamber, PINC) can be used to study ice nucleation in the deposition and
condensation mode in the field (Chou et al., 2011). The design of ZINC and PINC
was based on Rogers et al. (1988) except that the cyclindrical walls were replaced
by plane-parallel walls in order to optically distinguish between liquid droplets and ice
crystals (Nicolet et al., 2010).

In addition, we built a chamber for immersion freezing (LUo6nd et al., 2010). Here we
could not follow any design as most immersion freezing experiments were done with
droplets immersed in emulsions containing oil (e.g., Zuberi et al., 2002; Marcolli et al.,
2007) or based on wind tunnel studies of levitated droplets of the size of drizzle drops
(e.g., Diehl et al., 2002). Both are not representative of typical atmospheric conditions.
Our immersion freezing device (IMCA = Immersion Mode Cooling Chamber) is compa-
rable to the one simultaneously built in Leipzig (Niedermeier et al., 2010). IMCA is also
a continuous flow diffusion chamber (CFDC) designed such that first the aerosol parti-
cles are activated as cloud droplets. This ensures that there is only one single aerosol
particle inside each droplet and therefore, IMCA mimics conditions similar to those
found in the atmosphere. The droplets are then cooled down and ice formation can oc-
cur inside ZINC. This approach will enable the comparison of deposition/condensation
freezing with immersion freezing.

Cloud droplets formed on soluble aerosol particles can only freeze homogeneously.
Accordingly, the data for immersion freezing of ammonium sulfate particles show an
onset of freezing close to 235K and a steep increase of the frozen fraction with de-
creasing temperature. The measurements with immersed kaolinite particles clearly
show that the droplets freeze at higher temperatures, indicating that freezing occurred
heterogeneously, i.e. kaolinite particles act as IN. We could also observe droplets to
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freeze at slightly higher temperatures (around 2K for a frozen fraction of 50 %) if the
particle diameter is increased from 200 nm to 800 nm. The slope of the frozen frac-
tion with decreasing temperature is less steep for heterogeneous freezing than for
homogeneous freezing. This suggests that in terms of heterogeneous ice nucleation,
IN surfaces can not be described appropriately by assuming all particles to have equal
and uniform surface properties (Liond et al., 2010; Hartmann et al., 2011). These find-
ings can be important for the initiation of precipitation in numerical models, as a small
fraction of aerosol particles acting as IN is sufficient to initiate precipitation. There-
fore, the measurements suggest that kaolinite particles might initiate precipitation at
temperatures significantly higher than if the first ice crystals nucleate homogeneously.

3.2.4 CCN formation and cloud droplet activation

Laboratory experiments were carried out on single component, binary and ternary
particles in a controlled laboratory environment to investigate the effect of organic
molecules with different properties on cloud droplet activation. Frosch et al. (2010)
investigated the ability of oxo-dicarboxylic acids to act as cloud condensation nuclei
and Kristensson et al. (2010) addressed the cloud droplet activation of aminoacids with
limited solubility. Frosch et al. (2011) studied the combined effect of inorganic salts and
organic acids. Prisle et al. (2008, 2010) investigated the effect of surface active organic
molecules on cloud droplet activation and found that it is important to account correctly
for partitioning of the surfactant molecules between the bulk and surface of the growing
droplet to match measured critical supersaturations.

Laboratory experiments of CCN activity of biogenic secondary organic aerosols gen-
erated in smog chambers have been performed by Asa-Awuku et al. (2009) and Engel-
hart et al. (2008, 2010). The SOA becomes more CCN active in all cases due to contin-
ued reactions with the OH radical (Engelhart et al., 2008; Asa-Awuku et al., 2009). The
water uptake of organics could be modeled using kappa-Koéhler theory following Pet-
ters and Kreidenweis (2007) applying a kappa value of ~0.1, which is consistent with
other recent laboratory and field studies of (secondary) organic aerosol hygroscopcity
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and CCN activity (Gunthe et al., 2009; Shinozuka et al., 2009; King et al., 2010; Dusek
et al., 2010; Roberts et al., 2010; Poschl et al., 2010, 2011, and references therein).

A synthesis paper is in progress focusing on parameterizations describing the ac-
tivation of ambient and SOA particles that can be used in global models (Sierau et
al., 2011). This paper also combines CCN measurements in the laboratory obtained
with those in the field during EUCAARI. Herein, extensive and intensive CCN param-
eters compiled from the exceptionally broad data set from CCN measurements that
were carried out at locations all over the world, including long-term as well as inten-
sive field studies, will be statistically analyzed and reported as monthly, daily and/or
hourly mean values to account for seasonal, weekly, and diurnal pattern. The overall
kappa-variability will be inferred and discussed in context with the effective average
kappa of 0.3+/-0.1 and 0.7+/-0.2 as estimated by Andreae and Rosenfeld (2008) for
the continental and marine background aerosol, respectively. The former value has re-
cently been superseded by 0.3+/-0.2 (Pringle et al., 2010) which seems still fairly well
constrained with regard to cloud droplet formation (Reutter et al., 2009; Arabas and
Pawlowska, 2010, 2011). Kappa deduced from the CCN data (i.e. measured in the su-
persaturated regime) will be further compared with kappa deduced from Hygroscopic-
ity Tandem Differential Mobility Analyser (HTDMA) data measured under subsaturated
conditions (Genberg et al., 2011). Moreover, measured CCN activity for secondary
organic aerosol (SOA) from real tree emissions of boreal and Mediterranean trees as
measured at the Jilich Plant Atmopshere Chamber will be related to the CCN activity
parameters obtained from the field stations in Hyytiala, Fl, and Finokalia, GR, respec-
tively.

3.3 Aerosol characterization
3.3.1 Long-term field observations in Europe

Development of an observing capacity suited to follow and understand atmospheric
composition changes and to account for regional specificities is a primary objective of
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EUCAARI. Sustained long-term observations of short-lived species of atmospheric im-
portance outside of the few policy-regulated variables have, in fact, been crucially miss-
ing in Europe. Monitoring of species essential to climate and air quality studies was
left to quasi-independent initiatives of scientists contributing to collection and analysis
of atmospheric data, resulting in difficulties to assess data quality, access and inter-
compare data sets. Limited availability of long time-series of atmospheric parameters,
and in particular aerosol related species, over Europe was a major obstacle for the
validation of satellite observations and chemical transport model evaluation. Recent
initiatives to integrate information on aerosol chemical and physical properties (Putaud
et al., 2004; Van Dingenen et al., 2004) represent a first attempt to provide a synthetic
view of aerosols over Europe. However, these studies were mostly based upon data
provided on a voluntary basis and, for the major part, derived from campaign-based
initiatives rather than long-term observations. A limitation of past work was also the
absence of coordinated control on data quality, not available at that time in Europe.
Recent intercomparison exercises performed in Europe indeed demonstrated the need
for improving standardization of operating procedures for many aerosol measurements
(Kahnert et al., 2004; Cavalli et al., 2010).

EUCAARLI, in a joint effort with the EU-funded Integrated Infrastructure Initiative EU-
SAAR (European Super sites for Atmospheric Aerosol Research), provided the frame-
work for the first pan-European coordinated initiative on aerosol observations. By the
end of the EUCAARI project, the network provided the most comprehensive record of
aerosol observation ever produced in Europe. In addition to basic aerosol variables
as recommended by Global Atmospheric Watch (GAW) (namely aerosol absorption
and scattering coefficients, aerosol number and size, aerosol chemistry), observations
were expanded to provide the change in particle size with relative-humidity using novel
Hygroscopicity Tandem Differential Mobility Analyzer techniques (Duplissy et al., 2008;
Fors et al., 2009; Massling et al., 2010) and size-segregated chemistry using aerosol
mass spectrometers (Prévot et al.,, 2011). Not all measurements, in particular the
more advanced ones, were performed for the whole EUCAARI period but rather during
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intensive observing periods that took place in the Spring and Autumn of 2008 and Win-
ter of 2009. For the first time, all groups worked together to ensure similar procedures
and methodologies. A number of metrology papers from EUSAAR activities have been
recently submitted/published providing the data quality framework for EUCAARI (Cav-
alli et al., 2010; Collaud-Coen et al., 2010; Mueller et al., 2009; Wiedensohler et al.,
2011).

EUCAARI and EUSAAR measurements provided a pan-European view of aerosol
properties (Fig. 3). A first observation relates to the large variability of aerosol prop-
erties encountered over Europe. This is largely due to the geographical location of
observing stations representing different climates and environment, although signifi-
cant variability is also observed for single stations. An integration of measurements
over such an extended network leads to simplifications in particular related to station
representativeness. Overall, the most suited categorization of sites related to particle
variability appears to be a mix between the categorization by Henne et al. (2010) and
the more classical geographical classification. The concept of catchment area (the
area in which the surface fluxes are creating detectable and significant signals at the
site) seems to apply well to a number of sites located in the plains of Central and West-
ern Europe (KPO, OBK, CBW, JRC, MPZ for example). At these sites, even if some
may be classified as rural according to air base classification, aerosol physical param-
eters and in particular the smallest particle range (below 50 nm) are clearly influenced
by a regional catchment that varies from 50 to a few hundred km. Stations under this
situation have in common the following features

— To afirst approximation, the dynamics of aerosol number concentration are driven
by large catchment area for particles with d,, >100nm as opposed to a typically
smaller area for the smallest particles. The particles regional background is there-
fore ranging from 2000 to 3000 cm™3. According to Van Dingenen et al. (2004) this
concentration range is associated to a particle mass ranging from 10 to 20 ug m=3.
Considering that most particles are in the sub-2.5 um range, the quality objective
for PM, 5 of 20 ug m~3 by 2015 is a very optimistic target.
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— A fairly constant particle number concentration throughout the year. The change

in boundary layer height appears to be compensated by a more intense secondary
particle formation during summer months.

Elevated number concentrations of particles generally over 3000 cm™~ and up to
7000cm™° (JRC in the Po Valley-Italy) on an annual basis for particles with sizes
approximately larger than 30 nm.

The elevated background of particles somehow hides the diurnal cycle of particles
which stays fairly constant.

The ratio between particles with d,<100nm and d,>100nm rarely exceeds 2,
but is always higher than unity. The dynamics of the smallest particles seems to
be more easily explained in models by including a substantial particle formation
rate in the boundary layer (Spracklen et al., 2010; Merikanto et al., 2009). How-
ever, the link between sub-50 nm to the larger super-100 nm particles, which are
generally involved in cloud formation is not direct and involves processes that are
outside the 48-h catchment area. This is confirmed by model work of Spracklen
et al. (2008) and Merikanto et al. (2009) showing that CCN concentrations are
fairly insensitive to large changes in the BL nucleation intensity. Clearly, data are
still missing in the sub-15nm range. Results from the EUSAAR intercompari-
son experiments showed that DMPS/SMPS instruments are at present not suited
to provide a coherent framework below 15nm (Wiedensohler et al., submitted).
However, NAIS/AIS/BSMA measurements have shown to be able to give reason-
able and significant results on new particle formation (Manninen et al., 2010).

Measurements of hygroscopic properties confirm the difference in origin of the
sub-30 nm particles with respect to particles with d,,>100nm. However, this is
based on a limited number of stations. More hygroscopic particles, characterized
by high hygroscopic gowth factor (HGF=1.5) which are internally mixed between
evolved SOA and inorganic material constitute most of the super-100 nm fraction.
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On the contrary, below 30 nm particles are generally less hygroscopic (HGF 1.3)
and result from freshly formed particles. The seasonal variability of the HGF also
agrees with the weaker SOA contribution to the super 100 nm particles (lower
HGF).

— There is no simple feature explaining optical properties at stations of Central and
Western Europe. Different mass absorption coefficients and chemical composi-
tion lead to more variability in comparing absorption and scattering coefficients
than for the number concentration. Differences in energy production and in the
automobile fleet may explain the variability.

— A classification of aerosol properties under the conditions encountered at sta-
tions like CBW, KPO, MPZ, OBK or JRC (see Fig. 3) can be performed without
considering the air mass origin but rather considering first a very large regional
catchment area driving optical properties and the larger particle properties (CCN
concentrations in particular), and a smaller catchment area driving the more vari-
able sub-50nm particles, of which a still unknown fraction directly arises from
direct particle formation.

— For these stations, the strong difference between boundary layer characteristics
and the air aloft leads to a strong decoupling between aerosol parameters (such
as Angstrom coefficient or single scattering albedo) retrieved in-situ and using
sun photometers (Kinne et al., 2011). In addition, the insitu measurements of the
optical properties are usually performed under dry conditions, for comparison with
remote sensing techniques they need to be corrected for their dependences on
the relative humidity (Zieger et al., 2011).

Stations located at elevated sites (JFJ, MTC, BEO, PDD) also present some com-
mon features. These stations have been obviously placed at those sites to provide
a more regional view of aerosol properties. There, the local catchment area, as de-
fined by Henne et al. (2010), has in fact, much less influence on the variability of the
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aerosol parameters. The driving factors explaining observed changes are related to
both long-range transport (air mass origin) and station altitude. The station altitude and
its surrounding topography control thermally-driven upslope/downslope flows which are
a common feature of all mountain sites. Characteristics of the mountain sites are:

— Strong seasonal variability, in particular for sites located above 2000 m. This is
clearly due to the stronger influence of thermal winds during mid-spring to mid-
autumn with resulting advection of boundary the layer air. This is not exclusively
linked to slope winds but may also result from an increased boundary layer thick-
ness for medium altitude sites such as PDD in France or Hohenpeissenberg or
Schauinsland in Germany. This explains a large fraction of the higher aerosol
concentrations in summer months with respect to winter periods.

— At sites strongly affected by thermal winds, a strong bias is introduced if the local
dynamics is not accounted for. The thickness of the thermally-driven air mass is
rather limited (a few hundred meters) and the station for a fair amount of time may
not represent the regional background, but rather air from lower levels. Venting
boundary layer air by mountain topography is not well represented in regional
models and is an efficient way to transport air pollutants into the free troposphere.

— The interface between polluted air from the BL and the FT air was found to be
the location for nucleation events. This is observed at mountain stations (Venzac
et al., 2009; Boulon et al., 2011) but also during airborne measurements above
central europe (Crumeyrolle et al., 2010). This is clearly an additional source of
small particles to the FT.

— The number concentration is a function of station height decreasing down to a
couple of hundred particles percm3 for the highest EU station of JFJ. This corre-
sponds to concentrations of approximately 5 to 10 ug m™° during summer and 2.5
to 5pg m~2 in winter for stations right above 1000 m, and concentrations below
5ug m~2 in summer and below 2 Mg m~2 in winter above 2000 m.
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— The relative contributions by organic material, inorganic species and elemental
carbon do not seem to be height dependent to a first approximation. The fraction
of organic material remains at all sites close to 50 %.

— Within EUCAARI, new information was made available from HGF measurements
at high altitude sites. Our results show that the long-range component of aerosol
sampled at high altitudes (>2000 m) is internally mixed with HGF close to 1.4 at
90 % for 75 nm particles (Kammermann et al., 2010). At lower altitudes, aerosol
properties are driven by injection from the BL at regional scale and features that
are described for the site in Central/Western European plains are still valid. The
aerosol is composed of several modes with the more hygroscopic mode having
a HFG of around 1.5+0.1 for 110 nm particles at RH =90 %, and the less hygro-
scopic mode around 1.2+0.1 for the same conditions. The number fraction of
particles in each hygroscopic mode is variable but the more hygroscopic mode
seems to dominate in winter, likely for the same reasons as for BL sites.

— The optical properties of particles at high altitude sites follow the features of par-
ticles number concentrations with marked diurnal and seasonal variations. The
absorption and scattering coefficients are larger in summer leading to larger ex-
tinction coefficient without significant changes in the single scattering albedo.

— Contrary to BL sites, in situ measurements performed at high-elevation stations
seem to provide a fairly good representation of the atmospheric column, at least
on a monthly average basis (provided the in situ measurements are corrected for
humidity effects). This is confirmed by the general agreement between optical
properties derived from sun-photometers and in-situ measurements

A third category of stations are those in the Nordic/Baltic countries stations (ASP, BIR,
PAL, PLA, SMR and VHL). They can be differentiated from the Central/Western Euro-
pean BL stations mainly by the generally lower concentrations of aerosol particles and
polluting cases as well as the presence of a higher proportion of particles d, <100 nm.
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The lower concentrations might be explained by the specific locations of the Nordic sta-
tions, often chosen far away from urbanized areas in particular for the Finnish stations.
The occurence of frequent new particle formation events explain the higher fraction of
particles with diameter less than 30 nm with respect to more continental BL sites. The
seasonal variability is not well marked at these Nordic stations. A larger variability at
BIR results from changing source regions during summer rather than from a change
in BL height. The single Baltic station within EUSAAR shows distinct differences with
respect to other Nordic stations, with considerably higher concentrations. The Baltic
area is possibly the interface between the highly polluted central European BL and the
cleaner Nordic area. Similarly, the Zeppelin station in the Svalbard demonstrates very
specific variability due to the Arctic haze phenomena in Spring and Summer. Hygro-
scopic growth measurements in the Nordic station of VHL are also somewhat interme-
diate between the highly mixed free tropospheric aerosol and the multi-mode or less
hygroscopic modes encountered in the Central European plains.

The European network also includes single stations that cannot be classified into
a specific category. The marine stations FKL and MHD do not show the expected
similarities based on their geographical location within the marine BL. This is due to
the fact that their average aerosol levels and composition reflect also local and regional
influence. It also shows that aerosol processes taking place at regional scale modify
the atmospheric composition leading to difficulties in defining typical marine aerosol
parameters in Europe.

The hypothesis that aerosol properties (size, hygroscopicity) may be estimated
based on their evolution during transport is very difficult to test using long-term mea-
surements (Crumeyrolle et al., submitted ACPD). This evolution can only be followed
during airborne campaigns, which are limited in time and space. The regional context
can be addressed by indicators similar to those listed by Henne et al. (2010).

The bias between model and measurements for in-situ observations is much higher
(both positive and negative) than for the integrated column (AERONET). This is due to
the fact that AERONET observations are less sensitive to local variability but also that
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they are not well suited for regional air quality forecasting. Direct comparison of just
absolute values is at present of limited use for the testing of the transport and trans-
formation components of CTMs as most of the model variability derives from emission
inventories. Andrews et al. (2011) derived some interesting secondary parameters
such as Angstrom coefficient versus single scattering albedo that may be more dis-
criminating for testing model/observation discrepancies. Asmi et al. (2011) have also
performed a synthesis and data reduction on aerosol number concentrations required
for direct model/measurements comparisons.

3.3.2 Long-term field observations outside Europe

Detecting atmospheric trends of key atmospheric compounds requires long (>10
years) high quality records. Such datasets are rare in Europe, and nonexistent in many
parts of World.This crucial lack of data is a limiting factor for many applications includ-
ing forecasting atmospheric composition changes. Tools developed at the EU level
to improve provision and access to high quality atmospheric data have been applyied
within the international collaborating framework of EUCAARI.

In cooperation with partners from universities and research institutes in China, India,
Brazil, and South Africa, long-term aerosol measurements were performed to obtain
additional insights about the physical, optical and chemical particle properties in these
important areas. We carefully selected the observation sites in these four countries to
be representative for the regional atmospheric aerosol. This activity completes efforts
of EU scientists to develop and sustain monitoring activities of short-lived species in
developing and emerging countries (see for example Zhang et al., 2011; Henne et
al., 2008; Bonasoni et al., 2008, 2010). In this section, we highlight findings from the
EUCAARI measurements in these four countries.

In China, we performed measurements at a regional site in the North China Plain
150 km northeast of Beijing. In India, we chose a site 30 km from Delhi in a highly pol-
luted non-urban area. In South-Africa, we performed measurements in a clean savan-
nah area as well in the polluted area east of Johannesburg. Finally, we characterized
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the aerosol over the Amazonian Basin near Manaus in Braazil.

South Africa

EUCAARI obtained the longest data series of aerosol optical properties and number
size distributions in continental Africa. We found that over the background savannah,
nucleation and particle growth takes place in more than 80 % of the days (Laakso et
al., 2008; Vakkari et al., 2011). The observed particle formation and growth rates
(Vakkari et al., 2011) were among the highest observed (Kulmala et al., 2004b). Com-
parisons with regional vegetation maps and emission inventories clearly show that par-
ticle growth is related to biogenic organic vapors whereas formation is dominated by
sulfur compounds.

At the station Elandsfontein east of Johannesburg, the light absorption measure-
ments revealed an annual cycle of black carbon (Laakso et al., 2010). In the industrial
area around Elandsfontein, black carbon results from industrial activities as well as
from domestic burning and natural fires. The peak concentration during the local win-
ter is due to wild fires combined with increased domestic small scale burning.

On a regional scale, meteorology of the area is characteristically strongly layered
(Garstang et al., 1996). These layers trap emissions at different levels. The aerosol
emission from large natural fires may be injected to higher altitudes. These layers
are clearly visible in vertically resolved aerosol profiles, but significantly complicate the
interpretation of satellite observations.

The observations in South Africa have significantly increased knowledge on levels,
sources and dynamics of atmospheric aerosol particles. Domestic burning and natural
wildfires pose a significant threat to human health, whereas acidic particulate matter,
combined with gaseous compounds from industrial activities may seriously affect local
agriculture. In the context of climate change, high black carbon concentrations may
result in significant local heating of the lower atmosphere.
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China

The Chinese GAW-site Shangdianzi, at which the EUCAARI measurements took place,
is influenced by two different types of air masses. From the South, highly polluted air is
transported from the North China Plain to the site, while from the North, cleaner con-
tinental air is observed. During periods of northerly winds, particle formation occurred
on 205 out of 565 days in 2008 and 2009.

Particle formation occurred in the morning with a maximum average number concen-
tration of 18 000 cm™> around noon. At midnight, the number concentration decreases
due to coagulation to approximately 3000 cm~3. The mean particle growth rate was
3.8nm/h and the mode diameter reached 80—100nm at midnight. The mean mass
growth rate was 2.6 ug/(m3 h) reaching a mean mass concentration of 45 ug/m3 at mid-
night assuming a particle density of 1.5 g/cms. The mean number concentration of
particle greater than 100 nm is between 5000 and 6500 cm™ throughout the day. The
mean PM, mass concentration varies from 70 to 90 ug/m3 during the day.

Lidar measurements revealed that the top of the aerosol layer was around 900 m
above ground in all seasons, only slightly higher during the summer months. Fre-
quently, elevated aerosol layers were observed, especially during winter and spring. A
mean aerosol optical depth (AOD) of 0.95 was observed for air masses arriving from
the North China Plain. In contrast, the mean AOD was only about 0.42 for northerly air
masses.

India

Aerosol measurements in Gual Pahari, India, were performed from December 2007
to January 2010. The seasonal variation of the aerosol characteristics was very dis-
tinct in Gual Pahari. The highest concentrations were observed during the winter and
the lowest during the rainy season. The average monsoon time mass concentrations
of PM,y, PM, 5, and black carbon (BC) were 5570 % lower than the pre-monsoon
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average concentrations, having a linear relationship with the total local rainfall during
the monsoon season. The average PM,, mass concentration (at STP conditions) was
216 ug/m3 and the average PM, 5 concentration was 126 pg/m3. A high percentage
(4-9 %) of the PM,, mass consisted of BC, indicating strong anthropogenic influence.
The percentage of BC was higher during the winter; and according to the diurnal pat-
tern of the BC fraction, the peak occurred during active traffic hours. The rainy season
decreased the average fraction of particle mass in the PM, 5 size range.

The diurnal variation of the aerosol properties was much dependent on the prevailing
season, even though outside the rainy season the general characteristics were rather
similar. Figure 4 illustrates the PM behavior during different seasons. The maximum
concentrations occurred in the morning around 7-8 a.m., because of the low boundary
layer height and the morning traffic in the area. The warm day time temperatures ini-
tiated convective mixing, which is visible as a minimum in the diurnal PM mass data.
The afternoon concentration was more than 50 % lower compared to the morning val-
ues. Another maximum in mass concentration was observed in the evening, due to
traffic and reduction of the boundary layer height. During the strong daytime mixing,
the fraction of particles smaller than 1 um decreased.

New particle formation events were observed frequently at Gual Pahari. The de-
creased condensation sink due to convective mixing and dilution was the key factor
enabling the new particle formation. Apparently, the vapor source rate in Gual Pahari
was very high, because nucleation events were observed in over 60 % of the measure-
ment days. The particles grew rapidly reaching the Aitken and accumulation mode size
thus contributing considerably to the aerosol mass concentration. In November, fewer
particle formation events were observed, as the low night- and day-time temperatures
resulted in weaker natural convection and a higher condensation sink.

Vertical profiles of aerosol properties were measured for more than one year. The
vertical profiles of backscatter, extinction, and lidar ratio and their variability during each
season were analyzed. The measurements revealed that the aerosol layer was on av-
erage highest in spring (5.5 km). In summer, the vertically averaged (between 1-3 km)
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backscatter and extinction coefficients had the highest average values. Aerosol con-
centrations were slightly higher in summer compared with other seasons. The autumn
showed the highest lidar ratio and a high extinction-related Angstrbm exponent, indicat-
ing the presence of smaller absorbing particles. The winter had the lowest backscatter
and extinction coefficients, but the extinction-related Angstrém exponent was the high-
est.

Brazil

Aerosol measurements were performed at a pristine Amazonian forest site near Man-
aus. We highlight here the seasonal variation of the optical and physical aerosol prop-
erties. The scattering coefficients ranged between 1 and 600 Mm~" at 450 nm, while
absorption ranged between 1 and 25 Mm™" at 637nm. A strong seasonal behavior
was observed, with higher aerosol mass concentrations during the dry season (July—
November) compared to the wet season (December—June). During the wet season,
the single scattering albedo calculated from our measurements ranged from 0.90 to
0.99, whereas during the dry season, it ranged from 0.75 to 0.95. Although the site is
remote, it receives the influence of regional biomass burning emissions during the dry
season. Also, measurements of aerosol elemental composition indicate events of long
range transport of African dust to the Amazonian forest site. These trans-continental
sources of particles affect the optical properties of the natural aerosol population, with
implications to the regional climate and to the forest nutrient cycle.

Measurements of submicrometer number size distributions indicated only a few
events of new particle formation and subsequent growth along three years of measure-
ments. From wet to dry season, integrated number concentrations increased approxi-
mately by a factor of 3. The shape of the particle number size distribution also changed.
During the wet season, the Aitken mode (~30—100 nm) was prominent, suggesting the
presence of secondary aerosol, most likely originated from the condensation of bio-
genic volatile organic compounds to the particle phase. In contrast, during the dry
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season the accumulation mode (100-500 nm) dominates the number size distribution,
indicating the presence of primary biomass combustion and/or aged aerosol.

In Fig. 5 monthly averages of particle number size distributions are shown. The
black curve represents the mean of all seasons, while the upper and lower curves are
monthly averages of the dry and wet season, respectively. During the dry season, the
Amazonian biomass burning aerosol dominates the number size distribution, while the
concentrations are low during the wet season.

The number size distribution, light scattering and absorption coefficient data are the
first long-term aerosol in-situ measurements ever performed in Amazonia, elucidating
the differences between the biogenic aerosol population and the anthropogenic and
long-range transport influences.

Lidar measurements were performed from January to November 2008 to obtain ver-
tical aerosol profiles (Althausen et al., 2009) in Amazonia, determining the backscatter
coefficient (wavelength: 355 nm, 532 nm, 1064 nm), the extinction coefficient (355 nm
and 532 nm) and the depolarization ratio (355 nm). Furthermore, microphysical prop-
erties such as the effective radius and the volume concentration as well as the single
scattering albedo were retrieved using the inversion algorithm by Ansmann and Muller
(2005). The aerosol optical depth (AOD) was derived by integrating the vertical extinc-
tion coefficient profiles.

A wide variety of aerosol conditions with a complex vertical aerosol layer structure
were observed. During the wet season, clean conditions occurred occasionally with
an AOD (532nm) less than 0.03. This low AOD value is in the order of the lowest
values measured for remote marine conditions (Andreae, 2009) and one of the lowest
values ever measured on a continent. Beside such clean conditions, frequent intru-
sions of Saharan mineral dust and African biomass burning aerosol were observed
(Ansmann et al., 2009). The mineral dust fraction in these African aerosol plumes was
usually below 50 %. The biomass burning aerosol from Africa seems to be as impor-
tant as the Saharan dust in terms of trans-continental transport. During the dry season,
Amazonian biomass burning dominated the optical aerosol properties with AODs up to
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0.55 (532 nm). One major finding from the dry season observations is that virtually no
cleaning due to short showers was observed.

The lidar measurements performed during EUCAARI were the first long-term obser-
vations of the vertical aerosol structure in Amazonia ever. It was also the first time that
a multi-wavelength-Raman lidar was operated in the Amazon Basin.

3.3.3 Source apportionment of organic aerosol

Organic aerosol components (OA) account for a large mass fraction of the European
aerosol, and accurate quantification, source apportionment and model descriptions are
necessary in order to determine their effect on the radiative balance and air quality. The
importance of biogenic sources and their response to climate change and air quality
policy measures is not yet adequately quantified, but is likely to be significant. The
main accomplishments of EUCAARI in this area have been:

— A large mass fraction of the European aerosol is organic, and a large fraction
of that carbonaceous aerosol is modern carbon (i.e. deriving from non-fossil fuel
sources).

— A new comprehensive European AMS data set, which was analyzed by posi-
tive matric factorization (PMF) and further supported by HNMR data, provided
detailed information on the different sources of OC at urban and rural sites, in-
cluding biomass burning aerosol, fossil-fuel POA, and oxidized organic aerosol
(OOA). The latter fraction, both freshly-produced and aged typically comprised
the largest fraction of OA. The origin of these oxidized components remains un-
certain but can be considered as an upper limit for the total SOA contribution.
The reconstructed carbon budget for selected stations indicates that most of such
OOA must be apportioned to modern carbon sources.

— Major sources to modern carbon in Europe are wood combustion and secondary
biogenic OA. The latter includes not only the products of terpenes oxidation, but
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also amines, which were found to characterize a variety of environments (Po Val-
ley, Crete, Boreal forest). Since their source strengths are expected to vary in
response to climate change, these sources of modern carbon may constitute im-
portant feedback mechanisms in the climate system.

— Both global and regional OA model parameterizations were developed. Sec-
ondary OA formation via multiphase reactions was shown to be an important
contributor to global background OA.

— The comprehensive OA data set acquired within EUCAARI offers a unique oppor-
tunity to evaluate OA models on a wide range of spatial and temporal scales, and
will be valuable beyond the EUCAARI timeframe.

The wide variety of co-supporting methodologies and their results are detailed in Ap-
pendix C. Figure 6 shows the source apportionment for TC for Hyytiala, SPC and
Melpitz, based on the different methods used (14C, NMR, AMS). AMS HOA was ap-
proximated as fossil-fuel POA. Although there is an uncertainty due to the unknown
modern fractions of EC for these stations, the carbon budget indicates that the sum of
the OOA classes having no clear source characterization must actually be apportioned
to modern carbon, but for the single classes we cannot exclude important contributions
from fossil fuel carbon.

3.3.4 Field observations of organic aerosol ageing

During EUCAARI, the atmospheric transformation of OA was studied during 30 ground-
based field experiments using AMS and other OA characterization techniques, provid-
ing a unique European data set of OA “types”, defined by spectral fingerprints (and
chemical composition) reflecting both sources and chemical ageing. Main results of
the analysis of these measurements are:

— A new European phenomenology of submicron aerosol chemical composition
based on time-resolved mass spectrometric (AMS) measurements;
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— A first European phenomenology of “organic aerosol types”, defined by spectral
finger5prints from both AMS and HNMR spectroscopies (Decesari et al., 2011);

— LV-OOA (Low volatility oxygenated organic aerosol), which are end-products of
OA ageing, were associated by H-NMR analysis to HULIS-containing aerosols,
and are the most common constituents of the European regional continental pol-
luted background under clear sky and stable meteorological conditions (from May
2008 I0P).

An overview of how the various H-NMR and AMS source types correspond to each
other is shown in Fig. 7. The AMS data are plotted in the space spanned by the or-
ganic mass fractions of m/z 44 versus m/z 43 (Ng et al., 2010). Extensively aged OA
is found in the upper apex of the blue triangle (high organic mass fraction of m/z 44),
while freshly emitted OA is typically found at the base of it. The larger diversity of com-
positions observed for fresh OOA reflects the multiple fingerprints of anthropogenic
(e.g., biomass burning) and biogenic (e.g., terpene SOA) sources, while the aged OOA
exhibits a consistent composition dominated by carboxylic acids. H-NMR analysis high-
lights a sharp contrast between the composition of OOA in the lower left corner of the
triangle (samples from the Po Valley) and that of samples from regional background
stations (Mace Head, Montseny) which fall in the upper corner of the diagram. The
former are dominated by aliphatic chains, poorly functionalized alkyl groups, amines,
aromatic and alcohols (originating from wood burning emissions), while the functional
group composition of the background stations is characterized by a variable amount
of aromatic groups and by very functionalized aliphatic groups lacking of methylenic
chains, hence pointing to HULIS. In the centre of the triangle, compositions of “atypical
HULIS” are also found, which are interpreted as OOA of intermediate ageing state and
are found at some polluted stations (Barcelona, Cabauw). On the other hand, H-NMR
analysis identifies HULIS also in samples not characterized by extensive ageing (Mel-
pitz), therefore missing a full overlap with the AMS chategorization for OOA. Reasons
for this discrepancy can be inherent to the methodologies: H-NMR characterization
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reflects more the structure of the backbone of the organic molecules and their func-
tionalization degree rather than their actual oxidation state, therefore looking at the
ageing processes with a different perspective compared to AMS. An alternative expla-
nation is that in environments, such as Melpitz, the less oxidized OOA are accounted
for by water-insoluble compounds, which were not analyzed by H-NMR spectroscopy
in this study.

3.3.5 Analysis of intensive observation period sub-projects
Particulate pollution over Europe under anticyclonic conditions

During the EUCAARI-LONGREX campaign in May 2008 the DLR Falcon and FAAM
BAe-146 research aircraft were deployed to measure microphysical, chemical and op-
tical properties of atmospheric aerosol over Europe throughout the tropospheric col-
umn. The first half of May 2008 was characterized by the occurrence of well devel-
oped, blocking anticyclonic system, which enabled the development of a very stable
boundary layer over central Europe (Hamburger et al., 2011). Reduced horizontal wind
velocities averaging below 7m/s at low levels and the stable vertical layering of the
lower troposphere resulted in high total particle number concentration over the con-
tinent. The airborne measurements of aerosol number concentrations discussed by
Hamburger et al. (2011) show a “C-shaped” vertical structure for particles d,>10nm
(Fig. 8) with considerable day-to-day (flight-to-flight) variability throughout the tropo-
spheric column. Boundary layer aerosol number concentrations ranged from 5000 to
20000 particles cm~2in polluted regions to around 1000-2000 particles cm~2 in rather
remote areas. A significant number of freshly formed particles have been detected dur-
ing many flights (Crumeyrolle et al., 2010). Accumulation mode particles (d,>150 nm)
accounted typically for approximately for 10-20 % of the aerosol population. A rather
strong gradient between high number concentrations inside the boundary layer and
the much cleaner free troposphere was characteristic for the high pressure conditions,
whereas the contrast was clearly weakened after passage of frontal systems later on.
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Almost undisturbed transport of continental anthropogenic pollutants to remote re-
gions can occur. This process was observed for instance around May 14, 2008, con-
tributing to about 90 % of fairly high aerosol optical depths (AOD) over the Atlantic
southwest of Ireland (Fig. 9). Closure of optical aerosol properties determined from
the High Spectral Resolution Lidar (HSRL) and the in situ aerosol optical aerosol
spectrometers carried on the Falcon was successfully obtained for this case (Ham-
burger et al., 2011). Furthermore, the AOD as retrieved from satellite observations
(here PARASOL; averaged AOD 0.31+0.03 for the box marked in Fig. 9b) could be
validated against the HSRL measurement (averaged AOD 0.36+0.05 along the flight
track in Fig. 9b).

Sub-micron aerosol chemical composition

The spatial distribution of sub-micron aerosol chemical composition has been char-
acterized based upon airborne measurements in the planetary boundary layer across
Europe (Morgan et al., 2010b). Downwind of major source regions total submicron
mass loadings from the AMS exceeded 15 ug s m~2 with organic aerosol (OA) and am-
monium nitrate being the dominant chemical components, contributing 20-50 % each
to the non-refractory mass. OA dominates over sulphate over most of Europe, with OA
concentrations typically 1.3-2.5 times greater than that of sulphate. A positive matrix
factorisation analysis of the OA component was conducted, revealing the dominance
of oxidised organic aerosol (OOA) over hydrocarbon-like organic aerosol (HOA), which
is consistent with previous literature (Jimenez et al., 2009; Zhang et al., 2007) as well
as with the ground-based data. An empirical estimate based upon previous research
indicated that HOA contributes less than 15 % to the OA burden. Two separate OOA
components were identified; one representing an aged-more oxidised organic aerosol
and another representing fresher-less oxidised organic aerosol. OA data can be viewed
as a continuum with a progression from a less oxidised, more-volatile component to a
highly oxidised, less-volatile component. This progression was observed to occur as
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a function of the distance from source, with more oxidised components dominating
further downwind. Ammonium nitrate dominates in North-Western Europe where the
emissions of NO, and ammonia reach their maximum.

Airborne measurements revealed complex partitioning of the semi-volatile aerosol
components in planetary boundary layer. Measurements revealed an increase in
secondary aerosol mass with an increasing altitude in the boundary layer, causing
an increase of the aerosol direct radiative forcing (Morgan et al., 2010a). Specifically,
in-situ measurements in the vicinity of a ground-based measurement site at Cabauw,
Netherlands, showed that ammonium nitrate was the dominant chemical component
aloft, while at the ground OA dominated. Furthermore, the fractional contribution to the
sub-micron aerosol mass of ammonium nitrate increased with height in the boundary
layer. This was primarily attributed to partitioning of semi-volatile gas phase precur-
sors to the particle phase at reduced temperature and enhanced RH, a phenomenon
which has been observed previously in California (Neuman et al., 2003). By comparing
the optical properties measured on the aircraft with coincident measurements from the
ground, a strong enhancement in the aerosol optical depth (AOD) and direct forcing
was shown to occur when taking into account the additional mass associated water
uptake and hence scattering caused by the partitioning phenomenon. Consequently,
the radiative impact of anthropogenic aerosols is likely to be severely underestimated
in Europe, where ammonium nitrate and OA are major components of the sub-micron
aerosol burden. Such increases in AOD and radiative forcing have major implications
for regional weather and climate, particularly as semi-volatile compounds are often not
included in global and regional aerosol models.

Black carbon

The EUCAARI airborne IOP delivered also first measurements of refractory black car-
bon (rBC) in the lower troposphere on a European scale (McMeeking et al., 2010).
Averaged rBC mass concentrations in the boundary layer (<3 km) ranged from roughly
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300ng m~ in near-urban regions to 50 ng m~> in background environments. The rBC

mass concentrations increased from the East to the West during a period dominated
by easterly flow, although fraction of sub-micron mass was between 0.5-3 % and dis-
played a weak geographic dependence. Mass concentrations in the boundary layer
were more than a factor of 10 higher than in the lower free troposphere, decreasing on
average from about 100 to 5ng m~3.

Airborne CCN and cloud property measurements

During EUCAARI, simultaneous observations of cloud condensation nuclei and lidar
extinction profiles, as well as simultaneous ground-based and airborne CCN concen-
trations measurements provided the opportunity to quantify the vertical distribution of
CCN. Results from the ground-based/airborne intercomparison based on data from the
intensive measurement period at Cabauw, NL, in May 2008, indicate that CCN mea-
surements on the ground often over-estimate the concentrations at levels where clouds
form. During the clean background conditions when the air masses originated from the
North Sea and cloud bases were relatively low, the boundary layer was well mixed
and CCN concentrations at the ground resembled those at cloud base. The difference
between ground-based and airborne measurements is especially important at higher
concentrations associated with local pollution, when boundary layer mixing timescales
are greater than the timescales for transport. Ground-based and airborne lidar ob-
servations detect multiple aerosol layers, provide insight to boundary layer mixing and
are useful tools to investigate the relationships between ground-based and airborne
measurements.
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Lagrangian parcel model simulations

Lagrangian parcel model simulations were carried out to assess the closure among the
aerosol and cloud-droplet measurements carried out on board the SAFIRE ATR-42 dur-
ing the IMPACT campaign. The physicochemical aerosol characteristics measured be-
low cloud base are used for initializing an air parcel model. The model covers detailed
treatment of the evolution of aerosol size spectrum and predicts the shape of the spec-
trum of activated cloud droplets. The evolution of the spectrum is driven by changes
in humidity that are in turn caused by adiabatic displacement of the air parcel. Results
of multiple simulations performed using different vertical velocities were matched with
the measured vertical wind speed spectrum to obtain statistics of droplet-spectrum pa-
rameters. The predicted statistics were compared with the in-situ measurements made
just above the cloud base using the FSSP-100 cloud-droplet size spectrometer on May
13 and 15 (Arabas and Pawlowska, 2010). The result of that study is hoped to help a
creation of a novel parameterization of the activation process in cloud models with de-
tailed description of microphysics. A novel approach for solving the evolution of particle
spectrum in an air-parcel model was developed for the purpose of this study (Arabas
and Pawlowska, 2011, model code released with the paper).

Analysis of vertical velocity statistics on different levels in the atmosphere and statis-
tics of cloud microphysical parameters (cloud droplet number concentration, liquid wa-
ter content, cloud droplet radius) were performed (Fig. 10). That information has been
used in the evaluation of the droplet activation model developed at the University of
Warsaw (Arabas and Pawlowska, 2011). Statistics of vertical velocity have been used
also in the CAM-Oslo GCM model (Hoose et al., 2010a).

Profiles derived from the aircraft data taken during the flight on 15 May over the North
Sea (RF51) were used to initialize Large Eddy Simulations (LES). Simulation was run
using the Eulerian version of the EULAG model www.mmm.ucar.edu/eulag that solves
anelastic equations with a 2-moment microphysics scheme that predicts liquid water
mixing ratio and cloud droplet concentration. To study the process of turbulent mixing in
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clouds, the microphysics scheme was improved. In the original version of the scheme,
the mixing scenario is determined by a single parameter, which is assumed to be con-
stant in space and time during the simulation. To include in the model the variability
of the mixing scenario in clouds, we took advantage of the direct numerical simula-
tions (DNS) results (Andrejczuk et al., 2009). Results from these simulations suggest
that a simple relationship exists between the ratio of the time scales of droplet evap-
oration and turbulent homogenization and the slope of the mixing line on the diagram
representing the relative change of the droplet concentration versus the change of the
droplet radius cubed. To calculate the ratio of the time scales two new variables were
added to model: 1 — the scale (or width) of cloudy filaments and G — the fraction of
cloud air in the grid box.

The IMPACT stratocumulus case was used to compare the models with new 2-
moment microphysics scheme and with the traditional 2-moment scheme (assuming
homogenous or extremely inhomogenous mixing for entire simulation). Results from
all simulations are in relatively good agreement with experimental data. The cloud wa-
ter profiles show a bilinear structure, with different slopes in the layer between 400 and
600 m, and the layer above 700 m. This might suggest a layer of cumuli beneath the
stratocumulus growing into the stratocumulus deck. The differences between models
are insignificant. This is what one might expect because homogeneity of mixing should
not affect bulk cloud properties such as cloud water and cloud fraction profiles. It’s
not true for the mean droplet number concentration where differences between models
should be important.

LES simulations

High resolution Large Eddy Simulation (LES) studies are important in our effort to un-
derstand cloud processes. Data derived from the North Sea case studies provide
excellent material for the initialization of LES models that were used to simulate the
PBL-cloud formation and evolution. Development of these models now include (a)
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CCN parameterization, (b) the option to study in-depth the various mixing scenario’s
of the clouds with ambient [overlying air], (c) inclusion of the observed aerosol chem-
ical and physical properties. A parameterization testbed has been used to compare
the output from LES models to that from larger scale Single Column Models that are
reduced versions of full scale 3-D regional/global climate models.

Radiative closure

Our results from IMPACT sub-campaign show that a detailed model of the effects of
aerosols on atmospheric radiation is able to capture the observed radiative signatures
at the surface with a high degree of accuracy. This suggests that an accurate modeling
of the direct aerosol radiative effect in global climate models is within reach provided
that the global and regional distribution of aerosols is known.

The focus in this work was on the radiation budget of stratocumulus clouds. To study
this complex system, an atmospheric model capable of computing three dimensional
cloud fields is needed. This requires high spatial and temporal resolution at large do-
main sizes, and with that is computationally challenging. The model gpuASAM devel-
oped at the IfT in Leipzig uses graphical processing units (GPU) to provide the neces-
sary computing power. It is a three dimensional atmospheric model with a two moment
microphysics based on Seifert and Beheng (2006). With that it is possible to study
the effects of different CCN concentrations on cloud structures. The model was eval-
uated using simple test cases (Bryan and Fritsch, 2002) but also some more complex
GCSS test cases (BOMEX, DYCOMS). It is capable of producing three-dimensional
cloud fields even with features like open and closed cell structures, at computation
times of several hours using one GPU. More GPU’s can be combined to enhance do-
main size or increase model resolution. With this new model large eddy simulations of
cloud fields became possible on ordinary desktop computers or even on notebooks. In
future, using actual high-end GPU servers, it will be possible to do these calculations
in a forecast mode for example to accompany field measurements.The produced three
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dimensional cloud fields are good input fields for usage in more sophisticated radiation
transfer models, but none of these are currently implemented in the model framework.

3.4 Regional and global aerosol and clouds
3.4.1 Satellite data

EUCAARI used satellite data to understand regional and global variations of aerosol
and cloud properties, and aerosol-cloud interactions. The resulting aerosol and cloud
information on regional and global scales was used in process, transport and effects
studies in support of the assessment of air quality and climate. The observations were
made using experimental state-of-the-art space-borne instruments (MODIS, AATSR,
PARASOL, OMI, Cloudsat, CALIPSO and MSG SEVIRI) (see de Leeuw et al., 2011b).
This required the development of new methods/algorithms and the improvement of ex-
isting ones to improve the quality of retrieved aerosol and cloud parameters and the
retrieval of new parameters by optimum utilization of the technical characteristics of
the available instruments. Tools have been developed to visualize and analyse com-
bined data sets. The analysis focused on the EUCAARI campaigns LONGREX and
IMPACT, on the distributions and effects over Europe and around the EUCAARI sites
in China, India and South Africa, and on regional, global and seasonal variations of
aerosol and cloud properties and radiative effects. Retrieval results were analyzed and
inter-compared to improve their quality and the understanding of the retrieval products.
Aerosol optical depth (AOD) and Fine Mode Fraction (FMF) were compared with in-
dependent ground-based and airborne measurements as well as with model results.
These comparisons served to evaluate both the retrieval and the model outcomes.
Cloud properties retrieved from satellite observations show the effects of aerosols on
cloud microphysical and optical properties and the evolution of clouds as well as in-
formation on cloud phase which leads to better understanding of cloud properties and
effects.
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Satellite-based instruments provide information on the spatial distribution of atmo-
spheric constituents on regional to global scales (Burrows et al., 2011). Of particular in-
terest for EUCAARI was the retrieval of aerosol and cloud properties using radiometers
or lidar systems. Satellite-retrieved aerosol and cloud properties provide information
on atmospheric processes and especially on aerosol-cloud interactions and radiative
effects of clouds through their macroscopic and microphysical properties. The cur-
rent status of the retrieval of cloud properties has been described by Kokhanovsky et
al. (2011). The current status of the retrieval of aerosol properties over land has been
described by Kokhanovsky and de Leeuw (2009) and de Leeuw et al. (2011b). The
validation of aerosol retrieval is described in Piters et al. (2011). Together these publi-
cations provide a good overview of the instruments and algorithms used in EUCAARI
to provide aerosol information from space. Aerosol and cloud properties have been
retrieved using instruments flying on sun-synchronous satellites as well as on geosta-
tionary satellites. The former provide information on a global scale within one to a few
days, the latter provide information on part of the globe but with temporal resolution of
multiples of 15 min.

Satellite detection of aerosols

Aerosol retrieval products over Europe are available from AQUA/MODIS, PARASOL,
OMI, and the CALIOP lidar, all flying in the A-Train constellation, as well as AATSR (on
ENVISAT) and SEVIRI (on MSG, geostationary). For all instruments algorithms have
been further developed and improved.

The AATSR dual view algorithm was further developed and improved (Kolmonen et
al., 2011). Results for 2008 are shown in Fig. 11. Global aerosol retrieval results on the
aerosol optical depth (AOD) over land were compared with ground-based AERONET
(Holben et al., 1998) AOD data. This comparison showed where the algorithm provides
good and less good results, with the latter needing further development (Kolmonen et
al.,, 2011). For the determination of the aerosol altitude using data from a passive

17991

Jadedq uoissnosiq | Jadeq uoissnosigq |  Jadeq uoissnosiqg | Jaded uoissnosig

ACPD
11, 17941-18160, 2011

Integrating aerosol
research from nano
to global scales

M. Kulmala et al.

: II“ III


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

sensor, a new approach has been developed that uses the oxygen A-band of POLDER
(Dubuisson et al., 2009). The method provides insight into the vertical distribution of
aerosol on a global scale. A new approach for the retrieval of aerosol optical thickness
above clouds from merged POLDER and MODIS observations has been developed
by Waquet et al. (2009). The method provides a new perspective for studying aerosol
properties and radiative forcing in the presence of underlying clouds. The OMI multi-
wavelength aerosol algorithm (OMAERO product) has been developed (Torres et al.,
2007) to retrieve the aerosol optical thickness and a best fitting aerosol type. The
single scattering albedo, the layer height and the size distribution associated with the
best fitting aerosol type are provided. OMAERO aerosol products have been improved
by the use of the surface albedo climatology from OMI over land (Kleipool et al., 2008)
in the retrieval algorithm to account for surface effects on the radiation measured at the
top of the atmosphere. Further OMAERO improvement is expected from combining
the MODIS-AQUA cloud screening with the OMI data, in order to improve the cloud
screening for OMAERO. MODIS-AQUA and OMI are both part of the A-Train satellite
constellation and the two sensors observe the same area within 10 min.

Apart from the aerosol optical thickness and the aerosol type retrieval, the OMAERO
product also produces the Aerosol Absorbing Index (AAl). The AAl is not a geophysical
parameter, but an indicator of the presence of elevated layers of absorbing aerosol,
such as desert dust or biomass burning plumes. The multi-year OMI AAI data series
show the inter-annual variability of this parameter. A unique new result is the retrieval
of the AOD above clouds from merged POLDER and MODIS observations (Waquet et
al., 2009). It provides a new perspective for studying aerosols properties and radiative
forcing in the presence of underlying clouds.

Satellite detection of clouds

A study on the information content analysis of Multi-viewing polarization measurements
for liquid cloud microphysical retrievals by Labonnote et al. (2011) showed that the
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physics governing the radiative transfer in clouds is relatively well known, whereas the
impact of model uncertainties and instrument noise in the information content of an
observing system is not as clear. The study further showed that there is potentially
more information than only the two first modes of the size distribution (effective radius
and effective variance) in such measurements. It might be possible to retrieve the
entire shape of the size distribution depending of the angular resolution and the signal
to noise ratio of the instrument.

MODIS and POLDER cloud fraction, cloud optical thickness and cloud phase as well
as seasonal variations and spatial distribution of high, middle and low, ice/liquid cloud
fractions have been compared by Zhang et al. (2010) and Zeng et al. (2010). Seasonal
variations and spatial distribution of high, middle and low, ice/liquid cloud fractions
have been compared and analyzed. The impact of microphysical model uncertainties
on cloud optical thickness retrievals and subsequent errors on the estimate of ice cloud
radiative forcing has been quantified.

An algorithm has been developed to retrieve an improved cloud top phase prod-
uct using POLDER/PARASOL and MODIS/AQUA (Riedi et al., 2007). The resulting
product provides a semi-continuous confidence index ranging from confident liquid to
confident ice instead of the usual discrete classification of liquid, ice, mixed or simply
unknown phase clouds.

A sophisticated method using a variational technique has been developed to retrieve
cloud size distribution parameters (effective radius and effective variance) from multi-
viewing/spectral polarized measurements (Labonnote et al., 2009). Due to the data
used (polarization) this microphysical information primarily comes from cloud top and
is mainly sensitive to narrow size distribution (e.g. small effective variance).

The OMI effective cloud fraction represents the cloud influence on the reflectance,
not a geometric coverage. The OMI effective cloud fraction has been validated against
the MODIS/Aqua cloud optical thickness (Sneep et al., 2006). The MODIS instrument
uses thermal infrared radiation to determine the cloud (top) pressure. OMI uses re-
flected sunlight close to the O,-O, absorption band at 477 nm and yields a pressure
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near the mid-level of the cloud. The clouds observed near 40 degrees latitude are
probably a multi-layer cloud deck (cirrus over water clouds) where MODIS observes
the top layer, and OMI the bottom layer. Model comparisons have shown that the cloud
pressure retrieved by OMI is near the mid-level of the cloud. This is very different
from the cloud pressure derived in the thermal infra-red, where a cloud top is found.
Comparisons with CloudSat have confirmed this behaviour (Sneep et al., 2008).

Performance criteria and trend analysis of satellite aerosol observations

A new scoring system has been introduced to quantify the performance of MISR and
MODIS satellite sensor retrieval products for aerosol optical depth (AOD). Based on
comparisons to highly accurate ground-based sun-photometer data of AERONET here
stratified into 25 regions and 12 months, scores for bias and variability are assigned.
These regional and temporal sub-scores are then combined into single annual global
overall scores. MODIS (0.61) and MISR (0.58) global annual scores are at the top of
available multi-annual AOD data-sets. Both data-sets (based on multi-annual statistics)
score even better than the usually well behaved multi-model median (0.58). MODIS
scores better over oceans and MISR scores better over land. Another aspect of this
new scoring is the diagnostics, which allows tracing poor retrieval performance back
to failure at temporal and spatial sub-scales. Such analysis for instance suggests that
MODIS suffers from retrieval issues over continents in mid-latitudes during winter (pos-
sibly due to sub-pixel snow) and that MISR suffers from retrieval issue at high latitudes
(certainly related to MISR’s relatively poor temporal sampling). Differences in scores
at these sub-scales allow the identification of regional and seasonal retrieval strengths
and help in making more objective choices when picking one retrieval over another.
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3.4.2 Natural vs. anthropogenic contribution to aerosol number concentrations
Global particle number concentrations with GLOMAP

Model runs on the global impact of secondary particle formation on CN (condensation
nuclei, i.e. measured particle numbers) and CCN (cloud condensation nuclei) numbers
were conducted with the global CTM GLOMAP (Spracklen et al., 2006, 2008, 2010;
Merikanto et al., 2009, 2010). The computational schemes based on linear or square
dependence on sulphuric acid for boundary layer (BL) nucleation (developed within
EUCAARI, Sect. 3.2.1 and Kulmala et al., 2006; Sihto et al., 2006; Spracklen et al.,
2006; Kerminen et al., 2010) were used and the binary homogeneous nucleation in
the upper troposphere was also accounted for (Merikanto et al., 2009). The model
runs with a global focus were conducted using pre-existing inventories for particulate
emissions, while the in model runs concentrating on the European domain the particle
number emission inventories developed in EUCAARI were used.

The results suggested that the primary emissions can reproduce the spatial varia-
tion of the particle number concentrations on a global scale (Spracklen et al., 2010). A
clear influence of secondary particle formation on the total CN numbers was seen par-
ticularly on the seasonal behavior of particle number concentrations (Spracklen et al.,
2010). The results reported by Merikanto et al. (2010) suggest that on average about
75 % of predicted global surface level number concentrations of d,>3 nm particles had
originated from nucleation. Over the continents BL nucleation is the primary source of
these nucleated particles, whereas near the equator a large contribution from upper
tropospheric nucleation is predicted (Fig. 12) (Merikanto et al., 2010).

Merikanto et al. (2010) concluded that 45 % of global low-level cloud CCN at 0.2 %
supersaturation are secondary aerosol derived from nucleation (ranging between 30—
50 % taking into account uncertainties in primary emissions and nucleation rates), with
the remainder from primary emissions. Boundary layer nucleation and emissions of
biogenic organics are coupled, when looking at their effect on CCN numbers. On
average the forest emissions increase boreal CCN by a factor of 2 (Spracklen et al.,
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2008c). However, in a run without nucleation the forest emissions increase CCN only by
a factor of 1.5 The contribution of biogenic SOA formation on total aerosol mass, on the
other hand, was estimated using a physico-chemical box model applied in a Lagrangian
manner over Scandinavia (Tunved et al., 2008). A recently-developed parameterization
for the aerosol mass yield from biogenic terpenes was used (see also Tunved et al.,
2006). It was demonstrated that the forest itself could produce up to 200 CCN per
cm® on average over Scandinavia. Model runs comparing global CCN, cloud droplet
numbers (CDN) and cloud reflectivity in 1850 and 2000 were conducted with GLOMAP.
The results indicate that the global impact of nucleation on the 1850-t0-2000 change
in cloud reflectivity is small (few percent) but regionally it may be as high as 50 % and
can be either positive or negative (see Fig. 13 and Merikanto et al., 2010). These
results suggest that boundary layer nucleation is important in the first indirect forcing
calculations on a regional scale.

GLOMAP predictions of particle number over Europe were compared to aircraft and
ground-based measurements recorded during the May 2008 EUCAARI intensive cam-
paign and Long Range Experiment (LONGREX) by Reddington et al. (2011). It was
found that the spatial distributions of campaign-mean number concentrations >50 nm
(N5p) and >100nm (N,qp) dry diameter were well captured by the model (R2>0.8) and
the normalised mean bias was also small (-5 % for N5, and 12 % for N,) if a small
emission size was assumed for primary carbonaceous particles, as used by AERO-
COM (Dentener et al., 2006). Number concentrations of particles <50 nm dry diameter
(N<50) were substantially underpredicted at most ground sites unless an empirical
mechanism was included to simulate BL nucleation. Comparisons with aircraft obser-
vations were consistent with these findings. The results of a t-test showed that by
including BL nucleation, a statistically significant difference between modelled and ob-
served N<50 was removed at roughly half the ground sites. Including BL nucleation
increased simulated N5, and N,q, over Europe by ~10-50 % and ~5-20 % respec-
tively (depending on the mechanism and on the emission size of primary particles),
but the contribution of BL nucleation to particles >50 nm was difficult to detect within
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the uncertainty of the observations and assumptions about primary emissions. Despite
testing several empirical parameterisations for BL nucleation (including new parameter-
isations developed within EUCAARI (Paasonen et al., 2010)), the agreement between
hourly time series of modelled and observed nucleation events in this period was fairly
poor. From this 1-month intensive European dataset it was not possible to determine
a reliable estimate of the fraction of CCN-sized particles from primary and secondary
sources, although the size of primary emitted particles was shown to be a major source
of uncertainty.

Global particle number concentrations with ECHAM5-HAM

The global climate model ECHAM5-HAM (Stier et al., 2005) was modified to improve
the representation of new particle formation in the boundary layer. The effect of nucle-
ation on cloud droplet number was studied with the modified version of the model by
Makkonen et al. (2009, see Fig. 14). In these runs the simple particle formation scheme
introduced in EUCAARI (see also Sihto et al., 2006) was used to model boundary layer
nucleation, and the particle growth was accounted for with the condensation of organ-
ics. Comparisons to observations indicated that simple nucleation scheme used in
the study is a promising way to improve the ECHAM5-HAM model closer towards the
average values observed over different locations.

European number concentrations with PMCAMx-UF and GLOMAP using
emission inventories developed in EUCAARI

The regional 3-D-model PMCAMXx-UF was developed (Jung et al., 2008), and its first

tests were conducted for the Eastern United States for which input data such as emis-

sion inventories were readily available (Jung et al., 2010). The model simulates the

aerosol number (from 1 nm to 10 um) and mass distributions for a variety of chemi-

cal components, with a spatial resolution of 36 kmx36 km and temporal resolution of
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one hour. To test the impact of boundary layer nucleation on aerosol number, the
model allows the user to select among several different nucleation parameterisations,
including the ones developed in EUCAARI (Sihto et al., 2006). Furthermore, a ver-
sion of PMCAMx-UF simulating the European domain was developed, and the newly-
developed anthropogenic particle inventrory (see Sect. 3.1) was implemented (Foun-
toukis et al., 2011a). Figure 15 shows the average predicted total number concentration
of particles larger than 3nm (N3), 50 nm, (N5g), and 100 nm (N,q,) for the ground level
for May 2008. The major nucleation areas are in the S-SE of Europe. The maps of
average Ny, and N,y concentration fields have in general similar features, while the
spatial distribution of Ny is quite different. The average ground concentrations over the
whole modeling domain are predicted to be 6667, 1465, and 390cm™2 for N3, Nxg,
and N, g, respectively. Additional simulations were performed for the same period with
(1) nucleation turned off to study the secondary contribution to particle number con-
centrations; (2) anthropogenic SO, and primary aerosol emissions reduced with 50 %,
respectively, to study the anthropogenic impact on aerosol particle number concen-
trations. Corresponding simulations were conducted with GLOMAP using the same
nucleation parameterisations, EUCAARI-developed emission inventories, and meteo-
rological fields.

The evaluation of the anthropogenic particle number emission inventories developed
in EUCAARI is an important contribution to the assessment of the anthropogenic im-
pact on atmospheric aerosol numbers in the European boundary layer. These emis-
sion inventories were implemented in PMCAMx-UF and GLOMAP, and comparisons
between the predicted particle number concentrations against observations at the EU-
CAARI field sites during the Intensive Observation periods in May 2008 and March
2009 were conducted to evaluate the performance of the inventories. The results in-
dicate that the models performed relatively well in both capturing the levels of particle
number concentrations and size distributions, as well as their temporal variation (see
Fig. 16, for the comparison for Ny, in May 2008).
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The average impact of secondary particle production by nucleation on average num-
ber concentrations of particles larger than 3 nm (N3), 50 nm (N5g) and 100 nm (Nq) in
Europe, and their sensitivity to 50 % reductions in anthropogenic SO,, primary particle
and biogenic VOC emissions are depicted in Table 2. The estimates are based on
the PMCAMx-UF and/or GLOMAP simulations. The results suggest, in line with the
previous global model studies (Merikanto et al., 2010), that a considerable fraction of
>3 nm and >50nm aerosol and CCN number concentrations are of secondary origin.
The number concentrations also seem to be relatively insensitive to potential emission
reductions. The impacts of the emission reductions on the size distribution are notable:
while reducing SO, emissions will reduce number concentrations in all size classes,
primary aerosol emission reductions will have the largest impact on >100 nm particles.
According to predictions with GLOMAP, the similar behavior is predicted for the impact
of VOC emissions. It should be noted, however, that large uncertainties exist in the role
of organic compounds — and therefore in the role of VOCs — in defining the lifetimes
and size distributions of atmospheric aerosol populations.

Observed changes in particle formation due SO, emission reductions

In order to study the effects of past SO, emission reductions on small particle concen-
trations via possible reduction in new particle formation, we examined two long term
dataseries of aerosol size distributions recorded in Melpitz, Germany, in 1996—1997
and in 2003—2006 (Hamed et al., 2010). Between the two periods, SO, concentrations
decreased on average by 65 %. This decrease was accompanied by a 45 % decrease
in the frequency of new particle formation events, and a 68 % decrease in the average
new particle formation rate. Examination of the various factors affecting sulfuric acid
concentrations (i.e. SO, concentration, intensity of solar radiation, and the condensa-
tion sink) allowed us to conclude that the SO, reductions were indeed the reason in the
decreased new particle formation. However, the growth rate of the freshly formed par-
ticles increased by 22 % between 1996—-1997 and 2003-2006, resulting in increased
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likelihood of the new particles to grow to sizes above 100 nm. Therefore, and rather
counterintuitively, the production of 100 nm (and larger) particles origination from new
particle formation events was increased in the 2003—2006 period compared to 1996—
1997, although new particle formation itself decreased. The reason for the increased
growth rate may have to do with increased emissions of biogenic VOC’s as the new
particle formation day temperatures were on average clearly higher in 2003—2006 than
in 1996-1997.

From primary vs. secondary to natural vs. anthropogenic contributions to
particle number concentrations

Summarizing, the importance of anthropogenic emissions as compared with natural
aerosol background to the aerosol loading in atmosphere was one of the core ques-
tions of EUCAARI. To address this question for atmospheric aerosol number concen-
trations, it is crucial to unravel the fraction of particles with primary as compared with
secondary origin — the former having primarily anthropogenic sources over the Euro-
pean continent, and the latter being typically a complicated mixture of both natural and
anthropogenic components. We studied the sources of atmospheric aerosol particle
numbers with global and regional models, equipped with the state-of-the-science pa-
rameterisations for secondary aerosol formation and primary aerosol number emission
inventories — both developed within EUCAARI. The main results of these studies are:

1. Nucleation is a major source of aerosol particle number concentrations, and usu-
ally several tens of percents of sub-micron aerosol particles have originated from
condensation of atmospheric vapours — thus being of secondary origin. As a
rough approximation one could estimate that about half of aerosol particles in
terms of their total number concentration in the European boundary layer have
originated from nucleation.
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2. Secondary aerosol formation is a combination of both natural and anthropogenic
influence: while anthropogenic sulfate emissions are a major factor governing for-
mation of new particles, natural emissions of biogenic organic vapours play an
important role in defining the aerosol size distributions and the climatic impact of
aerosols. Our results suggest that the anthropogenic contribution (both primary
and secondary) is dominating in the most parts of Europe, the biogenic compo-
nent being of less importance. However, halving SO, and anthropogenic primary
particle emissions would result in reductions of the order of 20% on the total
particle number concentrations — which might suggest that the natural aerosol
production might compensate somewhat for the reductions in the anthropogenic
aerosol priduction.

3. Air quality-driven reductions of global anthropogenic SO, emissions are likely to
decrease the cooling effect of aerosols during the next hundred years — due to
their impact on secondary aerosol formation. This effect is likely to overwhelm the
potential changes in natural emissions of aerosol precursors.

It is important to mention that impact of different air quality-driven reduction scenarios
are still associated with a lot of uncertainty

3.4.3 Parameterisations of processes

Due to the required long computing time complex processes usually need simplification
before they can be implemented in global and regional models. These simplifications
should still represent the full processes from the physical and/or chemical point of
view. Therefore they need extensive testing before their results can be trusted. The
EUCAARI project produced quality controlled parameterizations and investigated the
accuracy of essential assumptions used in the models. Key results of this work are:

1. The role of a minimum in cloud droplet number concentration assumed in models
was quantified, thus reducing the sensitivity of the estimated aerosol first indirect
18001
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effect to this arbitrary choice.

. The parameterization of the cloud updraft velocity was improved, allowing a better

determination of the activation of aerosol particles to cloud droplets.

. Ice nucleation parameterizations were tested and improved with emphasis on the

role of bioaerosols in atmospheric ice nucleation in mixed-phase clouds.

. The treatment of boundary layer was improved. The new description allows better

results for relation between Liquid Water Path and Aerosol Optical Depth.

. The description of stratocumuli thickness was improved.

. An improved scheme for CCN activation was developed filtering numerical arti-

facts.

. A parameterization of surface partitioning was developed that can be included in

large-scale models.

. New nucleation parameterizations were developed, evaluated and tested. The

existing parameterization for aerosol formation was updated.

. The relative accuracies and differences between modal- and bin-descriptions of

the aerosol size distribution were evaluated.

Cloud droplet number concentration

Some global aerosol-climate models impose a lower bound to cloud droplet number
concentration (CDNC) or aerosol concentrations. Typical values of this lower bound
range between 5 and 40 cm™. In the pre-industrial era very low aerosol concentra-
tions were not as uncommon as they are today. A constraint on the CDNC influences
simulated clouds strongly and in a non-physical way. The common practice of prescrib-
ing a lower bound on the droplet number concentration is avoided in CAM-Oslo. Hoose
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et al. (2009) showed that arbitrary lower bounds on the droplet concentration lead to
suppression of the simulated first indirect effect (from ~1.9Wm? up to —0.6Wm2),
especially over oceans. Constraining aerosol concentration instead of droplet con-
centration has a weaker effect on the change in short-wave cloud forcing and can be
considered physically more correct, because global aerosol-cloud models lack some
aerosol species like primary biological particles or non-desert dust.

Cloud updraft velocity

The parameterization of the in-cloud updraft velocity, which determines the activation
of aerosol particles to cloud droplets, has been the subject of model studies and com-
parison to observations from the EUCAARI-IMPACT campaign (Hoose et al., 2010a).
The onset of the Wegener-Bergeron-Findeisen process in mixed-phase clouds is also
related to the distribution of in-cloud updraft velocity. Therefore the updraft velocity pa-
rameterization has also an influence on the simulated 1st indirect effect in mixed-phase
clouds (Lohmann and Hoose, 2009). Updraft velocity is a critical parameter in cloud
formation, because it determines how many CCN are activated. GCMs cannot resolve
the updrafts, so they need to be parameterized. In the CAM-Oslo model, a param-
eterization from Abdul-Razzak and Ghan (2000) is used, calculating a pdf of vertical
velocity in each grid box, and relating the width (o,,) of the pdf to the eddy exchange co-
efficient that is given by the turbulence scheme. Comparing the obtained values of ¢,,
from the model with various observations, e.g., EUCAARI-IMPACT data (Cabauw), a
rather poor agreement has been found, and in particular an underestimation on cloudy
days.

Based on these results, a new parameterization has been derived, in which an addi-
tional term, proportional to LWC (liquid water content) is added to the formulation of ¢,,,.
The physical idea behind this is that clouds not only depend on updrafts for their forma-
tion, they also produce turbulence via two mechanisms: cloud top cooling and latent
heat release. In fact it has been known for many years that in marine stratocumulus, it
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is the cloud top cooling that is the main source of turbulence in the boundary layer, and
it is precisely that turbulence which transports moisture from the surface to the cloud
base, thereby maintaining the cloud.

With the new formulation, the agreement between the model-predicted o,, and the
observed o, is greatly improved. When the new formulation is tested in the CAM-Oslo
model, it yields an overall 36 % increase in cloud droplet number, significantly reducing
the model negative bias.

Ice nucleation on biological and mineral dust particles

Global model simulation of bacterial, fungal spore and pollen with the CAM-model
showed that simple bioaerosol emission parameterisations can reproduce average
measured concentrations. The modeled average bioaerosol contribution to hetero-
geneous ice nucleation in mixed-phase clouds is very small. If they are present in
high enough concentrations (significantly higher than the climatological concentrations
simulated in this study), they might trigger glaciation of clouds at warmer temperatures
and lower altitudes than in their absence (Hoose et al., 2010b).

Most assessments of the aerosol first indirect effect so far only deal with CCN in-
fluencing cloud droplet formation. While some climate models calculate ice nucleation
from natural and anthropogenic aerosols, so far they have only used quite simple,
empirical parameterizations. In order to reduce the uncertainty associated with the
aerosol indirect effect, a new parameterization of heterogeneous ice nucleation has
been developed, in which the ice nucleation rates and their temperature dependence
are derived from classical nucleation theory and laboratory data (Hoose et al., 2010c).
The parameterization treats three types of IN: mineral dust, soot and primary biological
aerosol particles (PBAP: bacteria, pollen and fungal spores). This is the most detailed
parameterization of heterogeneous ice nucleation developed so far in any global cli-
mate model.
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Multi-year simulations were carried out with the CAM-Oslo model, using the new
parameterization. Comparing simulated IN concentrations to observations using the
airborne CFDC instrument shows generally good agreement over the whole tempera-
ture range from 0° to —40°. It was found that mineral dust accounts globally average
of 77 % of the ice crystal nucleation in mixed-phase clouds, followed by with soot at
23 %, while the PBAP contribution is much less than 1%. Even when rather extreme
assumptions are made on the nucleation ability of PBAP, their contribution remains
small. Hence, our results do not support earlier suggestions in the literature of a large
contribution from biological particles to ice nucleation (Christner et al., 2008; Prenni et
al., 2009). However, we do not rule out a significant role of such particles in certain
areas and at certain times.

With the new ice nucleation scheme in place, the simulated aerosol 1st indirect effect
is reduced by about 10 % compared to simulations that do not treat ice nuclei. The
reduction is caused by a reduced lifetime effect, as anthropogenic soot stimulates the
freezing of supercooled water. Precipitation release is much more efficient when ice
crystals are present, and therefore the freezing stimulates precipitation, which is the
opposite of the Albrecht effect in warm clouds

Improvements of boundary layer parameterization

The ECHAMS model uses a turbulent kinetic energy (TKE)-scheme, which simulates
the cloud top fluxes in function of the local turbulence. It reproduces relatively well
the clear convective and stratocumulus topped boundary layers in a quite high resolu-
tion model (e.g. Duynkerke and Driedonks, 1987). Nevertheless, a new version of the
boundary layer including a parameterisation of cloud-top entrainment in the stratocu-
mulus regions has been included in ECHAMS5 (ENTR). The standard version (STD)
includes turbulent diffusion on non-conserved variables. The highest values of TKE in
ENTR are more in the range of measurements (between 0.1 and 0.5ms_1) than the
huge values in STD. Although using the new scheme the relation between Liquid Water
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Path and Aerosol Optical Depth becomes closer to the satellite measurements it is still
not enough as the observations show a negative slope of all the variables for AOD
>0.2. Nevertheless, the explicit entrainment reduces the sensitivity of LWP to AOD on
a global scale as well.

Improved description of stratocumuli thickness

It has been observed that stratocumuli are too shallow to be well represented in the
standard vertical grid of models like ECHAMS. To better simulate these low clouds
without increasing the vertical resolution tremendously, two levels are added dynami-
cally wherever a stratocumulus could form. More precisely, the thickness of the stra-
tocumulus is found following the approach presented in Grenier and Bretherton (2001),
and a new grid containing 2 more levels based on it is defined. The algorithm which
computes the cloud top and the vertical thickness of the stratocumulus-topped bound-
ary layer in ECHAM5 and defines the new grid has been implemented. The method
allows the existence of stratocumuli in the right place in the GCM with a reasonable
pressure for the inversion (cloud top).

Supersaturation simulation to reduce spurious CCN activation

CCN activation is among the shortest time scale processes in cloud physics and effec-
tive prediction of the number of activated CCN requires time steps that are not feasible
in models. Supersaturation prognostic schemes show spurious peaks leading to un-
realistic activation. A new scheme has been developed, tested in a parcel model and
implemented in 3-D Large Eddy Simulation framework (CNRM), based on advection
of supersaturation, even thought supersaturation is not a conservative variable. Com-
bined with the supersaturation prognostic derived from heat and moisture, the scheme
allows filtering numerical artifacts and it provides an accurate prediction of CCN acti-
vation. It has been extensively tested in a parcel model against explicit calculation of
18006
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supersaturation at a 0.01 s time resolution. Implemented in a 3-D LES framework to
simulate cumulus and stratocumulus clouds, it appears very efficient at suppressing
spurious CCN activation at cloud boundaries.

Surface partitioning of surface active compounds

Simplified descriptions for surface partitioning of surface active compounds in liquid
droplets were developed (Raatikainen and Laaksonen, 2011; Prisle et al.,, 2010).
These parameterizations are computationally affordable and can be applied in regional-
scale and global-scale models.

Nucleation and aerosol formation rate parameterizations

Several parameterizations related to modelling atmospheric aerosol formation were
derived. We concentrated on developing semi-empirical ones, in which the nucleation
rate is assumed to follow a simple power-law dependence on the gaseous sulphuric
acid (and organic vapour) concentration (Riipinen et al., 2007a; Paasonen et al., 2010).
Data from 12 European field sites with different types of air ion and cluster spectrometer
measurements were used to derive a semi-empirical parameterization for ion-induced
nucleation (Nieminen et al., 2011).

Direct application of nucleation rate parameterisations in large-scale models is not
possible, or at least not desirable because of the numerical cost. For this reasons,
an updated parameterisation that relates the the apparent formation rate of particles
at any diameter to the nucleation rate was derived (Lehtinen et al., 2007). This pa-
rameterization was developed further to take into account the nuclei self-coagulation
was derived (Anttila et al., 2010). All these parameterization are readily applicable in
large-scale atmospheric models.
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Modal vs. sectional model intercomparison

A modal aerosol model was evaluated in the GLOMAP model against a more com-
prehensive section or “bin” model. GLOMAP-mode simulates the aerosol size dis-
tribution using several log-normal modes while GLOMAP-bin uses 20 size sections.
GLOMAP was run at 2.8° resolution for 1 year using both mode and bin schemes. Par-
ticle size distributions have been compared for 12 distinct regions around the world.
The modal and bin schemes agree very well at most sizes, although there tends to
be some overprediction of particle concentrations in the nucleation mode of the modal
model. Aerosol optical depth has also been evaluated against MODIS and AERONET
observations. Both models are in close agreement but differ by approximately the same
amount from the retrieved size distributions. It was therefore concluded that there are
general adjustments to make to the aerosol model, rather than a specific issue with the
simpler modal model. Global cloud condensation nuclei have been evaluated against
a collection of CCN measurements compiled from several field campaigns. There is
reasonable agreement in the model versus observations (with a lot of scatter). But
again the difference between the bin and modal schemes is smaller than the difference
between model and the observations. Modal aerosol schemes are a computation-
ally efficient but nonetheless accurate way of simulating the aerosol size distribution,
optical properties and CCN concentrations on a global scale. Thus EUCAARI model
comparisons show that the microphysical treatment in state of the art climate models is
now sulfficiently well developed to be able to capture many of the details of the aerosol
properties on a global scale.

3.4.4 Air quality

The role of aerosols in European air quality was one of the major foci of EUCAARI. We
have improved a regional Chemical Transport Model (PMCAMXx) and used it together
with the emission inventories developed in the project to evaluate our understanding of
the sources and atmospheric processing of fine PM in Europe. Major findings include:
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The carbonaceous aerosol emissions of EUCAARI together with the new organic
aerosol module used in PMCAMXx based on the volatility basis set approach resulted in
significant improvement of the agreement between measurements and predictions of
regional organic aerosol concentrations. There is evidence that the residential wood-
burning emissions in at least some regions (e.g., Sweden, East Germany, Switzerland)
are significantly underestimated. Also the wintertime emissions of ammonia are prob-
ably overestimated by a factor of 3 or so.

The reduction in ammonia emissions is one of the most effective ways to reduce
aerosol mass concentrations in Europe. Reduction in NOx is also effective, but might
lead to higher ozone levels. Reduction in SO, emissions will reduce particulate air
pollution especially in the Eastern Mediterranean area. Reduction of organic aerosol
concentrations is a lot more challenging and will require reductions of gas and aerosol
emissions from transportation and biomass burning.

Besides PMCAMx also EMEP MSC-W chemical transport model was used (see Ap-
pendix D).

Evaluation of current understanding of regional fine PM in Europe

During EUCAARI, the organic and inorganic aerosol modules of PMCAMx were im-
proved (Fountoukis et al., 2011b) and the resulting model (called PMCAMx-2008) was
applied for the first time in Europe. The domain consisted of the whole European conti-
nent, and extended from the Atlantic Ocean to the Middle East and from the North Pole
to North Africa. The results of the model were compared against measurements during
the May 2008 EUCAARI intensive campaign both at ground level and aloft. The com-
parison of the model predictions with the ground measurements in four measurement
stations is encouraging. The model reproduces more than 86 % of the daily averaged
data and more than 77 % of the hourly data within a factor of 2, for both PM,; OA and
sulfate respectively (Fig. 17).
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The model tends to predict relatively flat diurnal profiles for PM; OA in many areas,
both rural and often urban, in agreement with the available measurements. The model
performance against the high time resolution airborne measurements at multiple al-
titudes and locations is as good as its performance against the ground level hourly
measurements (Fig. 18). There is no evidence of missing sources of OA aloft over Eu-
rope. The major sources of OA during the summer are predicted to be photo-oxidation
of biogenic VOCs and anthropogenic Intermediate Volatility Compounds (IVOCs) and
evaporated primary organic aerosols.

The highest predicted concentrations for fine sulfate are seen over the Mediterranean
region while organic matter is predicted to be the dominant PM, species in central and
northern Europe (Fig. 19). The model predicts low levels of fresh POA and a ubig-
uity of oxygenated species in organic aerosol, which is predicted to be predominantly
composed of SOA of biogenic origin.

PMCAMx was also evaluated against the EUCAARI measurements at the ground
level during the winter intensive period of February/March 2009. Measurements from
the field stations in Barcelona, Cabauw, Finokalia, Helsinki, Hyytiala, Mace Head, Mel-
pitz, Payerne, Puy de Dome and Vavihill. While the performance of the model for sul-
fate and organic aerosol in most areas was quite good, ammonium nitrate levels were
overpredicted. Sensitivity analysis indicated that this was probably due to an overesti-
mation of the wintertime ammonia emissions. A uniform reduction of these emissions
resulted in significant improvement of the performance of the model. A second problem
was the serious undeprediction of organic aerosol levels in Melpitz, Payerne and Vav-
ihill suggesting an underestimation of the residential wood burning emissions in these
areas.

Sensitivity of fine PM to emissions

We performed a series of emissions sensitivity runs to quantify the responses of the
concentrations of fine PM to the changes of emissions of sulfur dioxide, oxides of
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nitrogen, anthropogenic VOCs, and ammonia. In these tests we examined the ef-
fects of uniform reductions of the emissions of NH;3, NO,, POA, anthropogenic VOCs
and SO, by 50 %. The differences in composition and concentration of the fine PM in
Europe result in different spatial reductions of the fine PM levels. Reductions in ammo-
nia emissions are one of the most promising strategies for the areas with the highest
PM levels during the late spring period investigated. For example a 50 % reduction
in ammonia emissions is predicted to result in a 16 % reduction of the PM, 5 levels in
downtown London during that month (Table 2). Reductions in NO, emissions would
also result in significant reductions in PM, 5 levels; however they will be accompanied
by increases in ozone levels in these areas according to the model predictions. Re-
ductions in SO, emissions will be helpful across Europe and will represent a significant
reduction of the fine PM especially in the Eastern Mediterranean.

3.4.5 Aerosols and climate

The present-day direct and first indirect radiative forcings by atmospheric aerosols have
been updated using a combination of model, satellite and other ancillary data. In this
chapter, unless specifically mentioned otherwise, we mean by aerosol “indirect effect”
the aerosol first indirect effect (or cloud-albedo effect).

EUCAARI model results and sensitivity studies, done within EUCAARI with an offline
radiative transfer model, suggest that a central estimate for the total direct aerosol
forcing is not more negative than -0.45Wm™2. This is substantially less than the
upper limit estimate of -0.9Wm? by the IPCC AR4. The best estimate for the 1st
indirect forcing is -0.7+0.5W m?, which can be compared the the first indirect forcing
estimate of —0.3 to —1.8 Wm? by the IPCC ARA4.

Different aerosol and aerosol precursor emission scenarios reflecting possible future
control strategies for air pollution have been simulated with a global climate atmo-
spheric chemistry model (ECHAM5-HAM) model. When stringent air pollution control
measures are implemented worldwide, the present-day negative total aerosol top-of-
the-atmosphere aerosol radiative forcing will be reduced by 50 % by 2030. The net
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effect of increasing GHG concentrations and lower aerosol concentrations is a global
annual mean equilibrium temperature increase is predicted to be 2.2K, as compared
with the temperature increase of 1.2 K due to increasing GHG concentrations alone. As
aerosols strongly impact surface forcings, the consequences for precipitation increases
associated with global warming are even stronger. These results highlight the potential
impact of future air pollution mitigation strategies on climate.

The performance of the improved EUCAARI global atmospheric chemistry mod-
els has been evaluated against preexisting and also the new EUCAARI observational
datasets. The simulation of absorbing aerosols above cloud has been identified as a
major cause of the discrepancies among models. Simulated total optical depth shows
considerable low bias especially in South-East Asia and the biomass burning dom-
inated regions in South America and South Africa. The model bias in South-East
Asia has decreased with the new IPCC emissions used in the EUCAARI models, but
considerable discrepancy still exists for South Africa and South America. A zonally-
averaged comparison to AERONET derived column absorption exhibits considerable
bias in several models. Mass absorption coefficients, dust contributions to measured
total absorption, sampling bias of AERONET and emission uncertainties were identi-
fied as major reasons for the documented bias.

Estimated aerosol direct effect on climate

The fourth assessment report of the Intergovernmental Panel on Climate Change
struggled in assessing the aerosol direct effect on climate. The vast majority of the
results suggests now that aerosol on a global annual average exerts a cooling on the
Earth-Atmosphere-System (see discussion in Haywood and Schulz, 2007). However,
there was a discrepancy between observational-based estimates at or near —1.0W m?
and model-based estimates near —0.4 Wm?. Since then several independent studies
of EUCAARI partners have explored details responsible for this discrepancy. These
studies demonstrate that more negative estimates of observation-based approaches
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are most likely incorrect. These observation-based approaches involve many assump-
tions and approximations, most of which introduce a negative bias:

— aerosol optical depth (AOD) of most satellites retrievals may be biased high

— the anthropogenic fraction is uncertain since it is only part of the fine mode at-
tributable aerosol optical depth

— the switch from clear- to all-sky is not a linear function of the cloud-fraction (as
absorbing aerosols above clouds can exert a warming impact on climate) (Schulz
et al., 2006)

— areas over desert (regions of potential warming) are not well characterized by
satellite based aerosol observations

— albedo uncertainties are still important, e.g. the MODIS surface albedo product
does not consider snow-cover and the range used in models varies largely (Stier
et al., 2007).

Bellouin et al. (2008) demonstrated that just by using an improved year 2002 AOD
data-set of MODIS (with less snow contamination at high latitudes) and improved as-
sumptions for the fine-mode fraction, the best estimate is reduced from near approxi-
mately —1 .0Wm? to near —0.65W m?. Still this estimate still may be biased high, due
to choices for surface albedo, AOD, clear-sky to all-sky ratio and assumptions on miss-
ing AOD information over desert regions. In fact, sensitivity studies performed by the
EUCAARI partners demonstrate that direct cooling in access of ~0.45Wm? is highly
unlikely. The use of quasi-global sun-/sky photometer data of AERONET, which define
not only AOD but also simultaneous information on aerosol absorption and size (with-
out making a-priori assumptions), suggests a -0.2W m? aerosol direct cooling (Kinne,
2011). This value is identical to the average from AEROCOM models (Schulz et al.,
2006), in which however contributions from nitrate and anthropogenic dust are missing.
Altogether, this may suggest that there is less model-data discrepancy.
18013
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Estimated aerosol indirect effect on climate

Although many different types of interactions between aerosols and clouds have been
suggested, IPCC AR4 only considered the cloud albedo effect of warm clouds, and for
that effect alone a wide uncertainty range of -0.3 to —-1.8 W m~2 was given, canceling
anywhere from 12 % to 69 % of the radiative forcing from well-mixed greenhouse gases.
EUCAARI has contributed a better understanding and a narrowing of this uncertainty
range. For instance, we investigated the implications for the aerosol first indirect effect
of using lower bounds for cloud droplet number concentration of aerosol number con-
centration (CDNC), which are being used in many climate models. We found (Hoose
et al., 2009) that the use of such lower bounds on CDNC leads to a suppression of
the simulated first indirect effect that varies from —1.9Wm? to -0.6 Wm?, depending
on what threshold is chosen. The suppression is strongest over oceans where CDNC
is low. This means that a rather arbitrary and sometimes poorly justified choice of a
threshold value has a huge impact on the simulated aerosol first indirect effect.

In Iversen et al. (2010) this was further elaborated by estimating the impact on the
equilibrium climate response of direct and the warm-cloud first indirect aerosol ef-
fects by adding a “background” level of cloud droplets. The added background cloud
droplet number concentration (CDNC) were 3cm™ over oceans and the Antarctica
and 17 cm™ over continents. The effect on the estimated global equilibrium 2-m tem-
perature response to anthropogenic aerosol forcing was a reduction from -2.09 to
—-1.50°C, while the global equilibrium precipitation response was reduced from -5.7 %
to —4.5%.

We have also investigated the influence on the simulated indirect effect of ice nu-
cleation by natural and anthropogenic particles (soot). Both Storelvmo et al. (2008)
and Hoose et al. (2010c) found a reduction in the simulated aerosol indirect effect by
about +0.2 to +0.55Wm™2. The reduction is caused by a reduced lifetime effect due
to anthropogenic soot (glaciation effect). This is because soot particles stimulate the
freezing of supercooled water, thereby stimulating the release of precipitation from the
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clouds. The net effect is a reduction in cloud lifetime.

Several EUCAARI models have contributed to the study by Quaas et al. (2009) where
a model based range for the first indirect effect was established, considering constraints
from satellite observations of cloud droplet number concentration and liquid water path.
An estimate obtained by scaling simulated clear and cloudy-sky forcings with estimates
of anthropogenic and satellite-retrieved Nd—AOD regression slopes, respectively, yields
a global cloudy-sky (aerosol indirect effect) estimate of —-0.7+0.5W m~2.

Sensitivity of climate models to aerosol nucleation

Studies (e.g. Spracklen et al., 2006; Merikanto et al., 2009; Kazil et al., 2010) indicate
that nucleation of new particles from the gas phase is an important source of cloud
condensation nuclei. A realistic simulation of new particle formation in the planetary
boundary layer has been problematic in the past. Recently, it has been found that
observed nucleation can be explained by homogenous nucleation of sulphuric acid or
heterogenous nucleation of sulphuric acid plus organic species (Sipila et al., 2010;
Metzger et al., 2010; Paasonen et al., 2010). Earlier, models were based upon a range
of other assumptions, now known to be incorrect.

The modified ECHAM5-HAM global circulation model (Makkonen et al., 2009) was
also used to assess the effect of primary emissions, binary homogenous nucleation
and boundary layer nucleation on global particle number in pre-industrial, present and
future conditions (years 1850, 2000 and 2100 — using the IPCC scenario A1B). These
first results indicate that the global contribution of primary particles is subject to the
largest change — increasing significantly over the studies years, particularly over con-
tinental regions. The effect of boundary layer nucleation, on the other hand, was pre-
dicted to be globally highest at the present day conditions. Furthermore, ECHAMS5-
HAM was used with varying emission environments of years 1750, 2000 and 2100
to assess the effect of nucleation on indirect aerosol forcing (Makkonen et al., 2011).
Forcing was calculated as radiative flux perturbation for shortwave radiation. According
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to the results, the effect of nucleation is clearly visible in present-day climate: includ-
ing nucleation in the model increases the present-day indirect forcing from ~0.27Wm?
to —1.16 Wm?. The strong decrease is seen in indirect aerosol forcing when moving
to year 2100, relating to decrease in both anthropogenic SO, emissions and primary
emissions. Two additional experiments were performed to see the effect of potentially
rising future emissions of biogenic VOCs and oceanic DMS. Even with the high-level of
elevation in emissions (+50 % BVOCs or +10 % DMS), the natural emissions cannot
counteract the cooling from the strong decrease in anthropogenic emissions.

Air quality and climate

Specific economic sectors and/or source regions emit a wide variety of climate rele-
vant gases and particles, influencing climate and air quality. This includes emissions
of greenhouse gases, chemical species that affect the oxidation capacity of the atmo-
sphere and the concentrations of ozone and methane, and aerosol particles or aerosol
precursors. Most of the studies so far assessed the climate impact of specific chem-
ical components (e.g. carbon dioxide, sulfate particles etc.). However, the different
climate effects add non-linearly and thus interactions between warming and the water
and aerosol cycles have to be taken into account. For the purpose of climate protec-
tion and improvement of air quality, we applied a more integrative approach assessing
the total climate effect of gaseous and particulate emissions from a specific economic
sector. Additionally, we have to take into account that the implementation of air quality
measures affects the climate system as well.

Different aerosol and aerosol precursor emission scenarios reflecting possible fu-
ture control strategies for air pollution have been applied in the ECHAM5-HAM model
coupled to a mixed-layer ocean model to simulate the resulting effects on the Earth’s
radiation budget and climate. Two opposing future mitigation strategies for the year
2030 have been used: One in which emission reduction legislation decided in coun-
tries throughout the world are effectively implemented (current legislation; CLE 2030)
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and one in which all technical options for emission reductions are being implemented
independent of their cost (maximum feasible reduction, MFR). The importance of the
combined industrial and power generation sector on the one hand have been assessed
and domestic and transport related emission on the other hand. In addition, regional
experiments have been performed to evaluate the influence aerosol emissions from
Europe and Asia have on other world regions. A number of sensitivity studies address
the non-linear chemical and microphysical couplings in the context of these scenarios
(Kloster et al., 2008, 2009).

CAM-Oslo coupled to a slab ocean model was used to estimate interactions be-
tween GHG-driven and anthropogenic aerosol-driven global changes under various
assumptions (lversen et al., 2010), Anthropogenic aerosols largely counteract the ef-
fects of increased CO,, even though there are significant exceptions for precipitation
in the subtropics and in the southern extra-tropics. Increased CO, shortens the atmo-
spheric residence time of aerosols and aerosol precursors due to increased precipita-
tion amounts in major anthropogenic air pollution emission regions. This reduction is
estimated to be larger for present-day (~2000) aerosol emissions than it would have
been if aerosols had been maintained at pre-industrial levels (~1850). The climate ef-
fects of aerosols are thus reduced by the CO,-increase. Since the two effects largely
counteracts each other, this feedback may potentially cause a non-linear reinforcement
of the CO, driven global changes when reduction protocols for aerosols and precursors
are implemented.

When more stringent air pollution abatements are implemented worldwide, utilizing
the presently available most advanced control technologies, the present-day negative
total aerosol top-of-the-atmosphere radiative forcing will be strongly reduced (by 50 %)
by 2030. As a consequence, climate change thereafter will be controlled to a larger
extent by changes in greenhouse gas emissions. The temperature response of increas-
ing GHG concentrations and reduced aerosol emissions leads to a global annual mean
equilibrium temperature response of 2.18 K. When aerosols will be only abated in the
Industry and Power Plant sector, whereas the Domestic and Transport sectors stay with
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currently enforced regulations, the temperature response is 1.89 K. In contrast, a max-
imum feasible abatement only applied in the Domestic and Transport sector, leads to a
smaller temperature response of 1.39 K. Increasing GHG concentrations alone lead to
a temperature response of 1.20 K. Our study thus highlights the huge potential impact
of future air pollution mitigation strategies on climate and supports the need for urgent
GHG emission reductions. As aerosols strongly impact surface forcings and have thus
a high hydrological sensitivity, the consequences for precipitation increases associated
with global warming are even stronger. GHG and aerosol forcings are not independent
as they both affect and are influenced by changes in the hydrological cycle.

Model intercomparisons

The aerosol direct radiative effect has been shown to be associated with considerable
model diversity (Schulz et al., 2006) and thus uncertainty in the 4thAR IPCC total ra-
diative forcing uncertainty for present day. Uncertainty in the computation of the direct
effect is due to several factors involved, among which dominate the vertical distribution
of the aerosol (Schwarz et al., 2010), the relative position and interaction of clouds and
aerosols (Quaas et al., 2009), the amount of aerosol absorption (Koch et al., 2009),
the anthropogenic aerosol load, humidity growth and possibly also details of the radia-
tive transfer calculation itself. It is thus of interest to compare new EUCAARI model
simulations to earlier pre-EUCAARI results. Such comparison is possible for the mod-
els (ECHAM, CAM-Oslo and INCA) which have been further developed and changed
considerably from the earlier AEROCOM phase |I. The GLOMAP and HadGem mod-
els did not participate in earlier AEROCOM phase | experiments. All GCM models
have developed new coupled aerosol climate model versions with changed resolutions
and atmospheric host models. This has involved changes to the model environment
beyond the aerosol model structure. Differences in performances are then difficult to
track down to individual aerosol process formulation, because several changes were in
effect at the same time of the model structure. Model improvement with respect to the
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selected observational datasets of relevance is fair for several parameters and models.

The new observational datasets that became available in the EUCAARI framework
and from other sources make several characteristics, successes and biases of the
EUCAARI global aerosol model exercise apparent, with direct consequences for an
improved direct aerosol forcing estimate. The error in the vertical distribution of the
aerosol (as evaluated against CALIOP vertical extinction profiles) above the industrial
regions of the Northern Hemisphere is probably not so much an error in the form of
the profile, but rather an error in absolute aerosol loads and column optical depth. The
average European vertical profile for 2008 (annual and May) and the simulated contri-
butions from aerosol species as well as humidity growth serves as an example here.
The role of absorbing aerosols above cloud is identified as one factor of important dif-
ferences between models and sensitivity simulations are performed in the INCA model
to identify the contribution from just that fraction of the aerosol to total aerosol forcing.

Total optical depth is a crucial parameter for the direct radiative effect of the aerosol.
Simulated total optical depth shows considerable low bias especially in South-East Asia
and the biomass burning dominated regions in South America and South Africa. The
model bias in South-East Asia has decreased with the new IPCC emissions used in the
EUCAARI models, but considerable discrepancy still exists for South Africa and South
America. Surface observations from EUSAAR/EUCAARI on dry aerosol extinction and
absorption coefficients confirm such findings on independent grounds.

Aerosol absorption due to black carbon and brown carbon is a major uncertainty for
the direct aerosol forcing. A zonally averaged comparison to AERONET derived col-
umn absorption exhibits considerable bias in several models. The underestimate goes
only partially along with simultaneous underestimates in total aerosol optical depth,
suggesting that especially the black carbon fraction is underestimated in several model
simulations. Mass absorption coefficients, dust contributions to measured total absorp-
tion, sampling bias of AERONET and emission uncertainties are identified as major
reasons for the documented bias in modelling.
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3.5 Feedback processes and interactions

A number of anthropogenic perturbations are being applied to the climate system since
pre-industrial times through changes in atmospheric composition, land use, and other
changes. These perturbations are known as radiative forcings. The climate system
responds to these perturbations through a series of changes called feedbacks in order
to return to some equilibrium. A lot of research has focused on understanding and
quantifying the feedbacks of the physical climate system; however the development
of Earth System models has revealed the importance of biogeochemical feedbacks.
The EUCAARI project has focused on climate feedbacks involving natural and anthro-
pogenic aerosols.

An important task of EUCAARI was to quantify the uncertainties in the various inter-
actions between aerosols and the Earth system as one important aspect of the overall
biogeochemical feedbacks. EUCAARI reviewed and assessed the role of aerosols in
climate and Earth system feedbacks (Carslaw et al., 2010) and quantified the magni-
tude of feedback loops involving natural and anthropogenic aerosols. Available obser-
vations and model studies suggest that the regional radiative perturbations are poten-
tially several Watts per square metre due to changes in natural aerosol emissions in a
future climate. The review produced new estimates of the direct radiative effect due to
aerosol feedbacks related to dust, dimethyl-sulphide (DMS) from marine biota, wildfires
and terrestrial biogenic secondary organic aerosol. Taking into account only the direct
radiative effect of changes in the atmospheric burden of natural aerosols, and neglect-
ing potentially large effects on other parts of the Earth system, a global mean radiative
perturbation approaching 1 wWm=2is possible by the end of the century. The level of
scientific understanding of the climate drivers, interactions and impacts was assessed
as very low.

EUCAARI has pushed our understanding a bit further concerning biogenic SOA,
marine DMS and dust, and has also studied the effect of climate change on sea spray
particle emissions and their radiative effect. This was done through the use of three
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Earth System models including aerosols and their couplings to other components of
the Earth System.

3.5.1 Climate change impact on global aerosol cycling

Climate change experiments have been performed to analyse the change in atmo-
spheric cycling of both natural and anthropogenic aerosols through changes in temper-
ature, humidity, precipitation, convection and oxidant concentrations (HadGEM2-ES,
Rae et al., 2007). We found that, when oxidants alone are changed, the global total
sulphate burden decreases by approximately 3 %, due mainly to a reduction in the OH
burden. When climate alone is changed, our results show that the global total sulphate
burden increases by approximately 9 %; we conclude that this is probably attributable
to reduced precipitation in regions of high sulphate abundance. When both oxidants
and climate are changed simultaneously, we find that the effects of the two changes
combine approximately linearly.

The HadGEM2-ES model includes interactive sources and sinks of aerosols, cou-
pled to the tropospheric chemistry scheme through interactive oxidants, and coupled
to the marine carbon cycle through emissions of DMS and deposition of dust. Nitrate
aerosols have also been added to the default HadGEM2-ES climate model as it is
an important aerosol species in some regions. Interactive biogenic emissions and a
simple secondary organic aerosol scheme have been added in a research version of
HadGEM2-ES.

The MPI Hamburg coupled climate model version used in EUCAARI is based on the
atmospheric model ECHAM6 middle atmosphere version with the extension to gas-
phase chemistry (MOZART3) and aerosol physics (HAM2) merged with the most re-
cent carbon cycle model system (MPI-OM, HAMMOC, JS-BACH). The aerosol module
HAM (Stier et al., 2005) has been extended by a scheme for the treatment of SOA
(O’Donnell, 2009). The time integration of the nucleation and condensation schemes
has been improved and different nucleation schemes have been implemented and
tested (Kazil et al., 2008). HAM2 includes additionally a new impaction and below
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cloud scavenging scheme. The new two-moment cloud physics (Lohmann et al., 2007)
enables a more physically based treatment of aerosol-cloud interactions. The new
model version includes also source models for marine sources of DMS and biogenic
sources of VOC.

The IPSL model includes the LMDZ atmospheric model (Hourdin et al., 2006) and
several ESM components. Two model versions were used to study the aerosol-climate
feedbacks: the standard IPSL coupled model, which uses pre-calculated aerosol mass
fields and the interactive IPSL-AER aerosol-climate model, which is using offline pre-
calculated oxidant fields. The latter includes interactive sources and sinks of dust and
sea salt aerosols, coupled to biogeochemistry through emissions of DMS. Dust de-
position of iron is read in into the NEMO-PISCES module as forcing. Biogenic VOC
emissions are also pre-calculated for present day conditions from the land-biosphere
model ORCHIDEE. Several control keys have been implemented into the model to in-
vestigate the trajectory of the climate in the model with/without the radiative aerosol
effects, with/without nudging the synoptic meteorology, with/without prescribed aerosol
optical properties. The comparisons between the different model versions have shown
that the radiative forcing due to aerosols differs within 30 % and makes the models
comparable, despite differences in complexity.

The global CAM-Oslo model version used in EUCAARI includes an aerosol life-
cycling scheme for sea-salt, dust, sulphate, black and organic carbon. The sulphur
chemistry relies on prescribed oxidants. Through tabulations that takes into account
sulphate-nucleation, condensation, coagulation and processes in liquid cloud droplets,
the aerosol optical and water-activation properties are implicitely described with 44
size-bins (Seland et al., 2008), and aerosol interactions with clear-air radiation and
warm cloud microphysics are parameterized. The model was coupled to a slab ocean
for estimations of equilibrium climate sensitivity (Kirkevag et al., 2008) and was used
for EUCAARI for estimating interactions between GHG-driven changes and changes
caused by anthropogenic aerosols (lversen et al., 2010). The sensitivity of the equi-
librium climate sensitivity and with respect to selected uncertain aerosol assumptions
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was also estimated.
3.5.2 Climate feedbacks involving natural secondary organic aerosols

The global aerosol-climate model ECHAM5-HAM has been extended with a suite of
parameterizations that describe the complete life cycle of secondary organic aerosols,
starting from emission of the precursor gases, proceeding through the chemical for-
mation of condensable species, the partitioning of those species between the aerosol
and gas phases, the microphysics of the aerosol phase and finally to the sink pro-
cesses that remove both gases and aerosols from the atmosphere. The model treats
primary and secondary, organic and inorganic aerosols, prognostically resolves their
composition, size distribution and mixing state, and computes their impact on both the
shortwave and longwave radiation budget. The model is coupled to the ECHAM5-HAM
double-moment cloud scheme that calculates cloud droplet number concentration and
mass concentration as prognostic variables as functions of (inter alia) aerosol prop-
erties. The model thus contains the elements necessary for estimation of the effects
of SOA on radiation and on liquid water clouds. To the second end, a global model
of vegetation emissions of precursor gases has been implemented and linked to the
aforementioned SOA extension to the ECHAM5-HAM model. As an alternative, the
option to use externally-generated sources of biogenic emission data has been added,
making it possible to use the output of, for example, a dynamic vegetation model as
input to the SOA module. With these tools, biosphere-atmosphere interactions via bio-
genic emissions have been investigated in a number of simulations, both in the present
atmospheric state, and in hypothetical atmospheric states, that are conceived to exam-
ine interactions between anthropogenic activities, biogenic emissions and climate.
Different biogenic emission models were employed, one an empirically-based model
lacking any CO, response, the other a dynamic vegetation model with leaf process-
based calculation of emissions includes CO, concentration in its calculation of bio-
genic emissions. Both models were used to drive the SOA model in two different cli-
mate states, one present day, and one warmer climate state, each climate state being
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constrained on the large scale by fixed sea surface temperatures. The warmer climate
state used SRES scenario A2 CO, levels, and sea surface temperatures previously cal-
culated for that scenario by the coupled ECHAM5/MPI-OM atmosphere-ocean model
in the context of IPCC AR4 scenario runs. When driven with the empirically based
emission model, the SOA model, in common with published studies, predicts a large
increase in biogenic SOA in the warmer climate state (Fig. 20). However, when driven
with the process-based model the biogenic emissions and SOA loading in the warmer
climate state decrease below those of the present state. This shows that there is
reason to doubt the published findings that such biogenic emissions and SOA would
increase in such a climate (O’Donnell, 2009).

3.5.3 Climate feedbacks involving DMS and sulphate production

HadGEM2-ES was used to study a feedback that links climate-driven changes in ter-
restrial dust production, iron stimulated (or limited) marine-biological growth changes,
oceanic DMS production, and climate change. As observed in the contemporary
ocean, HadGEM2-ES simulates iron limitation of phytoplankton growth in the Pacific
Ocean. Coupling between the deposition of dust from the atmosphere and oceanic
iron concentrations within HadGEM2-ES, allows modification of iron limitation in re-
sponse to terrestrial land-use change or drying events, increasing wind intensity, or
changes in wind direction. Atmospheric CO, concentrations were increased by 1%
each year, following the IPCC CMIP5 experimental protocol. This drives in increase in
dust production, and subsequently iron deposition in the North Pacific. The increase
in dust deposition progressively alleviates surface ocean iron limitation throughout the
experiment. Increased photic zone iron concentration stimulates two changes; firstly,
overall phytoplankton production is enhanced, partially offsetting the background de-
cline in primary production occurring due to increased surface water stratification lim-
iting the upward movement of macro-nutrients (in this case nitrogen), secondly, the
higher affinity for iron demonstrated by the diatom phytoplankton group relative to the
non-diatom group initiates a population shift towards diatoms. The ecosystem shift will
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result in a relative increase in carbon drawdown (due to the faster sinking rate of the
larger diatom functional type), but also since the model's DMS scheme allows DMS
production by only the non-diatom phytoplankton type (Halloran et al., 2010), a rela-
tive increase in DMS emissions. Although from a global temperature standpoint this
feedback is likely to be of minor importance, since the land-based warming which insti-
gates the observed chain of events is spatially separated from the DMS-driven surface
ocean (relative) cooling, it can be hypothesised that this feedback will act to intensify
monsoon processes in landmasses neighbouring iron-limited ocean basins.

We have also compared some of the results with earlier results from the ECHAM5
model. DMS emissions increase in UM, but decrease in ECHAM, although, the effect
on sulphate aerosol is negligible compared with anthropogenic changes. Such oppo-
site responses were also reported in the Carslaw et al. (2010) review, so it is important
to understand why two models can differ so fundamentally. Differences between mod-
els are large, often exceeding the differences between historical and future simulation
for one model. Surface temperatures are similar in both models, but the pattern of
warming in ECHAM is more inhomogeneous than in UM, with more warming in the
Northern Hemisphere and less in the southern. 10m windspeeds, which drive DMS
sea-to-air flux, are broadly similar in both models, but are higher in ECHAM in the
Southern Ocean. Changes — both positive and negative — are larger in ECHAM than
the UM. Mixed layer depth is much greater in ECHAM than the UM in the Southern
Ocean and North Atlantic. Whilst the UM MLD is almost unchanged over time, the
ECHAM MLD is significantly reduced, particularly in those areas where it was highest,
though it remains greater them UM MLD in those regions. Ocean DMS concentrations
are higher in the UM than ECHAM: 25 % in 1860-1889 and 50 % in 2060—2089 in the
global mean. The change is caused mainly by a drop in ECHAM concentrations par-
ticularly at high latitudes and near the equator, while UM global mean values increase
very slightly, with some increases at high latitudes, but with some decreases in equa-
torial regions. In both cases patterns of emission change follow those of DMS ocean
concentration change. SO, and sulphate loads are different in the two models, but in
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each case are dominated by anthropogenic emissions. The pattern of sulphate load-
ing shows negligible contributions from DMS. In conclusion, there are different mech-
anisms in action in the two models and the changes in DMS are too small to induce a
significant feedback in present-day conditions.

3.5.4 Climate feedbacks involving natural dust and sea-salt production

Jones et al. (2007) investigated the change in the burden of the natural primary
aerosols (sea-salt and mineral dust) in climate change experiments. These changes
are purely in response to the anthropogenic aerosol/CO, changes, as no alterations
to the emission schemes for natural aerosols were made in these experiments (vege-
tation cover was also kept constant). The changes at low latitudes are dominated by
mineral dust, while those at high latitudes are due to sea-salt. The changes in dust bur-
den show complex patterns of increases and decreases, with some areas of increase
immediately adjacent to areas of decrease. Such complex distributions of changes are
to be expected given the highly variable nature of dust emission (Woodward, 2001):
whereas one might explain the changes in the dust plume over the Arabian Sea in
terms of the change in wind speed over the horn of Africa, the same explanation does
not hold for the plume extending over the Atlantic. These results indicate that changes
in dust production in this major source region are in general more strongly affected
by changes in soil moisture content than in wind speed in this model. Further inves-
tigations using HadGEM2-ES showed that the CO, fertilisation contributes to change
soil moisture in semi-arid regions, but not in arid and hyper-arid regions, through an
increase in the shrub cover. This results in a decrease in dust emissions over these
regions.

Turning to the changes in sea-salt, these appear more straightforwardly related to
changes in sea-ice fraction and 10 m wind speed, which govern the area available for
sea-salt production and the amount of sea-salt produced respectively. These changes
in sea-ice and the corresponding decreases in wind speed (possibly related to the
increased roughness length over sea-ice) lead to a reduction in sea-salt around the
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sea-ice edges in these experiments. The Carslaw et al. (2010) review highlighted re-
cent work of the Leeds group showing that decadal trends in wind speed in parts of the
Southern Hemipshere may have led to more than 20 % changes in CCN between the
1980s and 2000. These changes are likely to have induced changes in clouds and a
negative feedback on climate.

CEA-LSCE has further shown that the temporal variability in dust deposition has
little impact on the ocean productivity. However, long term changes in dust deposition
are demonstrated to have the potential to exhibit a considerable change to oceanic
ecosystems (Aumont et al., 2008).

4 Discussion and conclusions
4.1 Main acchievements

In 2006 when planning the EUCAARI project we realized that the baseline for the un-
certainty in aerosol radiative forcing was typically greater than 100 %, and for some
aerosol components even much higher. Furthermore, the regional scale forcing can
be significantly greater than the global average values, as can be uncertainties. As a
whole, the contributions of various aerosol sources, the role of primary and secondary
particulate matter to the ambient aerosol concentrations over Europe were largely un-
known. Therefore we performed studies presented in this overview using methods
presented in Sect. 2 and obtaining results presented in Sect. 3. Kulmala et al. (2009)
described a set of 12 key questions of EUCAARI. The answers of the project to these
key research questions are included in Appendix E.

4.1.1 Aerosols and climate: reducing uncertainty

Our first objective was the reduction of the uncertainty (2006 level) of the impact of
aerosol particles on climate by 50 % and quantification of the relationship between
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anthropogenic aerosol particles and regional air quality. To achieve this objective EU-
CAARI concentrated on the areas of greatest uncertainty to:

(a) Identify and quantify the processes and sources governing global and regional
aerosol concentrations; (b) Quantify the physico-chemical properties of atmospheric
aerosols; (c) Quantify the feedback processes that link climate change and atmo-
spheric aerosol concentrations with emphasis on the production and loading of natural
aerosols and their precursors.

Answers to the points (a), (b) and (c) are given in Sect. 3. Answers related to point
(a) are mainly considered in Sects. 3.1 and 3.2 where both natural and anthropogenic
sources, along with various formation and transformation mechanisms are considered
and in Sect. 3.4 where modeled regional and global distributions and concentration
fields are presented. Answers related to point (b) are given in Sects. 3.2 and 3.3. In
Sect. 3.3, the most comprehensive set of physico-chemical aerosol properties are re-
ported, not only extensively over Europe but also in some key developing countries,
using the most advanced instrumentation and techniques available. In particular, sig-
nificant advances were made in quantifying the organic fraction of the atmospheric
aerosol. Answers related to point (c) are given in Sects. 3.4 and 3.5 primarily with re-
spect to biogenic SOA, natural dust and the marine sulphate cycle. Our achievements
towards a 50 % reduction in the uncertainty associated with aerosol radiative forcing is
outlined below.

The First Assessment Report (FAR) IPCC report was published in 1990, afterwhich
it was followed by the second (SAR) in 1995; the third (TAR) in 2001; and the fourth
(AR4) in 2007. At the beginning of the assessment reports, the uncertainty related to
aerosol forcing increased as both a better knowledge of aerosol properties and sources
emerged as well as an increasing number of aerosol species and processes were
implemented in the climate models. It was not only until the AR4 in 2007 that the
uncertainty started to get reduced as seen in Table 4 and in Fig. 21.

In 1990/1992 the assessment report authors concluded that the effect for (the then)
current emission levels, averaged over the Northern Hemisphere, corresponded to a
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negative forcing at the Earth’s surface of about 1Wm™2, with about a factor of two
uncertainty. This was comparable (but of opposite sign) to the forcing due to an-
thropogenic CO, (+1 .5Wm‘2). In addition to the direct effect on climate of sulphate
aerosols, there was an indirect effect — via changes in CCN and cloud albedo — which
tended to act in the same direction (i.e., towards a cooling) with a magnitude that has
not yet been reliably quantified (Charlson et al., 1990 and 1992; Kaufman et al., 1991).
In the AR4, the range of estimates for the direct effect spanned (-)0.8 W m~2 while the
indirect effect spanned (-)1 5Wm™2. For the direct effect, this represents a reduction
from 1.4Wm™2 to 0.8 Wm™2 between the SAR and the AR4 while over these reports,
no reduction in range was seen for the indirect effect; however, the SAR only han-
dled sulphate aerosol while the AR4 handled many more aerosol species. It should be
noted that the range for the indirect effect was (-)2W m~2 in the TAR.

Our own estimate is based on the results shown in chapter 3 and spans a range from
-0.049 and -0.311Wm™ (-0.4+0.2Wm™2 from Quaas et al., 2009) for the direct
effect and —0.7+0.5Wm™2 for the indirect effect. This represents an uncertainty by
less than factor of two in both direct and indirect radiative forcing, although we caution
that this is based on a limited number of three EUCAARI model results.

The interactions and feedbacks between aerosols and clouds, aerosols/clouds and
climate, as well as air pollution and climate are many and intricate. The study of them
requires a multidisciplinary approach. The research chain concept has to be followed
to develop a deeper science understanding. Comparing number and mass we are able
to find out several good research chains which we can utilize:

1. nucleation/emissions — parametrisations — regional and global model results;

2. comparison of (a) with 2008—2009 ground base data and comparison with satellite
data;

3. vapour pressures — SOA formation — emissions — regional and global models,
comparison like in (b).
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One example of the used research chain is given in Fig. 22. That figure shows the main
processes and parameters which contribute to the indirect radiative climate forcing of
aerosols. It summarizes the interplay of meteorological and dynamical parameters with
microphysical and chemical parameters of aerosols and clouds that lead to changes
in cloud optical depth and thus to radiative climate forcing, i.e., the first indirect effect
of aerosols on climate (Twomey effect). Table 4 provides quantitative estimates for the
relative uncertainties and sensitivities of individual parameters and their effect on the
uncertainty of cloud optical depth (Heintzenberg and Charlson, 2009). It can be seen
that following EUCAARI, the uncertainty in many of the key parameters in the aerosol-
cloud system are reduced by 50 %, for example, the hygroscopicity parameter kappa,
updraft velocities, CCN concentrations, etc.

4.1.2 Air quality and climate

Our second objective was to quantify the side effects of European air quality directives
on global and regional climate, and to provide tools for future quantifications for dif-
ferent stakeholders. Our answer to this objective is given in Sects. 3.4 and 3.6. The
interconnections between climate change and air quality are clearly significant.

Future climate predictions were conducted for the SRES A1B and the interactions
between air quality and climate change was evaluated for the years 1950-1959, 2000—
2009 and 2040-2049. The climate induced variability, or variability due to meteorology
between years within each decade gives rise to variability in the annual average of the
surface PM, 5 concentrations of typically 10 %. The 2040s generally have the highest
concentrations of PM, 5, consistent with the previous conclusion that the PM, 5 life-
time increases under the 2040s climate when it is much drier and warmer around the
Mediterranean. The differences in annual average PM, 5 concentrations between the
decades are also typically 10 %. The exception here is BSOA and BSOA precursors,
where the difference between the decades is larger than 10 % as the source function
for BSOA is temperature-dependent, with larger emissions as temperature rises.
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For emission scenarios, the following four scenarios were used: Frozen legislation
(FLE), reference case with Current Legistlation (CLE), sustainable policy with CLE,
sustainable policy with SLE. The difference in annual average PM, 5 concentrations
are much larger when the emission changes are taken into account compared to when
only meteorological changes were taken into account. This shows that the climatology
of PM, 5 and its composition for the coming decades can be expected to be largely
controlled by the emission changes, while the climate changes mainly will affect the
level of biogenic secondary organic pollutants forcing them to go up. Emission changes
dominate over the effect of intradecadal climate variability in annual average surface
PM, 5 concentrations over the EMEP domain including its chemical components. The
ranking of the scenario results for the 2040s also follow the ranking of the emissions,
with the highest concentrations for the FLE case, followed by the reference case with
CLE, sustainable policy with CLE and sustainable policy with SLE. The results of the
two latter scenarios are very close, as are also the emissions for these two scenarios.
The latter two scenarios result in the order of 40 % reduction in PM, g mass while FLE
scenario results in a marginal increase in PM, 5.

In terms of specific emissions reductions, the reduction in ammonia emissions is one
of the most effective ways to reduce aerosol mass concentrations in Europe. Reduction
in NOx is also effective for PM, but might lead to higher ozone levels. Reduction in SO,
emissions will reduce particulate air pollution especially in the Eastern Mediterranean
area. Reduction of organic aerosol concentrations is a lot more challenging and will
require reductions of gas and aerosol emissions e.g. from transportation and biomass
burning.

4.2 Policy relevance

The development of policy strategies generally has often built on a bottom-up process
starting in basic research that provided the scientific knowledge needed to address
questions of societal importance. Applied research was then developed to find an-
swers to these questions. The policy strategies for robust mitigation programmes were
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developed through the interaction of policy making bodies and applied researchers.
The Convention on Long-Range Transport of Air Pollution and the IPCC are successful
examples using such a process to include science into policy making.

EUCAARI focused mainly on basic research concerning processes on all scales aim-
ing at a new generation of air quality and climate models based on sound physical and
chemical understanding of processes influenced by atmospheric aerosols and gases.
EUCAARI contributed new and/or enhanced understanding of processes from micro
to global scale, leading to the improvement of models that are crucial in developing
policies. The improvements have already affected the policy work and will do so for at
least the next 5 year period. Through its strategy EUCAARI has moved basic research
closer to the policy work.

4.2.1 Updated emissions inventories and their evaluation

A major contribution of EUCAARI was the creation of the first ever inventory of size-
resolved particle emissions of EC and OC for Europe (see Sect. 3.1 and Denier van
der Gon et al., 2010). Most emission databases express the emissions in terms of
mass, while modern regional and global models need a size resolved input as par-
ticle size is decisive in most aerosol dynamic processes, particularly concerning the
impacts on climate. Therefore, size-resolved particle emission information is needed
in order to connect policies related to climate and air quality. The lack of information on
particle sizes means that most models have included assumptions about the particle
size distribution, which has been shown in EUCAARI to be a major source of uncer-
tainty in regional aerosol assessments (Reddington et al., 2011). Introduction of size
resolved emissions will give a unified input to all models and facilitate more transparent
model comparisons. Elemental carbon (EC) and organic carbon (OC) are important
particulate components affecting human health and climate. Effective EC mitigation
strategies and scope for regulations have been recently discussed at a regional and
global level e.g. UNEP and EMEP (UNEP, 2011; ECE, 2010). Errors and uncertain-
ties in the emission estimates propagates into the modeling results on air quality and
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climate. Further the mitigation strategies generally focus on emission reductions mak-
ing the negotiations focused on finding the most cost effective reduction strategy (see
Fig. 23). Accurate emission data are thus fundamental to developing the best possible
abatement program.

Aerosol source apportionment was based on about 30 field campaigns all over Eu-
rope with most advanced instrumentation and shows the strong presence of organic
components dominating the fine aerosol. The major fraction is modern carbon coming
from biogenic emissions and biomass combustion (Prevot et al. 2011). The biomass
combustion contribution is strongly varying with season and site. Application of the
new emission inventory in the PMCAMx model reveals inconsistencies in the emission
database, such as too low wood combustion emissions in Sweden and Eastern Europe,
calling for a review of the national emission reports. Preliminary analyses of the new
emissions in the GLOMAP global aerosol model show reasonnable agreement with
EUSAAR observations at some locations, but overall discrepancies between models
and observations are still considerable at many other locations in Europe, in particular
for high altitude sites and Scandinavia.

4.2.2 Atmospheric composition: new findings of importance for policy
development

Efforts are now focused on establishing an integrated air quality and climate mitigation
policy. One major air quality issue is the health effects caused by particles (Pope and
Dockery, 2006). The risk estimates recommended by the World Health Organisation
(WHO) are based on PM,, or PM, 5. Even though some particle components may be
associated with higher risks there is no recommendation due to insufficient epidemio-
logical evidence. Several investigations suggest that exposure to combustion particles
is associated with higher health effect risks (Hoek et al., 2002). In EUCAARI, extensive
efforts have been made to unravel the organic chemistry of aerosol particles, thereby
facilitating a more mechanistic chemical process description in the models, which from
a policy point of view is important for a better understanding of the contribution of the
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different sources, natural and anthropogenic, to the total aerosol load. A major coor-
dinated effort was launched in cooperation with EMEP together with the observational
network EUSAAR and extended with highly specialized instrumentation such as the
Aerosol Mass Spectrometers at about 10 sites in three month-long campaigns. The
aim was to collect detailed data on how emissions mix with and age with preexist-
ing aerosol and how these particles interact with clouds. Several research aircrafts
where deployed in a major airborne measurement campaign (Roberts et al., 2011).
The extensive database of detailed information on the atmospheric composition, espe-
cially the organic components, is instrumental in developing an accurate quantitative
description of the anthropogenic contribution to PM (Nemitz et al., 2011).

Short lived climate forcing components (SLCF) such as light absorbing particles
(BC), scattering particles (sulphate, OC), ozone and methane affect the climate sig-
nificantly. Abatement of air pollution is associated with considerable costs but also
major savings in health and ecosystem effects. However, as major green house gas
emission originates from the same sources as air pollutants, a coordinated abatement
strategy is needed. Such a strategy needs to balance reductions of cooling and warm-
ing SLCFs and therefore focuses on limited number of sources but when done hand in
hand with CO, reductions helps to achieve climate targets. However, the uncertainties
are considerable because the indirect effects of aerosols on clouds are not included,
and the focus is in radiative forcing rather than the climate response itself. The present
total aerosol forcing is not well known, giving a large uncertainty in the quantification of
the actual temperature increase at double CO, concentration (Schwartz et al., 2010;
Hansson, 2010). The atmospheric concentrations of these components and the chem-
ical composition of the particles strongly affect not only their radiative properties but
also the potential for cloud droplet formation. EUCAARI, partly through the use of data
from infrastructure network such as EUSAAR, has put major efforts into analyzing con-
centrations and properties of importance for calculations of the aerosol total forcing
effect (see e.g. Swietlicki et al., 2008; Asmi et al., 2011). The distribution of the differ-
ent chemical components over the particle size distribution and thus their influence on
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the particle properties are most important for the total effect of the given compounds.
Long term measurements of the particle size distribution have been performed all over
Europe in collaboration with EUSAAR, extended by EUCAARI to 4 international sites
in Africa, India, China and Brazil. Further EUCAARI undertook a major month-long
campaign including measurements of chemically resolved size distributions. In total
the major achievements on measuring the chemical composition and properties influ-
encing climate forcing have affected and will continue to affect the policy development
as it will give a much stronger basis for estimating the effect of emission reductions.

Coupled photochemistry and aerosol microphysics simulations for the period 1980—
2005 using the aerosol-chemistry-climate model ECHAM5-HAMMOZ have been per-
formed, to assess the understanding of long-term changes and inter-annual variability
of the chemical composition of the troposphere, and in particular of ozone and sul-
phate concentrations. In order to separate the impact of the anthropogenic emissions
and meteorology on atmospheric chemistry, two model experiments have been com-
pared, driven by the same ECMWF re-analysis data, but with varying and constant
anthropogenic emissions, respectively (Pozzoli et al., 2011). The model analysis indi-
cates an average increase of 1 ppbv in global average surface ozone concentrations
due to anthropogenic emissions, but this trend is largely masked by natural variability
(0.63 ppbv), corresponding to 75 % of the total variability (0.83 ppbv). Regionally, an-
nual mean surface Oy concentrations increased by 1.3 and 1.6 ppbv over Europe and
North America, respectively, despite the large anthropogenic emission reductions be-
tween 1980 and 2005. Global average sulphate surface concentrations are largely con-
trolled by anthropogenic emissions. Globally natural emissions are an important driver
determining the AOD (Aerosol Optical Depth) variations, regionally AOD decreased by
28 % over Europe, while it increased by 19 % and 26 % in East and South Asia. The
global radiative perturbation calculated in our model for the period 1980-2005 was
rather small.
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4.2.3 Model development, new parameterizations, feedback processes and
evaluations

The basic foundation of EUCAARI is implementing scientifically investigated parame-
terization of processes into mechanistic models. The climate is controlled by a very
complex web of processes on all scales, from the nano to the global scale, interacting
with each other. Simultaneous studies of these processes aiming at improving our un-
derstanding will improve models considerably. In AR4 the uncertainty in climate sen-
sitivity due to poorly quantified aerosol processes results in a very large uncertainty in
global mean temperatures in a double CO, climate (Schwartz et al., 2010). Obviously
this uncertainty gave considerable difficulty in setting generally acceptable abatement
goals.

As the atmospheric particle size distribution is strongly dependent on the formation of
new particles in the atmosphere, i.e. nucleation, EUCAARI focused on the crucial ques-
tion of how the natural particle formation, growth and ageing processes are affected by
anthropogenic emissions, and thus how changes in emissions will affect climate forc-
ing. EUCAARI has put emphasis on both warm and cold clouds, investigating how
different properties affect the cloud droplet or ice nuclei formation, all in an attempt to
get better estimates of the indirect effects as well of their contribution to the total uncer-
tainty (e.g. Hoose et al., 2010a). Feed-back processes in the interaction between the
atmosphere and the natural ecosystem and/or the natural oceans in a changing climate
have been investigated using models updated with new parameterizations developed
in EUCAARI (e.g. Collins et al., 2010).

An evaluation process of regional and global aerosol models was developed to doc-
ument modeling progress made during EUCAARI. A platform was developed, which
helps constructing successful modeling studies within EUCAARI and outside of the
consortium, making a link to the international AeroCom model inter-comparison. This
initiative allows a quantification of actual uncertainties in our prediction of aerosol im-
pact on climate and air quality. Benchmark test tools were developed and applied to
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analyze model biases with respect to processes that govern aerosol concentrations
and physico-chemical properties of the aerosol.

Upgrading an operational model requires significant effort including scientific inves-
tigations and evaluation of the effects of changes on the general performance of the
model. Thus the full upgrading of the operational models has been lagging behind. The
just started AR5 in the IPCC process stops the upgrading processes of the operational
models for a period of 2 years for the IPCC simulations. This delays the implementation
of new parameterizations and the upgrading based on EUCAARI results for a period of
approximately 2 years.

4.2.4 Developing and evaluating policy strategies

Several scenarios were developed in EUCAARI in which available technical and non-
technical reduction measures of short lived climate forcing components and air pollu-
tants were combined to find the best integrated strategy for co-beneficial climate and
air quality mitigation. The developed approaches were used in the UNEP Integrated
Assessment of Black Carbon and Troposheric Ozone (UNEP, 2011) and were the ba-
sis for work in the Arctic Council Task Force and the Arctic Monitoring and Assessment
(AMAP) Expert Group to assess the climate effects on the Arctic. Developments to
identify the contribution to air pollution as well as radiative forcing from individual mem-
ber states in the OECD was also made within the EUCAARI, which have been used in
the work within different task forces and expert committees in EMEP/ CLRTAP.

A first assessment, performed within EUCAARI showed that balanced reduction
strategies of short-lived climate forcers and atmospheric pollutant can enhance the
climate mitigation and simultaneously improve air quality (see also Fig. 24). A baseline
was developed based on current and planned emission regulation for the period 2000—
2030. Three control scenarios adding well known standard reduction measures on
BC and methane were investigated together with one scenario were maximum feasible
reductions were applied on all substances involved.
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During 2010 UNEP performed an assessment of BC and ozone that recently was
published using the same scenarios (www.unep.org/dewa/). The evaluation by two
GCMs (GISS and ECHAM) found the global temperature increase could be reduced
by about 0.5° from 2030 and onwards with the suggested measures, at the same time
considerable improvements in adverse health and ecosystem effects were achieved.

Similarly, runs with ECHAM using IIASA air quality mitigation scenarios were made
with the following air quality mitigation scenarios: Current Legislation Emissions (CLE),
Maximum Feasible Reductions (MFR) and CLEMFR where the MFR was applied for
Europe and CLE for the rest of the world. When the MFR scenario is applied only
to Europe the study shows a substantial warming effect and increase in precipitation.
But these effects are almost double, both over Europe and globally, when the MFR
scenario is adopted globally. In the case of CLEMFR the temperature response in
Europe is +2.2°C while in the case of MFR the temperature increase in Europe is
4.1°C. It is the difference in reduction of SO, emissions that causes this fairly large
difference in global climate response. The global temperature response in 2030 due to
the greenhouse gas emissions in both scenarios was found to be about 1.2°C.

The development of the EMEP model has facilitated an actual implementation of
forcing as an element in the Greenhouse Gas and Air Pollution Interactions and Syn-
ergies (GAINS) model making an integrated assessment of climate and air quality and
use GAINS to develop the most cost effective and thus co-beneficial mitigation strategy
for climate and air quality. The development also facilitates evaluation of Europe’s in-
fluence on the global air quality and climate. The investigated scenarios were found to
significantly affect the climate of the whole of the Northern Hemisphere. The different
member states’ contributions to the climate effect in Europe vary to some extent with
their geographical location while the Arctic rim countries have a larger effect on the
Arctic compared to the European countries further south. Climate change does affect
air quality, but it was found that air quality mitigation scenarios will give a clearly signifi-
cantly better and noticeable improvement inair quality in spite of the variations induced
by climate change and natural variability in the climate.
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EUCAARI has already have had an considerable effect on the production of key
documents for the policy process, developing new air quality and climate mitigation
policies, e.g. the UNEP report, answering the most pertinent, relevant and most recent
policy related questions. In this work only some of the new developments in relevant
knowledge and implementations of that in the models have been used. One reason for
this is the limited duration of EUCAARI making it impossible to actually fully implement
all new parameterizations in the operational models in the course of the project itself.
Also, the complexity both in terms of organization and the science content of current cli-
mate modeling research and as well as the supporting operational infrastructure does
not facilitate a systematic implementation of the model improvements that may arise
from new parameterizations developed through EUCAARI and subsequent operational
use for policy development, implementation and monitoring.

4.3 Impact

EUCAARI had and will continue to have a significant impact on atmospheric aerosol
and climate research, on aerosol measurement technologies and techniques, on
knowledge transfer, and on mitigation strategies relating to air pollution-climate change
interactions. The scientific impact has mainly described in Sect. 3 and also partly in
Sect. 4.1. The EUCAARI legacy is described in Sect. 4.4; however, the main impact
has come via quantification the effect of aerosols on the planet’s radiative balance to
understand future climate change (see Sect. 4.1.). As an underpinning and critical
issue, during EUCAARI, the integration of European atmospheric research, with a par-
ticular focus on aerosols, air pollution, atmospheric composition and climate change
has improved over and above the sum of the individual parts of the programme. This
underpinning paves the way for more critically and informed research and assessments
into the future.

From a technological perspective, EUCAARI has developed new aerosol measure-
ment instruments and has deployed some of the most complex research instruments
world-wide in, more or less, an operational manner. Such instruments include the
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cluster spectrometer, deployed over extended periods at numerous sites including air-
borne platforms (Mirme et al., 2010). Besides the aforementioned instrument, sev-
eral new instrumental techniques have been developed and utilized in filed and lab-
oratory studies (see Sect. 2) with annual observation of different properties of atmo-
spheric aerosol having been performed at between 12-24 different sites to different de-
grees. The measurements additionally include, size distribution measurements (Asmi
et al., 2011), hygroscopicity of atmospheric aerosols (Genberg et al., 2011), optical
properties, and significantly aerosol mass spectrometer (AMS) measurements (e.g.
the longest world-wide record of high-resolution AMS measurements were enabled
at Mace Head, Ireland, where they continue to date since May 2008). In summary,
EUCAARI has moved highly complex and labour-intensive aerosol measurement tech-
niques from research mode to close-to-operational measurements delivering important
data, previously lacking, to stakeholders.

In terms of knowledge transfer, the list is too exhaustive to list in this document,
but includes extensive workshops, seminars, winter and summer schools as well as
daily mentoring of graduate students and post doctoral researchers from Europe but
also a number of developing countries and other regions around the world. More than
230 Ph.D. students have been involved in EUCAARI.

EUCAARI has produced more than 420 papers published in peer reviewed litera-
ture by 31 March 2011 (9 of them in Nature or Science). EUCAARI outcome has
disseminated also via (i) EUCAARI-platform, (ii) meetings, conferences, web pages,
publications, reports and (iii) different networks.

The baseline in global air pollution point of view was that information was very sparse
in 2006 in 3rd world countries. EUCAARI set up a ground-site measurement network
in developing countries and ensured the continuity of the work by providing a special
training program for the scientists representing developing countries. In practice, EU-
CAARI covered the polluted regions in China and South Africa as well as the Amazon
area in Brazil and rural areas in India. These regions extended EUCAARI to different
ecosystems and economic areas, providing a useful reference for evaluating European
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conditions, and they are valuable for the design of control strategies at the local, na-
tional and European level, providing also information for international negotiations. The
reduction in uncertainty regarding the aerosol role in climate change allows the EU to
achieve a better balance between sustainable economic development and minimal en-
vironmental impacts. The involvement of developing countries in the EUCAARI consor-
tium was important both for the quantification of the pollution effects on a global scale
but also for helping these countries to develop practical solutions to pollution problems.
The improved understanding of regional aerosol concentrations and emissions ap-
plies directly for the planning of the European mitigation strategies estimating the cost-
efficiency of future emission controls, and the risk-analysis of long-term investments.
In EUCAARI we have provided more informed tools compared to this previously exist-
ing, to perform an improved pollution-impact assessment with a particular emphasis on
atmospheric aerosols. However, while the EUCAARI advances are significant, there is
a still long road ahead to assess future climate change and interactions with air qual-
ity. The complexity of atmospheric aerosols, and their interactions with clouds, going
forward, are still highly complex and warrant significant investment into the future.
Health effects due to air pollution and the potential damage from climate change
are probably the two most important environmental problems facing the EU. EUCAARI
has quantified the contributions of different anthropogenic and natural sources to the
PM,,, PM, 5, and ultrafine particle concentrations. Additionally, EUCAARI provided
new information on particle hygrosopicity and composition, along with the source ap-
portionment. The project quantified the responses of the aerosol concentrations to
changes in emissions of particles and their precursors within and outside Europe. The
EUCAARI databank provides knowledge on regional aerosol loadings, hygroscopicity
(related to dose of the exposed population) and composition (related to toxicity of the
particles) and estimates of how much of the loading is due to long-range transport.
EUCAARI also contributed the scientific requirements relating to the European The-
matic strategy on Air Pollution, where it was stated that it is necessary to reduce the
uncertainties in (i) the knowledge about the sources of PM including their physical and
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chemical characterization, and whether they are of natural or anthropogenic origin. (ii)
the formation of secondary aerosols and how different sources contribute, (iii) the role
of long-range transport including intra-hemispheric and global transport for the aerosol
load over e.g. Europe; (iv) the links between air pollution and climate change; and (v)
the modelling and monitoring of air pollution.

The developed models and knowledge on sources and emission scenarios came
directly in to use in providing assessments evaluating the possibilities of co-benificial
measures improving air quality similutaneously mitigating climate change. These as-
sessments have and certainly will affect ongoing policy in e.g. the National Emission
Cellings Directive with in the Convention of LongRange Transboundary Air Pollution
(CLRTAP).

EUCAARI has during its four year made considerable advances on all scales of
science and made it useful in the policy for better air quality and mitigating climate
change,

4.4 Legacy and future research needs

EUCAARI leaves a legacy to be used in future projects and investigations. The key
issue is EUCAARI way of integrating individual efforts to join efforts from process level
understanding to global scientific and socio-etal problems. The legacy contains ad-
vanced models from process level understanding to global climate models (see EU-
CAARI arrow Fig. 1), new developed and tested instruments, emission inventories, data
banks etc. The data banks include e.g. atmospheric nucleation data from 12 different
sites, data from Intensive Observation Period (IOP), size distribution data obtained in
co-operation with EUSAAR, hygroscopicity data etc.

During EUCAARI, leading European groups started to work together more systemi-
cally than ever before. 48 partners had common objectives and their work 48 months
towards fulfilling those objectives. During the project several benefits from supradis-
ciplinary work have been seen. E.g. experimentalists and modelers start to work to-
gether. The real use of EUCAARI arrow is a big benefit and shows the power of joint
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work in all scales. This legacy will hopefully continue into future projects.

EUCAARI established a data exchange protocol (a) to ensure rapid dissemination of
data and results within the project consortium, (b) to protect the data ownership of the
contributing scientists and (c) to ensure that project data are preserved and made avail-
able after the end of the project. All measurement data had to be submitted to a central
database (http://ebas.nilu.no), which is shared with EUSAAR and other projects, so
that the EUCAARI data became part of a large established database system contain-
ing data from multiple research campaigns and monitoring activities. Some of these
data are publicly available while for others the access is restricted. As of now, the
database contains data from the 1970s up to 2010. It is essential that links established
between the data production and storage system and the users developed within the
EUCAARI framework is maintained for future studies.

Furthermore, EUCAARI supported the interpretation of EUCAARI and EUSAAR data
by running a Lagrangian particle dispersion model, FLEXPART (Stohl et al., 2007), in
backward mode from all EUCAARI and EUSAAR measurement data points. Back-
ward modelling products for the years 2006—2010 are available for these locations:
Aspvreten, BEO Moussala, Birkenes, Cabauw, Finokalia, Harwell, Junfraujoch, JRC-
Ispra, K-puszta, Mace Head, Melpitz, Montseny, Mt. Cimone, Kosetice, Pallas, Puy de
Dome, Preila, Hyytiala, Vavihill, as well as for Capo Fiume and Barcelona. Further-
more, products are available for all EUCAARI airborne observations. All products are
freely available at http://transport.nilu.no/projects/eucaari/ and are also linked via the
EUCAARI database.

In future it is good to continue from EUCAARI achievements. It will be important to
find out

— key processes and thermodynamics related to ice nucleation and both ice and
mixed phase clouds;

— thermodynamics of key aerosol systems;

— better parameterisations to include new process understanding in global and
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regional models;
— effect climate stress on vegetation and secondary aerosol formation-properties;
— interlinks between biospheric and anthropogenic aerosols and their precursors;
and to perform

— pollutant impact assessments, based on both aerosol mass and number concen-
trations;

— continuous and comprehensive measurements including aerosol, reactive trace
gases and greenhouse gases at the same supersites;

— maintenance and extension of the observation network outside of the European
political boundaries, in collaboration within strong international partnership;

— develop more detailed emissions inventories;
and to include
— EUCAARI findings in future air quality directives.

One of very important future research topic with a certain policy relevance is the quatifi-
cation of the side effects of possible air quality directives on aerosol concentrations. Ac-
tually the roadmap for future analysis is tp (1) obtain reginal size segregated mass and
number concnetyration using EUCAARI/EUSAAR data plus EUCAARI model results,
(2) perform model runs using the emissions related or given by air quality directives,
(3) analyse the results and (4) give assessments based on the results.

4.5 Summary

The EU-FP6 EUCAARI project (2007-2010) is an Integrated Project (IP) of the 6th
Framework Programme of the European Commission. The goals of EUCAARI are to
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quantify the effect of aerosols on cloud, climate and air quality interactions, to under-
stand future climate change, and to develop strategies and implementation plans for
global air quality monitoring. EUCAARI is a consortium of 48 partners coordinated by
the University of Helsinki. The project has been motivated by the urgent need to quan-
tify the effect of aerosols on our planet’s radiative balance to understand future climate
change. The uncertainty in aerosol radiative forcing has been typically greater than
100 % and for some aerosol components it is more than 200 %.

The project was organized into elements studying the emission and formation of
aerosols, their evolution and transformation during their atmospheric lifetime and their
impact on clouds. This approach maximized the integration of methodologies and
scales and ultimately our understanding of the effects of aerosols on air quality and
climate. Ground-based, aircraft and satellite measurements were integrated with exist-
ing data to produce a global consistent dataset with the highest possible accuracy. The
EUCAARI intensive measurement campaign in May, 2008, was designed around simul-
taneous airborne measurements together with measurements from several “super-site”
stations around Europe. Furthermore, during EUCAARI, a hierarchy of new-generation
models was developed based on the results of the laboratory and theoretical investi-
gations. This new research concept of “all scales research chain” was the basis of
the EUCAARI mission. The EUCAARI work followed several research chains, in which
small-scale models were used to interpret measurements and then integrated in to
regional air quality and global climate models. In the end of the project this new knowl-
edge was incorporated in policy-orientated models to analyze climate change and air
quality for a range of global emission scenarios using updated economic and techno-
logical information.

One crucial task of EUCAARI was the quantification of the impact of aerosols and
trace gases on clouds. The influence of aerosols on clouds depends on particle proper-
ties and cloud microphysics as well as on meteorological conditions. Before EUCAARI,
the uncertainties related to aerosol properties were similarly high as those related to
cloud microphysics and meteorology. Synthesizing the EUCAARI and related studies
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results, the uncertainty of key parameters in aerosol properties (aerosol particle hygro-
scopicity, size distribution, number concentration, etc.) and cloud microphysics (dilution
ratio, effective radius, etc.) was reduced by about 50 %. New formulations of turbu-
lence in global models derived from EUCAARI observations give much better agree-
ment with observations, yielding an overall 36 % increase in predicted cloud droplet
number concentrations and significantly reducing the model negative bias. With regard
to climate modeling and air quality, aerosol properties and cloud microphysics appear
now, after EUCAARI, well constrained relative to the uncertainties of meteorological
conditions.

EUCAARI focused on the scientific questions related to aerosols with the greatest
uncertainty at all relevant scales; from nanometers to global scale, from milliseconds to
tens of years. The resulting improved understanding of the aerosol life cycle enabled
us to also improve significantly the corresponding climate and air quality models. An
example of such an improvement is the partitioning of complex organic compounds
between the gas and the particulate phase. The work was based on laboratory exper-
iments focusing on the micro scale. New models were then developed which greatly
reduced the complexity of the organic aerosol (OA) partitioning problem to the point
where they can be included in global OA models.

EUCAARI developed a set of new emission inventories and scenarios for Europe.
For example the particle number emission inventory developed for Europe within EU-
CAARI is the first of its kind in the world. These inventories together with new knowl-
edge on long-range transport of aerosol pollution provide valuable tools for air pollution
policy making. The EUCAARI conclusions are also valuable inputs for future European
air quality directives. Based on EUCAARI results the reduction in ammonia emissions
is one of the most effective ways to reduce aerosol mass concentrations in Europe.
Reduction in NO, is also effective, but might lead to higher ozone levels in several
areas. Reduction in SO, emissions will reduce particulate air pollution especially in
the Eastern Mediterranean area. Reduction of organic aerosol concentrations is a
lot more challenging and will require reductions of gas and aerosol emissions from
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transportation and biomass burning.

EUCAARI has also performed measurements, which provide new insights of the role
of different types of aerosols on air quality and climate. EUCAARI has made signif-
icant progress in understanding the formation of biogenic secondary organic aerosol
(BSOA). It has now shown that a large fraction of the OA in Europe is of modern origin,
for which the main sources are BSOA (boreal forests), biomass burning and primary
biogenic aerosol particles. These compounds have also been shown to contribute to
the growth of newly formed particles into cloud condensation nuclei and are therefore
important for the indirect radiative forcing. All these sources are expected to respond
to climate change, although we are presently unable to gauge accurately the strength
of the multitude of feedback mechanisms involved.

The large-scale interactions between air quality and climate have been largely un-
known, although some links have been identified or even quantified. EUCAARI results
highlight the potential impact of future climate change on air pollution and vice versa.

Good quality long-term data sets of physical, chemical, and optical characteristics
of aerosols are rare. Long-term data sets are needed to estimate the effect of emis-
sion reductions and underpin European strategy on air pollution. EUCAARI leaves a
legacy of data and advanced aerosol and cloud computer codes, which are available
via the EUCAARI Platform (http://transport.nilu.no/projects/eucaari/). The EUCAARI
database, hosted by the Norwegian Institute for Air Research (NILU), builds on the
efforts of the EMEP program and utilizes the developments of EU-FP6 infrastructure
project EUSAAR (European Supersites for Atmospheric Aerosol Research). The con-
struction of the European Research Area for the atmospheric science will require in
the future that the strong connections between science and infrastructure programs be
maintained. The database contains observation data of atmospheric chemical compo-
sition and physical properties in a common format. It also makes available transport
modeling products (Lagrangian particle dispersion model FLEXPART) suitable for the
identification of source regions of measured aerosols for the case studies. In order
to expand the European activities of aerosol monitoring EUCAARI has built new field
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stations outside Europe: in polluted regions in China and South-Africa, in Amazon
area in Brazil and rural areas in India. This selection of sites provides useful reference
for evaluating European conditions and providing information for international negotia-
tions.

EUCAARI contributed to expand the European activities of aerosol monitoring out-
side Europe: in polluted regions in China and South-Africa, in Amazon area in Brazil
and rural areas in India. This selection of sites not only provides useful reference for
evaluating European conditions and information for international negotiations but it also
strengthened the positioning of Europe as an attractive place for advanced education
in the atmospheric science. Support of the European Commission for extending long-
term observing network in emerging and developing countries outside of Europe is an
essential and unique contribution to GCOS.

The most important technical achievement of EUCAARI was the development of a
new prototype of cluster spectrometer for measuring sub-3 nm size particle and clus-
ter ion concentrations and thus allowing us to follow the initial steps of growth of new
aerosol particles. This breakthrough will enable Europe to take a leading role in de-
veloping and applying environmental technologies and mobilize all stakeholders in the
area of air pollution management.

In order to efficiently disseminate and ensure the continuity of EUCAARI measure-
ment techniques, use of the instrumentation and running of the new stations the project
has organized several workshops and training events for young scientist as an integral
part of the research activity. EUCAARI has clearly strengthened the European re-
search community working in different disciplines of aerosol research: physics, chem-
istry, meteorology and biology. The project has also set up the stage for further studies
such as the continued development of global and regional models using EUCAARI
findings and also the incorporation of its results in future air quality directives.
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Appendix A

Details of methodologies used, related to 2. scientific approach

Please find the Appendix tables of Appendix A in the table section.

Appendix B

Modelling and experiments of thermodynamics and ageing of organic aerosols,
related to 3.2.2.

The ageing of BSOA from typical Boreal forest emissions during a day-night-day cycle
in the SAPHIR chamber was correlated to the OH dose. Ageing was manifested as a
distinctive increase of the O/C ratio in the particles and a change in the condensational
growth of the particles, indicating the photo-chemical formation of condensable mate-
rial. Factor analysis of the AMS times series (PMF, Ulbrich et al., 2009) revealed that
in the long term BSOA accumulates in a final factor (group of species) with the kinetic
characteristics of a product which is formed with OH and has no significant chemical
losses. Interestingly, this factor has an O/C—ratio of 0.75 and shows the same con-
centration profile as 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA, Zhang et al.,
2010), as measured simultaneously by APCI-MS (Mdiller, 2010, 2011a). 3-MBTCA
was shown before to represent a unique biogenic aging marker formed by OH-radical
oxidation of semivolatile oxidation products (Miller, 2010, 2011b). Three other fac-
tors have the characteristics of intermediate products, with either ozonolysis or OH
reactions as a source and OH reactions acting as a sink. In sum they represent the
semivolatile organic aerosol fraction with O/C<0.5 (Jimenez et al., 2009). Tracers like
hydroxy pinonic acid and pinic acid correlate with the intermediate factors quite well
(Muller et al., 2011a). The correlation between tracers and AMS factors was surpris-
ingly good as the molecular tracers represented only a very small mass fraction of
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the factors (Mentel et al., 2011). The time dependent ratio of the tracers pinic acid/3-
MBTCA and pinonic acid /3-MBTCA indicated that the aerosol aged for about 30 h had
similar characteristics as that observed in field studies in boreal forests (Muller, 2010,
2011b). Analysis of 16 filter samples by H-NMR spectroscopy provided confirmation of
the changing composition of BSOA with photochemical ageing. Factor analysis showed
that the variability in H-NMR composition can be reduced to two or three components,
with one characteristic of fresh SOA and exhibiting a maximum during the ozonolysis
experiments, and the other two factors being produced by reaction with OH and being
enriched in aged samples. This is in strikingly good agreement with the AMS results
(Finessi et al., 2011). H-NMR and APCI-MS analysis indicated that the original cyclic
structure of the first-generations products of a-pinene, G-pinene and carene oxidation
is retained in fresh SOA. There the oxidation proceeded first on the lateral chains,
while aged BSOA are largely depleted of methylated cyclic structures indicating that
a more thorough oxidation has occurred. ESI-LC-MS and LC-APCI"MS"™? analysis
revealed numerous dicarboxylic acids already in the first day of chamber experiments
in agreement with the online APCI-MS observations in SAPHIR. Periodic spectral lines
(Am/z=14) in a range between m/z 300 to 800 with maximum intensity around m/z
350 and 550 increased when sesquiterpenes were present. The complexity, periodic-
ity and the wide range of ions resembled those of humic-like substances found in rural
aerosol although the maximum in ambient samples was around m/z250-300 (Kiss et
al., 2002). UV and Visible absorption of the samples were in accordance with HULIS
formation.

In the analysis of the particle-phase with respect to carbonyls, a series of carbonyl
group containing oxidation products was identified in the filter samples from Boreal
mixture experiments. Among these, the elemental composition of C45H,,0, (MW 268)
was identified as a sesquiterpene oxidation product based on the number of carbons.
The relative intensity of this compound decreased dramatically after the photochemical
aging process, suggesting photochemical degradation of this compound in the particle
phase. In the experiment with 50 ppb VOC load no significant change in the carbonyl
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compound concentrations originating from the monoterpenes (pinonaldehyde and en-
dolim) in the particle-phase was observed for these experiments. On the other hand,
much higher concentrations of pinonaldehyde and endolim were observed after the
photochemical aging process in the experiment with higher VOC loads of 100 ppb and
the corresponding aging experiment, indicating the continuous production of pinonalde-
hyde and endolim during the photochemical aging process in presence of higher VOC
level. When no sesquiterpenes are present in the VOC mixture, lower concentrations
of pinonaldehyde and endolim are observed in the particle phase than the compara-
ble experiment with sesquiterpenes, indicating that sesquiterpenes react fast with OH
radicals acting as an OH radical scavenger in these experiments.

CCN measurements of the aged particles showed an effective hygroscopicity pa-
rameter « of 0.1+£0.02 (Buchholz, 2010). This is in agreement with the average « of
0.08+0.03 for the BSOA from Mediterranen and Boreal tree species (Bucholz, 2010)
and with results of CCN field measurements of SOA particles in tropical as well as in
mid-latitude environments (Gunthe et al., 2009; Dusek et al., 2010; Pdschl et al., 2010).
With regard to the CCN properties of organic and mixed organic-inorganic aerosol par-
ticles, measurement data analyses and sensitivity studies using the new hygroscopicity
distribution concept and cloud parcel model suggest that a simple x-Kohler model ap-
proach can be used for efficient approximation and prediction of CCN concentrations
in the atmosphere (Gunthe et al., 2009; Reutter et al., 2009; Pdschl et al., 2010; Su et
al., 2010).

Photoenhanced aging was observed in terms of different observables: Soot and hu-
mic acids showed enhanced uptake of nitrogen dioxide and ozone under UV-A or visible
light (Stemmler et al., 2007; Monge et al., 2010; Zelenay et al., 2011). The initial step is
energy, electron or hydrogen atom transfer from a partially oxidized organic precursor
(which thereby gets oxidized) to an acceptor, catalyzed by an activated chromophore
as a photosensitizer. This drives direct production of radicals, e.g., singlet oxygen
(Styler et al., 2009), O, or O; (D’Anna et al., 2009), which then react further with the
organic substrate or hydrolyse to HO, and OH, respectively. In the case of NO, as

18051

Jadedq uoissnosiq | Jadeq uoissnosigq |  Jadeq uoissnosiqg | Jaded uoissnosig

ACPD
11, 17941-18160, 2011

Integrating aerosol
research from nano
to global scales

M. Kulmala et al.

: II“ III


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

acceptor, this leads to release of HONO to the gas phase, which is a precursor of OH
there. In terms of particle aging, this photochemistry leads to enhanced rates for the
initial oxidation process but also initiates secondary, radical chain reactions that lead
to high molecular weight products (Rouviere et al., 2009). Depending on the substrate
the hydrophilicity of organic surfaces changes, which is important for CCN activation
of organic particles (Nieto-Gligorovski L et al., 2008; Zelenay et al., 2011). Related to
these effects, on inorganic substrates, similar photochemistry supports renoxification
of nitrate lost through heterogeneous reaction of HNO5 with mineral dust (Vlasenko et
al., 2009) via its photocatalytic reduction induced by titanium and iron oxides (Ndour et
al., 2009a, b). Similar to the case of HONO above, these light induced reactions also
feed back to gas-phase chemistry (Monge et al., 2010b).

A set of models and chemical mechanisms have been developed that enable a con-
sistent description of the chemical transformation and aging of organic aerosol com-
ponents under a wide range of different conditions, including a a kinetic double-layer
surface model (K2-SURF) and a chemical master mechanism (Shiraiwa et al., 2009);
a kinetic double-layer model coupling aerosol surface and bulk chemistry (K2-SUB),
in which mass transport and chemical reactions in the particle are represented by a
reacto-diffusive flux (Pfrang et al., 2010); and a kinetic multi-layer model (KM-SUB)
that explicitly resolves mass transport and chemical reaction at the surface and in the
particle bulk (Shiraiwa et al., 2010). The formation and existence of amorphous solid
phases in organic aerosol particles were confirmed in laboratory and field experiments
conducted in parallel to the model development (Mikhailov et al., 2009, Virtanen et al.,
2010). Moreover, studies employing the new models provided unprecedented insights
into the the molecular mechanisms and kinetics of aerosol-ozone interactions. They
showed that long-lived reactive oxygen intermediates (ROIs) are formed. The ROls
explain and resolve apparent discrepancies between earlier quantum mechanical cal-
culations and kinetic experiments. They play a key role in the chemical transformation
and adverse health effects of toxic and allergenic airparticulate matter, such as soot,
polycyclic aromatic hydrocarbons and proteins. Moreover, ROIs may contribute to the
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coupling of atmospheric and biospheric multiphase processes (Shiraiwa et al., 2011).

Following the method described in (Riipinen et al., 2006), temperature dependent
sub-cooled liquid and solid state vapour pressures and enthalpies of vapourisation
for malonic, succinic, glutaric and adipic acid (Riipinen et al., 2007b; Koponen et al.,
2007) and vapour pressues of dried oxosuccinic, 2-oxoglutaric, 3-oxoglutaric and 4-
oxopimelic acids (Frosch et al., 2010) have been derived from evaporation rate of binary
aqueous or dried particles using the TDMA technique. Furthermore, uncertainties in in-
organic/organic interactions in aqueous succinic acid/NaCl system have been explored
using evaporation rates of the ternary mixed particles (Zardini et al., 2010). We also
studied solid state vapor pressure from a levitated single organic crystal using optical
techniques (an application to succinic acid can be found in Zardini et al., 2009).

Booth et al. (2009) reported vapour pressures for oxalic, malonic, succinic, glutaric
and adipic acids measured by KEMS. Further vapour pressures and enthalpies and
entropies of sublimation have been reported for the substituted dicarboxylic acids 2-
methyl- and 2-hydroxy-malonic acid, 2-methyl-, 2-methyl-1,2-hydroxy-, 2-hydroxy-, 2,3-
dihydroxy-, 2-amino- and 2-keto-succinic acid, 2-methyl-, 3-methyl-, 3-carboxylic-3-
hydroxy-, 2-amino-, 2-keto- and 3-keto-glutaric acid (Booth et al., 2010a). Similarly,
measurements of cyclic aliphatic compounds (1,1-cyclopropane-, 1,1-cyclobutane-,
1,2-cyclopentane- and 1,3- and 1,4-cyclohexane-dicarboxylic acids, levoglucosan and
cis-pinonic acid; Booth et al., 2010b) and mono- and di-substituted aromatic compound
(phthalic-, isophthalic-, terephthalic-, vanillic-, syringic- and p-anisic acids and nitrocat-
echol) vapour pressures and enthalpies of sublimation have been made (Booth et al.,
2010c).

The best estimation techniques for vapour pressure estimation not requiring prop-
erties at the critical point were evaluated against available literature data (Barley et
al., 2010a). It was clearly demonstrated that the combination of the boiling point and
vapour pressure estimation methods of Nannoolal et al. (2004 and 2008 respectively)
had the best skill in predicting the vapour pressures of low volatility multifunctional
organic compounds as known to occur in the atmosphere. Several vapour pressure
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estimation methods have been further evaluated against the newly measured values,
reaffirming the skill of the Nannoolal et al. (2004, 2008) method, but highlighting a
number of substantial discrepancies, even in the best techniques.

A reformulated molar absorptive partitioning model (Barley and McFiggans, 2010)
has been used to evaluate the sensitivity of the total predicted mass, component O:C
ratios, molar masses, volatilities and aerosol properties (densities, GF, CCN, forcing)
to estimated properties. The sensitivities to vapour pressure are much greater than to
component activity coefficient irrespective of whether the initialisations are randomly
generated or predicted using a near-explicit model of oxidative VOC degradation (Mc-
Figgans et al., 2010; Barley et al., 2011; Topping et al., 2011a). The sensitivities are
increased when trying to represent the complex multicomponent mixture by fewer com-
ponents. This leads to a requirement to more accurately represent the volatility of, and
interactions between, all components with increasingly simple representations.

Suitably initialised and constrained, the predictions from equilibrium absorptive par-
titioning can be compared with suitable ambient measurements where available. At
its broadest and most direct, this would be the mole fraction of all components with
molecular identification. Such mass balanced characterisation is not practical and the
total OA mass, averaged according to O:C ratio, molar mass spectrum, volatility dis-
tribution and relative POA/SOA contributions are accessible to comparison. Across a
broad range of organic vapour and OA mass initialisations, the first four of the above
metrics are predicted to fall in a relatively narrow range using the best available prop-
erty estimation techniques. These metrics have been compared from absorptive par-
titioning predictions and literature-reported field measurements using output from the
near-expicit MCM model (Bloss et al., 2005; Jenkin et al., 2003). Further comparison
of this range with ambient measurements emerging from EUCAARI can be used to
evaluate limitations with the equilibrium approach and discrepancies used to provide
guidance for use of models incorporating the partitioning module developed.

The hybrid Partial Derivative Fitted Taylor Expansion (PD-FIiTE) framework was in-
troduced for inorganic compounds by Topping et al. (2009) and for organic compounds
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by Topping et al. (2011b), the latter based on the sensitivities described in Barley et
al. (2011). PD-FiTE is a reduced complexity generalised thermodynamic framework
for calculating activity coefficients in solution using optimised parameters to describe
component interactions with improved computational performance and comparable ac-
curacy to more complete thermodynamic models. A methodology for the automated
generation, optimisation and benchmark evaluation of PD-FiTE has been developed
based on the best available property estimation techniques from the sensitivity evalu-
ations described above. Code can be generated to include any number of organic and
inorganic compounds to accommodate the chemical mechanism of the host model.
All component activities and vapour pressures over particles of given component mole
fractions are calculated at the input RH and temperature. Though the skill in reproduc-
ing SOA loading will obviously be determined by the ability of the oxidation mechanism
to produce the SOA precursors, PD-FiTE will ensure that minimal error is introduced in
the thermodynamic calculation.

The state-of-the-science multicomponent activity coefficient code published on the
E-AIM website (http://www.aim.env.uea.ac.uk/aim/aim.php/) was developed as the
benchmark code for evaluation of the activity coefficients in the partitioning module.
Combination of inorganic and organic activity coefficients was implemented (Clegg
et al., 2008b) as well as user specification of organic compounds/surrogate proper-
ties and vapour pressure estimation. The E-AIM model can now calculate densities
(Dutcher et al., 2010) and particle surface tensions (Clegg et al., 2010a, b) and refer-
ence thermodynamic data for inclusion of amines (Ge et al., 2011) has been compiled.

PD-FiTE compares well with E-AIM for inorganic components (H+-NHZ-Na+-SOi_-
HSO,-NO;-CI™) at 298K and for organic components for various example mecha-
nisms. Comparisons are presented in Topping et al. (2009) and Topping et al. (2011b)
for inorganics and organics respectively. The linear additive framework readily allows
inclusion of organic components with the interaction between inorganic and organic
components where appropriate data exists.
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The first version of a partitioning module has been incorporated into a coupled model
of gaseous photochemistry and explicit multicomponent aerosol microphysics (Topping
et al., 2009, 2011b), demonstrating its stability, accuracy and efficiency. The explicit
incorporation of the representation of mass transfer into the non-equilibrium treatment
of aerosol transformation allows investigation of the roles of kinetic limitations (through,
for example, condensed phase diffusion in highly viscous amorphous solid particles)
or enhancements (through condensed phase reactions, rapidly forming less volatile
components from more volatile ones). This is not possible using equilibrium partitioning
treatments.

Appendix C

Method-specific results of aerosol source apportionment related to 3.3.3
C1 Modern/Fossil carbon

The analysis of the 4¢/'2C ratio in aerosol samples collected at various locations
across Europe indicates that a major fraction of the organic aerosol mass originates
from sources of modern carbon. The fraction of modern carbon (fy,) in TC (total carbon)
for the time of year for which %C data was available at the sites were going from
north to south, for Vavihill (SE) 74 %, Melpitz (DE) 75 %, K-puszta (HU) 78 %, San
Pietro Capofiume (IT) 54 %, and Ispra (IT) 52 %. For the background site at Montseny
outside Barcelona (ES) samples from two seasons were analyzed for %C in OC and
EC separately. The fraction of modern carbon (f,) in these Montseny samples were
for OC: 60-83 % in winter and 71-93 % in summer. The fy, for EC was much lower,
25—-46 % in winter and 23 % in summer. These values clearly indicate the importance
of sources of modern carbon in European background continental air, most notably
biomass combustion sources and biogenic SOA. A clear annual variability in the carbon
fu(TC) was observed at the Ispra site in northern ltaly, with f; =90 % in winter and
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fu =50 % in summer. Residential wood combustion for heating purposes clearly has
a major impact on the organic wintertime aerosol at Ispra (Gilardoni et al., 2011). At
Montseny (ES) and Vavihill in Southern Sweden (Genberg et al., 2011), £\, was more
constant over the year. The f; were high also at two urban sites studied. In Barcelona,
OC-f\, was 51-73 % in winter and 41-83 % in summer. Again, f\,(EC) was considerably
lower with 11-24 % in winter and 5-20 % in summer. At an urban site in Zurich, f,(TC)
was 69-94 % in winter.

Ceburnis et al. (2011) showed, by utilising combinations of dual carbon isotope anal-
ysis, conclusive evidence of a dominant biogenic organic fraction to organic aerosol
over biologically active oceans. In particular, the NE Atlantic, which is also subjected
to notable anthropogenic influences via pollution transport processes, was found to
contain 80 % organic aerosol matter of biogenic origin directly linked to plankton emis-
sions.

Other OA complementary analytical techniques show that the major sources of mod-
ern OA are combustion and burning of biomass in winter and biogenic POA (primary
OA) and SOA in summer. All of these have source strengths that are expected to vary
in response to climate change. Since OA is a major component of the sub-micrometer
aerosol over Europe, these sources of modern carbon may constitute important feed-
backs mechanisms in the climate system.

C2 Aerosol mass spectrometer (AMS) datasets

A unique OA data set was obtained from 30 AMS campaigns across Europe conducted
within the EMEP/EUCAARI framework, mainly from three coordinated campaigns in
April/May 2008, September/October 2008 and February/March 2009. The AMS data
was acquired at 17 sites around Europe: Auchencorth/Bush (GB), Harwell/Chilbolton
(GB), Hyytiala (FI), Puijo (FI), Helsinki (FI), Vavihill (SE), Cabauw (NL), Jungfraujoch
(CH), Payerne (CH), Melpitz (D), Puy de Dome (FR), San Pietro Capofiume (IT), Fi-
nokalia (GR), Mace Head (IE), Barcelona (ES), Montseny (ES), K-puszta (HU).
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The AMS data clearly show that a large mass fraction of the sub-micrometer aerosol
mass in Europe is organic. The average OA concentrations ranged from 1 ug m~° at
elevated sites to 8 ug m~2 in downtown Barcelona. Organic mass fractions (in (non-
refractory PM,) range between 20-60 %. Temporal variability is typically high at each
site.

Positive Matrix Factorization (PMF) was used to examine the OA nature and ageing
state, and to identify OA sources. The OA PMF analysis of the 30 AMS data sets
yielded 1- to 4-factor PMF solutions, with 2 and 3 factors being most common. The
most frequently observed OA component was for all cases OOA (oxygenated OA),
followed by HOA (hydrocarbon-like, more fresh OA), BBOA (biomass-burning OA), and
in one case (Finokalia, Crete) amine-like OA. In Barcelona, the only real city site in this
compilation, an additional cooking factor was identified. OOA as derived from the PMF
analysis is probably mostly SOA, and dominated OA mass (55-100 % of total OA).
POA (if defined as HOA and BBOA) ranged between 0 % (observed in many datasets)
and 45% (Barcelona) of OA. In several data sets affected by biomass combustion
and burning, the AMS PMF apportionment of BBOA (biomass-burning OA) agreed
well with that derived from levoglucosan analysis on filter samples. Most sites and
data sets showed a clear diurnal variability for the various OA PMF factors. As an
example, the continental polluted site Melpitz, had the highest concentrations of LV-
OOA (low-volatility OOA) during the afternoon hours (mixing down of aged residual
air from aloft), a maximum in SV-OOA (semi-volatile OOA) during night (partitioning
from gas to particle phase at lower nighttime temperatures), a biomass burning OA
maximum in late evening due to residential wood combustion, and HOA peaking during
the morning rush hours.

Attempts were also made to estimate the nitrate mass fraction that could be ascribed
to organic nitrates, based on unit-mass and high resolution AMS data. Average con-
centrations ranged from below detection limit at remote and elevated sites to 1.6 ug m~3
in San Pietro Capofiume. The fraction of submicrometer nitrate that was estimated to
be non-NH,NO; ranged from 20 % to 60 % with typical values around 30 %.
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C3 Gas Chromatography-Mass Spectrometry — organic tracers

Analyses of organic tracers using GC-MS analysis of filter samples were used for
OA source apportionment at five background sites on a campaign basis (Hyytiala,
San Pietro Capofiume, K-puszta, Melpitz, and Montseny). n-Alkanes and polycyclic
aromatic hydrocarbons (PAH) in aerosols were chemically characterized, along with
source attribution based on the carbon preference index (CPl), the ratios between the
unresolved and the chromatographically resolved aliphatics (U/R), the contribution of
wax n-alkanes from plants (WNA =C,-[C,,,1+C,_1)/2]) and diagnostic ratios of PAH.
For two other European sites, Vavihill (background site in southern SE) and Ispra (IT),
OA source apportionment was performed for a full seasonal cycle on less extensive
OA data sets.

The presence of petroleum residues was confirmed by the low CPI values and high
ratio of resolved to unresolved aliphatic components, particularly in Hyytiala and San
Pietro Capofiume. The input of primary biogenic sources was significant in K-puszta
and Melpitz, where 60 % and about 50 %, respectively, of the total n-alkanes were at-
tributable to plant waxes. This biogenic contribution represented only 15 and 23 % of
the total n-alkanes found in the boreal and Mediterranean aerosol, respectively. Di-
agnostic ratios between PAH suggest that vehicular emissions and biomass burning
also influence the aerosol constitution in the Hungarian site. Long range transport of
air masses contributed with anthropogenic components to the atmospheric aerosol in
the boreal forest. In spite of transboundary pollution, Hyytiala registered the lowest hy-
drocarbon levels among all locations. Aliphatic and aromatic hydrocarbons in samples
from San Pietro Capofiume reveal that both vehicular and industrial emissions are ma-
jor sources influencing the diel pattern of concentrations. The average benzo(a)pyrene
equivalent concentration (BaPE) concentrations obtained for every EUCAARI site were
far lower than the mandatory limit value (1 ng m_3).

The organic characterization of submicron aerosols from Barcelona, Zurich and
Montseny pointed out that traffic is one of the main sources in the urban locations.
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CPI values close to 1 for the aliphatic fraction of the Montseny aerosol suggest that
the anthropogenic input may be associated with the transport of aged air masses from
the surrounding industrial/urban areas, which superimpose the local hydrocarbons with
biogenic origin. Aerosols from the urban area of Zirich presented a much higher PAH
content, and BaPE concentrations sometimes exceeding the mandatory limit. Besides
traffic, residential wood burning was found to be another dominant emission source
contributing to the atmospheric aerosol at the Swiss urban location, confirming the
results obtained by AMS for Zurich and in general in Central Europe during winter
(Lanz et al., 2008, 2010).

C4 Nuclear Magnetic Resonance (NMR) spectroscopy

H-NMR spectroscopy was employed for the off-line analysis of fine aerosol samples
(Decesari et al., 2007) collected at the six European sites in 2008-2009, in parallel with
AMS measurements. The evaluation of the HNMR data used positive matrix factoriza-
tion (PMF) techniques and other chemometric methods. Factor analysis was applied
to NMR spectral datasets for the following field sites: Hyytiala, San Pietro Capofiume,
Mace Head, Cabauw, Melpitz, K-puzsta, Zirich, and Barcelona-Montseny.

The analysis of the NMR spectra by factor analysis provided a split between four fac-
tors: (1) biomass burning products, showing a spectrum containing levoglucosan, but
also other polyols and abundant aromatic compounds; (2) biogenic SOA generated by
vegetation emissions (terpenes); (3) organic aerosol generated by compounds formed
by the degradation of biological material (e.g. alkylamines); and (4) more generic
HULIS-like OOA type, with oxidized aliphatic moieties and a smaller contribution from
aromatics. The NMR biomass burning factor concentration in the Po Valley correlated
well with the concentration of wood burning tracers (levoglucosan) and are also pos-
itively correlated with the AMS factors for fresh and aged biomass burning products.
The biogenic SOA source type appeared for the March—April 2007 campaign in the
Hyytiala boreal forest site. A high degree of similarity was found between this spec-
trum and that of biogenic SOA formed from terpene oxidation in the reaction chambers

18060

Jadedq uoissnosiq | Jadeq uoissnosigq |  Jadeq uoissnosiqg | Jaded uoissnosig

ACPD
11, 17941-18160, 2011

Integrating aerosol
research from nano
to global scales

M. Kulmala et al.

: II“ III


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

of PSI and FZJ. The amine source type was also found at Hyytiala. These findings
suggest that biogenic organic aerosols in the boreal forest originate from at least two
independent sources: condensation of amines and the oxidation of reactive terpenes,
with the first process being relatively more important in the low aerosol concentration
regime. These results are important since they offer a possible method by which bio-
genic SOA can be accurately apportioned.

Appendix D

Organic aerosol modeling in the regional scale related to 3.4.5

The EMEP MSC-W chemical transport model (Simpson et al., 2011) is a key tool for
policy support within both the LRTAP Convention and the European Union Clean Air
for Europe Programme (CAFE). Improved predictions of especially the organic aerosol
component (OA) of PM are urgently required to support these policy fora, as OA typi-
cally accounts for 10-40 % of PM,, in Europe.

In order to improve the EMEP MSC-W chemical transport model, the SOA mod-
ule (Simpson et al., 2007, 2011) has been extended by incorporating a new organic
aerosol (OA) scheme based on the Volatility Basis Set (VBS) approach (Bergstrom
et al.,, 2011). For primary organic aerosol (POA) emissions, the EUCAARI anthro-
pogenic carbonaceous aerosol emission inventory (Denier van der Gon et al., 2010;
Visschedijk et al., 2009, Sect. 3.1) was used, which includes improved estimates of
residential wood combustion and has high spatial resolution (1/8°x1/16°).

The VBS scheme has recently been introduced to help models cope with the wide
range of aerosol concentrations and the ongoing oxidation of semi-volatile organics in
the atmosphere. VBS models are computationally efficient and are therefore interesting
candidates for 3-D modelling. However, they are sensitive to assumptions regarding
emissions, the (semi-) volatility of anthropogenic VOC-emissions, and chemical ageing
of SOA. Given the lack of theoretical constraints on these SOA models, and general
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difficulties with the understanding of SOA, comparison and indeed calibration of the
model against observational data is essential before models such as EMEP can be
used for reliable policy guidance.

The OA model outputs from these and other setups have been compared to mea-
surement data and especially source-apportionment results from several European
campaigns, including EUCAARI. As discussed in more detail in (Bergstrom et al.,
2011), the model performance varies between stations. It seems clear that the
VBS-PAPS version overestimates OC in summer at most locations. The VBS-PAPS
model assumes partitioning of POA emissions, and includes gas phase ageing of both
anthropogenic and biogenic SOA as well as POA. This version uses an order of magni-
tude slower OH-reaction rate for SOA (4x10™ 2 cm® molecule™' s™) than for POA. The
other VBS model versions give lower OC concentrations, closer to observed levels. For
the winter months, all model versions give similar (fairly low) OC concentrations. For
two of the measurement sites, Ispra and llimitz, the EMEP VBS models underestimate
winter and early spring concentrations of OC severely. Similar underpredictions were
noted also in earlier versions of the EMEP OA model (Simpson et al., 2007), and were
then shown to result from problems with significant contributions of wood-burning to
OA.

Residential wood combustion was shown to be a major source of wintertime OA at
Ispra in northern ltaly (Gilardoni et al., 2011) in Oslo and a nearby background site in
southern Norway (Yttri et al., 2011), as well as at Vavihill in southern Sweden (Genberg
et al., 2011). Despite these congruent observations, it is not possible to say at this
stage if such contributions are a local problem or reflect more wide-spread problems
with the wood-burning inventories.
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Appendix E

Answers to specific problems described in chapter 1 and also in
Kulmala et al. (2009)

E1 In-situ formation (nucleation) of aerosols

The most important technical achievement in the nucleation area was the develop-
ment of new instruments for measuring sub-3 nm particle populations, along with the
extensive application of these instruments in both laboratory and field studies. These
instruments include the Neutral cluster and Air lon Spectrometer (NAIS, Kulmala et
al., 2007a), lon-Differential Mobility Particle Sizer (Laakso et al., 2007), Condensation
Particle Counter Battery (Kulmala et al., 2007b), various other CPC techniques (Sipila
et al., 2008; Vanhanen et al., 2011), and the Atmospheric Pressure Interface Time of
Flight Mass Spectrometer (API-ToF-MS, Junninen et al., 2010; Ehn et al., 2010).

lon spectrometers were continuously operated for roughly a full year at 13 field sites
during the EUCAARI Intensive Observation Period (IOP) (Manninen et al., 2010), and
the air-borne version of the NAIS was used in the EUCAARI long range experiment
(Mirme et al., 2010). Based on NAIS measurements, we obtained the first quanti-
tative estimate of the concentrations of neutral sub-3 nm particles in the continental
boundary layer (Kulmala et al., 2007a) and the free troposphere (Mirme et al., 2010).
The concentrations of neutral sub-3 nm particles exceed those of charged particles in
the same size range in the lower troposphere (Lehtipalo et al., 2009; Manninen et al.,
2010). The average formation rates of 2-nm particles were found to vary by almost two
orders of magnitude between the different EUCAARI sites, whereas the formation rates
of charged 2-nm particles varied very little between the sites (Manninen et al., 2010).
Overall, our observations are indicative of frequent, yet moderate, ion-induced nucle-
ation usually outweighed by much stronger neutral nucleation events in the continental
lower troposphere.
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All the scientific results obtained during EUCAARI indicate that sulphuric acid plays a
central role in atmospheric nucleation (Kerminen et al., 2010; Sipila et al., 2010). How-
ever, also vapours other than sulphuric acid are needed to explain the nucleation and
the subsequent growth particle processes. Candidate vapours include various organic
compounds and very likely also ammonia or amines (Berndt et al., 2010; Paasonen
et al.,, 2010). Field and laboratory data demonstrate that the nucleation rate scales
to the first or second power of the nucleating vapour concentration(s) (Riipinen et al.,
2007a; Metzger et al., 2010; Paasonen et al., 2010; Sipila et al., 2010). This find-
ing agrees with the few earlier field observations, but is in stark contrast with classical
thermodynamic nucleation theories.

By using different quantum mechanics methods, atmospherically relevant molecular
clusters were studied to elucidate the molecular mechanism behind observed atmo-
spheric nucleation. Our main findings from quantum chemical calculations were that:
(i) ammonia can enhance neutral sulphuric acid—water nucleation to some extent, but
has a smaller role in corresponding ion-induced nucleation (Ortega et al., 2008), (ii)
dimethylamine enhances neutral and ion-induced sulphuric acid-water nucleation in
the atmosphere more effectively than ammonia (Kurtén et al., 2008; Loukonen et al.,
2010), (iii) some of the organic acids resulting from monoterpene oxidiation can form
very stable clusters with sulphuric acid, being good candidates to explain the pool of
neutral clusters found in field measurements, and (iv) organo-sulphates can be involved
in ion-induced nucleation.

A major outcome of the EUCAARI nucleation studies is the new semi-empirical nu-
cleation rate parameterizations for neutral and ion-induced nucleation based on field
observations (Riipinen et al., 2007a; Paasonen et al., 2010; Nieminen et al., 2010).
New parameterizations for the aerosol formation rate were also developed (Lehtinen et
al., 2007; Anttila et al., 2010).
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E2 Number and mass emissions of primary aerosol from natural and
anthropogenic sources at urban, regional, and global scales

Emission inventories for primary particle mass, the distribution of organic and elemen-
tal carbon and anthropogenic aerosol particle humber emission inventories were de-
veloped for Europe within EUCAARI. In particular, the particle number emission inven-
tories developed for Europe were the first of their kind in the world. (see Sect. 3.1,
Johansson et al., 2008; Denier van der Gon et al., 2011).

The particle number emissions in Europe are dominated by sub-micron particles.
The most important anthropogenic sources of these particles vary considerably de-
pending on country and region: while in the EU countries transport makes about half
of the fine particle emissions, in non-EU parts of Europe industrial processes along with
residential and commercial combustion dominate the fine particle emission inventories.
Fossil fuel production, on the other hand, is not a relevant source of fine particles in
any parts of Europe.

Emissions from diesel engines dominate the transport-related particle number emis-
sions. The particle number emissions from residential combustion are dominated by
coal burning emissions, whereas wood burning dominates the particulate mass emis-
sions. A remarkable feature of residential coal burning is the large amount of very
fine PN (<25nm) which is related to the sulfur content of the fuel. The transport-
related emissions are highest in the densely populated Central and Western Europe,
the Moscow region standing out as a single hotspot outside Central Europe. In gen-
eral, highway use is much smaller in Eastern Europe, and consequently emissions
from road-transport are much more allocated to urban centers than in the EU. Particle
number emissions from residential combustion are concentrated in Eastern Europe,
particularly Poland, Czech Republic, Slovakia, Ukraine and former Yugoslavian coun-
tries.
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E3 Formation of secondary organic aerosol and the partitioning of semi-volatile
compounds between the gas and aerosol phases

Since the onset of EUCAARI in January 2007, there has been substantial progress
regarding our ability to describe the formation of secondary organic aerosol and the
partitioning of semi-volatile compounds between the gas and aerosol phases. In 2007,
most models seriously underestimated the regional-scale concentrations of secondary
organic aerosols (Volkamer et al., 2006) while often overestimating the concentrations
of primary organic particulate matter. This deficiency was in part remedied by the
realization that a large fraction of the primary organic aerosol (POA) may indeed be
semivolatile, evaporating partially during the rapid dilution that takes place when fresh
combustion emissions enter the atmosphere. These semi-volatile gas-phase com-
pounds are subsequently oxidized in the atmosphere and, to a large extent, partition
back to the particle phase as oxidized organic compounds (Robinson et al., 2007). The
result is that OA mass is shifted from the immediate vicinity of the POA sources — often
urban — to further downstream, thus increasing the OA concentrations on a regional
scale. For all but the initial oxidation steps, it is evident that, in order to handle OA
in regional and global scale models, it is necessary to simplify the complexity of OA,
including the POA volatility behavior and SOA formation and gas-particle partitioning.

Several OA models, also those within EUCAARI (PMCAMx and EMEP) have been
updated using the volatility basis set (VBS) concept (Donahue et al., 2006). Alternative
descriptions to simplify the wide range of OA properties have been proposed, such as
that by Kroll et al. (2011) that uses average oxidation state versus carbon number, that
of Pankow and Barsanti (2009) that maps OA according to polarity and carbon number
and that of Donahue et al. (2011) (the 2-D VBS) in which the SOA volatility and O/C
ratio span a space wherein all SOA can be categorized.

EUCAARI has also contributed to the improvement of our description of OA and
SOA formation by providing a model framework for the gas-particle partitioning of
semi-volatile OA. The modules that were developed reduce the complexity of the OA
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partitioning problem, even to an extent where they can be included in global OA mod-
els. The OA can be mapped onto a variety of simplified OA spaces, such as O/C ratio
versus molecular weight or those described above. In addition, the framework can
be used to predict a wide range of important OA properties (O/C ratio, molar mass,
volatility, density, hygroscopic growth, CCN activity) that are directly verifiable against
laboratory and field measurements. This ability is essential for the evaluation of the
codes. The modules that were developed within EUCAARI offer a link that did not pre-
viously exist,between the explicit reaction kinetics as described by the Master Chemical
Mechanism and various OA descriptions of reduced complexity.

Another important EUCAARI contribution is the progress with respect to the forma-
tion of biogenic SOA. EUCAARI has shown that a large fraction of the OA in Europe
is of modern origin, for which the main sources are BSOA, biomass burning and pri-
mary biogenic aerosol particles. All these sources are expected to respond to climate
change, although we are presently unable to gauge the strength of the multitude of
feedback mechanisms involved. For instance, laboratory studies showed that BSOA
production from monoterpene precursors increased with temperature, which may con-
stitute a climate cooling effect (negative feedback). On the other hand, increased iso-
prene emissions, which are to be expected at raising temperatures, was demonstrated
to hinder the formation of new particles, which may instead be a positive feedback
mechanism. The identification of specific BSOA molecular markers that are represen-
tative of various stages of BVOC ageing offers a direct way to apportion the SOA to its
various sources and, perhaps even more important, to estimate the state of OA age-
ing that can be compared to other methods, such as those offered by the AMS and
HNMR techniques. Another important aspect of SOA formation that received further
attention during EUCAARI is the multiphase oxidation reactions. In a global modeling
study (Myriokefalitakis et al., 2011), isoprene was identified as a major precursor to
the formation of glyoxal and eventually oxalate. The oxidation of water-soluble glyoxal
proceeds in the aqueous phase.
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E4 Ageing of aerosols and evolution of their properties during their
atmospheric lifetime

EUCAARI field measurements suggested that chemical aging of OA reduces its volatil-
ity of OA by approximately 2 or more orders of magnitude compared to fresh laboratory-
generated monoterpene SOA (Lee et al., 2010). Field measurements suggest that the
atmospheric ageing of OA over Europe drives the OA to a state with an almost constant
AMS mass spectrum (Hildebrandt et al., 2010) and a fairly narrow range of hygroscopic
properties.

Aging of aerosols modifies all properties of aerosols and occurs mostly via coagu-
lation, condensation, or sedimentation. Concerning inorganic aerosols, condensation
mainly relates to the condensation of sulfuric acid (through oxidation of SO,) and nitric
acid (through oxidation of NO, ), where the latter typically requires the presence of NHj.
While the formation of inorganic aerosols is understood rather well, the condensation
of organic components is much less known. An important mechanism in the latter case
is the evaporation — gas phase reaction — condensation cycle, as outlined in the answer
to question D.3.

Aging of organic compounds may occur either by functionalization, fragmentation, or
oligomerization (Jimenez et al., 2009). Functionalization and fragmentation mainly oc-
cur in the gas phase, while oligomerization is likely to proceed largely in the aqueous
phase and produces HULIS (humic-like substances). Functionalization will increase
the oxidation state and decrease the volatility. Fragmentation will increase both oxi-
dation state and volatility, and will ultimately lead to CO,. These conflicting rates are
currently not well described, although various estimates can be evaluated and con-
strained in OA models using the VBS approach (WP3.4, WP2.4). Oligomerization will
decrease the volatility, with marginal positive or negative changes in the oxidation state,
depending on the actual mechanism. Oligomerization may also be accelerated by pho-
toenhancement (Rouviere et al., 2009) or by cloud processing (Michaud et al., 2009).
The actual rates of all these oligomerization mechanisms are still poorly known, but the
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model framework will in the future have to incorporate the rates at which this oligomer-
ization proceeds, including their relative importance compared to functionalization and
fragmentation.

EUCAARI WP1.2 has identified specific BSOA molecular markers that are repre-
sentative of various stages of BVOC ageing. BSOA ages related to the experienced
OH dose, leading eventually to highly oxidized compounds. BSOA observed in cham-
bers is characterized by 2—4 different ageing states, which can be mapped to the two
OOA classes observed in the atmosphere (Jimenez et al., 2009) and related to certain
molecular markers like pinic acid or 3-MBTCA. Overall, the ageing processes over 2-3
days lead to a mass increase and more persistent organic aerosols with increased hy-
groscopicity. The ratios of such markers characterize the BSOA age, applicable in field
studies. They also offer a way to apportion the SOA to its various sources and, perhaps
even more important, to estimate the state of OA ageing that can be compared to other
methods, such as those offered by the AMS and HNMR techniques (WP2.4).

EUCAARI field measurements suggested that chemical aging of OA reduces its
volatility of OA by approximately 2 or more orders of magnitude compared to fresh
laboratory-generated monoterpene SOA (Lee et al., 2010). Field measurements sug-
gest that the atmospheric ageing of OA over Europe drives the OA to a state with an
almost constant AMS mass spectrum (Hildebrandt et al., 2010).

In the 744 vs. f43 space of AMS fragments (Ng et al., 2010) the OOA (which mostly
represents SOA in the absence of considerable amounts of biomass burning aerosol)
spans a characteristic triangle, where fresh SOA is found at the bottom and moves
upwards during aging. The larger diversity of compositions observed for fresh OOA
reflects the multiple fingerprints of anthropogenic (e.g., biomass burning) and biogenic
(e.g., terpene SOA) sources, while the aged OOA exhibits a consistent composition
dominated by humic-like substances (HULIS) and related compounds. Each area can
be related to H-NMR spectra obtained by simultaneous sampling during various EU-
CAARI campaigns, where the latter can be tentatively interpreted to correspond to the
various AMS OA source types.
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Low-volatility oxidized organic aerosol (SV-OOA, which includes the HULIS fraction)
is the end-product of OA ageing, and is found in the upper apex of the triangle. It is the
most common constituent of the European regional continental polluted background
under clear sky and stable meteorological conditions (from May 2008 IOP).

E5 Attribution of the different aerosol mass components in Europe to specific
sources

The sources of sulfate, nitrate, ammonium, sodium, chloride, and crustal elements are
relatively well understood in Europe so EUCAARI focused on OA and EC sources. OA
is the most important component of fine PM in Europe (with the exception of Southeast
Europe). A large fraction of this OA (more than half in most areas and seasons) is
of modern origin, for which the main sources are biogenic SOA and biomass burning.
Biogenic SOA dominates during the summer, while residential biomass burning is the
major modern OA source during the winter.

The most important anthropogenic primary OA source according to the EUCAARI
European inventory is non-industrial combustion followed by agriculture and road
transport. Significant contributions to primary OA emissions are also made by produc-
tion processes, other mobile sources and machinery and waste treatment and disposal.
However, most of this POA is rapidly transformed to oxidized OA through atmospheric
chemistry. POA concentrations are very low in Europe outside the major urban ar-
eas. Wood burning emissions appear to be underestimated in at least some European
countries.

Road transport and non-industrial combustion are the two major EC emission
sources followed by other mobile sources. Significant contributions to the EC levels
are also made by production processes, waste disposal and agricultural sources.

The reduction in ammonia emissions is one of the most effective ways to reduce
aerosol mass concentrations in Europe. Reduction in NO, is also effective, but might
lead to higher ozone levels. Reduction in SO, emissions will reduce particulate air
pollution especially in the Eastern Mediterranean area. Reduction of organic aerosol
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concentrations is a lot more challenging and will require reductions of gas and aerosol
emissions from transportation and biomass burning.

E6 Current and future contributions of natural versus anthropogenic, and
primary versus secondary sources to particle number concentrations

The contributions of primary versus secondary and natural versus anthropogenic con-
tributions to particle number concentrations have been studied with models simulating
atmospheric transport and composition in both European and global scales (Jung et
al., 2008; Spracklen et al., 2010; Merikanto et al., 2009, 2010; Fountoukis et al., 2011).

The particle number concentrations are typically dominated by sub-micron particles,
and a large fraction, usually several tens of percents, of these particles have originated
from condensation of atmospheric vapours (Spracklen et al., 2006; Makkonen et al.,
2009; Merikanto et al., 2009; Jung et al., 2010; Spracklen et al., 2010). Typically
roughly every second aerosol particle in the European boundary layer is of secondary
origin. This highlights the need for combined emission inventories and regulations for
gas phase compounds and aerosol particles, instead of treating them as separate and
non-interactive constituents of the atmosphere.

Because of the large contribution of secondary particles, the natural and anthro-
pogenic contributions to particle number concentrations are difficult to quantify exactly.
We have shown that often both natural (e.g. biogenic organic compounds) and anthro-
pogenic (e.g. sulphuric acid or anthropogenic organics) vapours participate in the for-
mation of secondary aerosol particles (Spracklen et al., 2008b). While anthropogenic
sulfate emissions are a major factor governing formation of new particles, natural emis-
sions of biogenic organic vapours play an important role in defining the aerosol size dis-
tributions and the climatic impact of aerosols. Indications on the sensitivity of particle
number concentrations to anthropogenic and natural gas emissions can be obtained
with model studies (Spracklen et al., 2008a; Makkonen et al., 2011). The results sug-
gest that a decrease of 50 % in SO, emissions will result in a moderate (15—20 %)
decrease in particle number concentrations in all size classes (see Kerminen et al.,
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2010 and Sect. 3.2.1). A corresponding reduction in primary particle emissions, on the
other hand, would have only a minor effect on the smallest particles or total number
concentrations, but a moderate one (around 20 %) on the particles larger than 100 nm
in diameter. Additionally, we have shown that biogenic organic emissions from vegeta-
tion are in important factor driving the concentrations of climate-relevant aerosols over
remote continental regions. Spracklen et al. (2008a) found that inclusion of biogenic
emissions from forests roughly doubled the climate-relevant aerosol number concen-
trations over the boreal region.

To assess the effect of air quality regulations on particle number concentrations,
the effect of primary particle emissions along with secondary particle formation on
global particle number in pre-industrial, present and future conditions (years 1850,
2000 and 2100 — using the IPCC scenario A1B) was studied (Makkonen et al., 2011).
It was found that the future air quality improvements are likely to considerably decrease
aerosol number concentrations and thus the cooling effect of aerosols on climate. Ac-
cording to these first results, the probability that any reasonable changes in natural
emissions could counteract this effect is very small (Tunved et al., 2008).

Although our results shed light on the sensitivity of aerosol number concentrations
to anthropogenic pollutants and natural emissions, the future forecasts are challeng-
ing due to multitude of atmospheric processes affecting the modeling results. This
highlights the need to maintain and possibly extend provision of long-term data for
atmospheric composition and gas-aerosol distributions (Reddington et al., 2011).

Overall, EUCAARI has shown clearly that particle formation processes from anthro-
pogenic and natural gaseous precursors are a major source of cloud drop-forming
aerosol over Europe. The process needs to be accurately described in climate models
so that the link between climate and air quality can be established reliably. EUCAARI
therefore provides a clear plan for the future development of regional and global air
quality and climate models.
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E7 Long-range transport of aerosol particles and their precursors from and to
Europe as well as their transport within Europe

Birmili et al. (2008) showed that dust emissions in the southern Ukraine during a
drought can cause very high PM,, concentrations (between 200 and 1400 pg m'3) over
Central Europe. While such strong long-range transport events are probably not very
frequent, this shows that dust transport models need to account for this dust source,
in addition to the more frequently studied Saharan dust events. Saharan dust has
been shown repeatedly to be an important source of coarse-mode particles (PM,,) in
Southern Europe (e.g., Pikridas et al., 2010). However, it was also shown that the
concentrations of sub-micron particles (PM,) on Crete are lowest in marine air masses
and highest in air masses transported from the Balkans, Turkey and Eastern Europe
(Pikridas et al., 2010), showing that the export of pollution from Eastern Europe can
influence large areas of the Mediterranean and likely beyond.

Transport of aerosol pollution from Eastern Europe also affects Scandinavia.
Virkkula et al. (2010) found that the highest values of the aerosol light absorption co-
efficient at a remote site in Finland were associated with transport of air masses from
Eastern Europe. Furthermore, Saarikoski et al. (2008) have shown that long-range
transport can play a role even in urban areas in Scandinavia. They found that 24 %
of the OC found in Helsinki can result from long-range transport into the urban area,
including a contribution from agricultural or wild fires.

During the EUCAARI-LONG Range EXperiment (EUCAARI-LONGREX), a sus-
tained anticyclonic situation over Central Europe caused accumulation of aerosol pol-
lution in the boundary layer and its subsequent export to the west and northwest (Ham-
burger et al., 2011). This allowed studying both the accumulation as well as the export
of aerosol pollution from Europe and the changes in chemical composition occurring
en route. Substantial amounts of pollution were observed by aircraft far downwind
of continental Europe, with OA and ammonium nitrate being the major constituents
of the sub-micron aerosol burden (Morgan et al., 2010a). Refractory black carbon
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concentrations were enhanced, too (McMeeking et al., 2010). At Mace Head on the
Irish west coast, large differences were found between marine air masses arriving from
the west and European polluted air masses arriving from the east. While organic matter
dominated the sub-micron aerosol mass in the European pollution outflow, sulfate was
dominant in the marine air masses. While polluted-continental aerosol concentrations
were of the order of 3000 cm'3, background marine air aerosol concentrations were
between 400-600cm™>. Recirculation in the high-pressure system during EUCAARI-
LONGREX also caused the return of some of the exported pollution from the North
Atlantic into Northern Europe (Hamburger et al., 2011).

In summary, EUCAARI has shown that long-range transport of aerosol pollution from
Central and Eastern Europe can exert a large influence in the Mediterranean, over the
North Atlantic and over Scandinavia. On the other hand, Central Europe is influenced
by long-range transport of dust from the Sahara but occasionally also from Eastern
Europe, and is also influenced by transport of biomass burning plumes.

E8 Seasonal behaviour of aerosol particles in economically developing
countries

South-Africa: The seasonal variation of the aerosol near Johannesburg is significantly
affected by domestic and biomass burning especially during the dry and cold win-
ter season. Furthermore, the aerosol fine and coarse mass concentrations showed
clear seasonal variation. PM, 5 was on average 28 ug/m3 during the winter and spring,
whereas as low as 13 ug/m® during the summer. PM, 5_40 was highest during the fall,
29 ug/m3 and lowest during the summer, 11 ug/m3. The aerosol scattering coefficient
at 520 nm wavelength was highest during the winter period (80.7 Mm‘1) accompanied
by an absorption coefficient of 8.5 Mm™ (~1.3 ug/m3 black carbon). Particle number
concentrations (20—-800 nm) were highest (5900 cm’s) due to strong new particle for-
mation during the summer season, while the lowest concentrations (3300 cm‘s) were
observed during autumn, when nucleation was reduced. The fine fraction consisted
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of OC (45 % during the spring, 14 % during the summer), sulphates (44 % during the
summer, 20 % during the spring) and ammonia (20 % during the summer, 8 % during
the spring).

The local summer (Dec-Feb) had most distinct planetary boundary layer (PBL) evo-
lution on most days. A very shallow aerosol layer was observed during the night and an
increase up to 2-3 km during the day on average. The maximum layer thickness was
about 5 km. This period was the cloudiest period of the year and in contrast winter (Jun-
Aug) was almost totally unclouded. Strong and complex multi-layered structure of the
aerosol was observed throughout the year, most frequently in autumn (March—May).
Winter and partly spring (September—November) showed mostly a stable aerosol layer
up to 1-3km height and also the diurnal variation was the weakest in winter.

India: The seasonal variation of the aerosol characteristics was very distinct in
Gual Pahari. The highest concentrations were observed during the winter (PMy,
mean = 322 ug/m3) and the lowest during the rainy season (PM;, mean =93 ug/m3).
During the pre-monsoon (March—June) surface concentrations began to decrease as
the temperatures increased thus intensifying the natural convection. The coarse mode
contribution increased to 40-50 % due to dust events. During the monsoon season
(July—September), aerosol concentrations decreased by 50—70 % compared to the pre-
monsoon season, depending on the total seasonal rainfall. OM, EC, nitrate, sulfate,
and ammonium exhibit higher concentrations during the dry season. OM dominated
the fine mass; it represented 60 % of the fine mass during the wet season and around
50 % during the dry season. During the wet season higher relative contributions of
EC and sulfate were observed. During the dry season the contribution of ammo-
nium and nitrate increased. Equivalent black carbon concentrations alone averaged to
17.7 ug/ms. In the post-monsoon season (October-November) the fine fraction started
to dominate the aerosol characteristics with total aerosol number concentration aver-
aging 24 000 cm™3. During winter the night- and day time temperatures had their lowest
values, thus decreasing natural convection and the boundary layer height.
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Brazil: Aerosol physical properties were measured at a pristine Amazonian forest
site from February 2008 to January 2011. A strong seasonal behavior was observed,
with greater aerosol loadings during the dry season (July—November) as compared to
the wet season (December—June). During the wet season, aerosol scattering (450 nm)
and absorption (637 nm) coefficients averaged, respectively, 14+22 and 0.9+0.8 Mm™',
increasing to 58+58 Mm~" and 4.1+3.8 Mm™" during the dry season, correspondingly.
From wet to dry season, integrated aerosol number concentrations increased approx-
imately by a factor of two. During the wet season, the Aitken mode (~30-100nm)
was prominent, suggesting the presence of secondary aerosol. In contrast, during the
dry season the accumulation mode (100-500 nm) dominates the aerosol size spectra,
indicating the presence of primary and/or aged aerosol.

PM, 5 and PM, 5_;, samples were taken from February to June (wet season) and
from August to September (dry season) in 2008. The mass of fine particles averaged
2.4ug/m*® during the wet season and 4.2 ug/m® during the dry season. The average
coarse aerosol mass concentration during wet and dry periods was 7.9 and 7.6 pg/m3,
respectively. The overall chemical composition of fine and coarse mass did not show
any seasonality with the largest fraction of fine and coarse aerosol mass explained by
organic carbon (OC); the average OC to mass ratio was 0.4 and 0.6 in fine and coarse
aerosol modes, respectively. 44 % of fine total carbon mass was assigned to biomass
burning, 43 % to secondary organic aerosol (SOA), and 13 % to volatile species that
are difficult to apportion. The carbon fraction represented by biomass burning and
SOA were 35 % and 49 % during the wet season, and 71 % and 25 % during the dry
season, respectively. In the coarse mode, primary biogenic aerosol particles (PBAP)
dominated the carbonaceous aerosol mass. The PBAP concentrationaveraged 2.4—
1.6 ug/ms, with higher values during the wet season, up to 7 ug/ms.

China: The number concentration of nucleation mode particles showed a clear
monthly variation with the minimum mean value of about 1000 cm™ in July and Au-
gust 2008 and a maximum mean value of 10 000 cm™~2 in March 2008. The nucleation
events peaked in spring and early summer and reached a minimum in summertime.
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During these particle formation events, the number concentration of the nucleation
mode rose up to 10000 cm~3. Due to particles growth, the mean number concentration
of Aitken mode particles was higher during spring and early summer. The total particle
number concentration was higher in spring months and lower in summer months, and
the monthly mean concentration varied from about 6000 to 20 000 cm™3.

Lidar measurements revealed that the top height of the aerosol layer was around
900 m above ground for all seasons, only slightly higher during the summer months.
Frequently, elevated aerosol layers were observed, especially during winter and spring.
A mean aerosol optical depth (AOD) of 0.95 was observed for air masses arriving from
the North China Plain. In contrast, the mean AOD was only about 0.42 for northerly air
masses.

E9 Air quality and local climate interactions inside and outside Europe

Applying a mix of available technical and non-technical reduction measures of short
lived climate forcing components and air pollutants can give a co-beneficial climate
and air quality mitigation. These measures used in several assessments on global and
regional scale, e.g. for Europe and the Arctic, gave an 50 % reduction in integrated
forcing from shortlived climate forcing components by applying maximum feasible re-
ductions while even lower forcing can be reached by less stringent sulfur emission
reductions outside Europe.

When stringent air pollution control measures are implemented worldwide, the
present-day negative total aerosol top-of-the-atmosphere radiative forcing will be re-
duced by 50 % by 2030. Climate change thereafter will be controlled to a larger extent
by changes in greenhouse gas emissions. The net effect of increasing GHG concentra-
tions and lower aerosol concentrations is a global annual mean equilibrium temperature
increase of approximately 2.2 K. If additional emissions controls are applied only to the
industrial sources including power plants but not on the domestic and transportation
sectors the predicted temperature increase is 1.9K. Increasing GHG concentrations
alone lead to a temperature response of 1.2K. As aerosols strongly impact surface
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forcings the consequences for precipitation increases associated with global warming
are even stronger.

By 2100, the response of natural aerosol to changes in climate could cause a direct
radiative forcing feedback of up to 1 Wm™2. This feedback includes changes in dust,
wildfires, biogenic secondary organic aerosol, and sulphate aerosols formed from ma-
rine biota emissions of dimethyl sulphide (DMS) gas. At present there is not enough
information to allow an estimate of the indirect radiative effect of these changes in
natural aerosols. However, local effects have been estimated, and could be several
Watts per square meter. Thus, the response of natural aerosol emissions to changes
in climate could have significant effects on local climate and air quality.

Large averaged July O; changes of +8.9ppb and —3.5ppb are predicted for the
IPCC A2 and B1 emissions scenarios, respectively, under present-day climate for Eu-
rope for 2050. Climate change (IPCC SRES A2 2050s) alone causes July-average
O; increases of up to 2 ppb in western and southern Europe, due largely to increased
isoprene emissions.

Substantial fine PM decreases are predicted for the B1 emissions scenario in both
summer and winter. Contrastingly, large localized PM increases are predicted for the
A2 emissions scenario due to increases in nitrate, POA and BC, with a strong seasonal
and regional dependence. Climate change alone causes small domain-average PM
change, but notable local increases in some PM species due to reduced precipitation
and increase in biogenic SOA.

These results highlight the potential impact of future climate change on air pollution
and vice versa of air-quality-driven mitigation strategies on climate.

E10 The impact of aerosols and trace gases on cloud droplet activation, cloud
lifetime, and extent (the aerosol indirect effects)

The aerosol indirect effects on climate, i.e., their influence on cloud properties and pre-
cipitation, depend on aerosol properties and cloud microphysics as well as on meteo-
rological conditions. Before EUCAARI, the uncertainties related to aerosol properties
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were similarly high as those related to cloud microphysics and meteorology. By synthe-
sis of EUCAARI project results and related studies, the uncertainty of key parameters
in aerosol properties and cloud microphysics could be reduced by about 50 % (aerosol
particle hygroscopicity, size distribution, number concentration, dilution ratio, effective
radius, etc.).

With regard to cloud droplet activation, cloud lifetime, and extent, aerosol properties
and cloud microphysics appear now well constrained relative to the uncertainties of
meteorological conditions (updraft velocities, spatial inhomogeneity, etc.). In particu-
lar, the effective hygroscopicity of aerosol particles, i.e., their ability to absorb water
vapor and to form cloud droplets, can be efficiently approximated by a single hygro-
scopicity parameter (k). This parameter is easy to calculate from aerosol chemical
composition data. EUCAARI extensive observations have been extremely usefull to
constrain k values for air mass conditions in Europe. We showed that, on average,
it is limited to fairly narrow value ranges for continental and marine boundary layer
aerosols (0.3+0.2 vs. 0.7+0.2; Pringle et al., 2010). Thus, the current knowledge of
CCN properties can be used as a constraint rather than a tuning parameter in climate
models (Heintzenberg and Charlson, 2009).

One of the key questions in current research on air quality — climate interactions
are the direct and indirect climate effects of black carbon in carbonaceous combustion
aerosols. Reductions in black carbon emissions are often perceived as an attractive
global warming mitigation option. However, carbonaceous combustion aerosol can
also act as cloud condensation nuclei and thus cool the climate by increasing cloud
albedo. Recent studies suggest that that carbonaceous combustion aerosol accounts
for a large portion of the increase in the atmospheric abundance of cloud condensation
nuclei since pre-industrial times. This aspect must be considered to ensure that black
carbon emissions controls have the desired net effect on climate (Spracklen et al.,
2011).
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E11 Interactions between the aerosol cycle, the water cycle, and the biosphere

The precipitation response and thus the hydrological sensitivity differ strongly for green-
house gas (GHG) forcing and aerosol (AE) forcings. We find a hydrological sensitivity
for the GHG simulation of 1.96 %/K and 2.81 %/K for the AE simulation. As a result the
precipitation increase is strongly enhanced when aerosol forcings are considered (e.g.
GHG: +0.07 mm/d; GHG+AE: +0.15 mm/d. However, expected future air pollution mit-
igations, as considered in this study, will reverse this. Decreasing aerosol emissions
in the future can lead to an even stronger increase in precipitation as can be expected
from GHG forcing alone. This effect is estimated to be strengthened by further feed-
backs between GHG driven precipitation increase and aerosol wet removal (lversen et
al., 2010). The implied reduced atmospheric residence time of aerosols is estimated
larger for the present-day (year 2000) aerosol emissions than it would have been if
aerosols were kept at pre-industrial levels. The aerosol cooling effect is thus reduced
by the increased GHG, causing reinforcement of the GHG driven global warming.
Changes in climate extremes may have severe implications for food supply and hu-
man security. Type, frequency and intensity of extreme events are expected to change
as climate changes. In a warmer future climate, there will be an increased risk of more
intense, more frequent and longer-lasting heat waves. Summer drying and more in-
tense precipitation in winter is expected as well. This trend might be enhanced by future
reduction in aerosol emissions. Aerosols reduce solar insolation and thus cool the sur-
face during daytime and exert a warming effect during nighttime, damping temperature
extremes and the diurnal amplitude. Aerosols decrease evaporation rate and increase
the stability in the boundary layer (Paeth and Feichter, 2006). This affects precipitation
amount and distribution. In addition, aerosol particles influence cloud microphysics
and precipitation formation. As shown in Paeth and Feichter (2006) high aerosol load-
ing damps extreme values of temperature and precipitation, we expect more extreme
conditions if applying stricter air pollution measures and reducing aerosol emissions.
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Results were analyzed focusing on extreme values of temperature and precipitation.
Indicators for moderate weather extremes have been introduced which take place on
larger temporal and spatial scales and are, therefore, suitable for analyses of global
model results (Sillmann, 2009). We conducted simulations in which only GHG con-
centrations are changed or only aerosol emissions are changed to disentangle the
importance of both individual forcing agents.

A future reduction of aerosol pollutants results in:

— Warmer temperature minima in higher latitudes
— Higher temperature maxima over continents and NH oceans
— The occurrence of tropical nights extends polewards

— Dry spells decrease slightly in the desert belt, the Sahara and Arabian peninsula,
but increase significantly over Amazonia, southern Africa and Australia.

— 5-day precipitation increases in Monsoon regions and higher NH latitudes.

— Wet days decrease over Amazonas region, southern Africa and Australia and
increase over Indian and West-African monsoon regions and over high- and mid-
latitudes of the NH.

E12 Aerosol interactions in the Earth System

EUCAARI has advanced our understanding of the interactions and feedbacks in the
Earth System, which involve aerosol processes and properties. The workpackage has
assessed the role of climate change as a driver of changes in anthropogenic aerosols
as well as the strength of climate feedbacks involving aerosol species. The uncertain-
ties in these feedbacks have partly been quantified through a multi-model approach
and by undertaking the first ever review and synthesis of the available literature cover-
ing observational and modeling studies.
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Our review of aerosol feedbacks in the Earth system concludes that by 2100, the
response of natural aerosol to changes in climate could cause a direct radiative forcing
feedback of up to 1W m~2. This feedback includes changes in dust, wildfires, biogenic
secondary organic aerosol, and sulphate aerosols formed from marine biota emissions
of dimethyl sulphide (DMS) gas. At present there is not enough information to allow an
estimate of the indirect radiative effect of these changes in natural aerosols. However,
local effects have been estimated, and could be several Watts per square metre. Thus,
the response of natural aerosol emissions to changes in climate could have significant
effects on local climate.

Advances have been made during the EUCAARI project concerning the impact of
changes in marine and terrestrial biogenic emissions. The ECHAM and HadGEM2-
ES climate models have been updated and used to simulate the climate response to
these changing emissions. The results suggest that any thermostat involving DMS or
biogenic volatile organic compound emissions in a future climate is weaker than sug-
gested by previous studies. Although ECHAM and HadGEM2-ES disagree on many
aspects of the DMS feedback, both models suggest that DMS emissions respond to
climate change in a limited way. Moreover the change in cloud condensation nucleus
concentrations associated with a change in DMS may also be small. Likewise simula-
tions with ECHAM show that the net climate effect from natural BVOC emissions may
be small in a future warmer climate because of the CO, inhibition effect.

Changes in sea-spray aerosol are likely to occur in regions of sea ice retreat at high
northern latitudes. In the southern hemisphere the acceleration of wind speeds, due
most likely to the appearance of the Antractic ozone hole, has been predicted in a
model to cause large increases in sea spray aerosol production, causing a localized
cooling that may have counteracted greenhouse gas-induced warming over the past 2—
3 decades. The climate feedback associated with changes in dust emissions remains
ambiguous, but is likely to be an important factor in local changes in climate, and
possibly in nutrient supply to the ocean biota.
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Appendix F

EUCAARI Partners

Please find the Appendix tables of Appendix F in the table section.
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Table 1. Size-differentiated EC and OC emissions (tonnes) for UNECE Europe in 2005. @ M. Kulmala et al.
g.
SNAP  Source sector EC <1uym EC 1-2.5um EC2.5-10pm OC <2.5um OC 2.5-10um -
1 Combustion in energy industries 2390 17600 29000 11200 2700 % _
2 Non-industrial combustion plants 143000 43000 50200 395000 4340 0]
3 Combustion in manufacturing industry 1850 3960 5460 9050 543 -
4 Production processes 32300 3990 19000 81000 29000 o - -
5 Extraction and distribution fossil fuels 1330 2720 55200 1430 6310
7 Road transport (total) 184000 16 800 7800 104 000 25500 o
8 Other mobile sources and machinery 90200 4880 5250 71200 0 o
9 Waste treatment and disposal 35200 1880 1870 63000 0 % - -
10 Agriculture 35000 1010 2250 112000 145000 0,
Total excl. international shipping” 52000 95900 176 000 848000 214000 g
International shipping 79400 44700 6890 83700 0 - ! !
S
* Deviations in the summed totals are due to rounding of the source sector contributions. D - -
e
O
BT
Q
c
»n
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S
U
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°
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-
18124 -


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

Table 2. Impact of nucleation and emission reductions on particle number concentrations in
Europe. Where available, the values represent the average of PMCAMx-UF and GLOMAP.
Otherwise the numbers are based on one of the models only.

Relative increase due to nucleation (%) Relative PN change for 50 % reduction in emissions

SO, (%) Primary PN (%) VOC (%)
N, 263 -15 -8 3
Nsq 63 -12 -15 -8
Nioo 0.2 -14 -19 N/A
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Table 3. Predicted PM, 5 Concentrations Reduction in Selected Cities for May 2008.

City

London
Paris
Athens
Marseille
Ruhr

Reduction in PM, 5 (ug m™2) for a 50 % Emissions Reduction

NO

o4
1.1
1.7

o
4(
(
(6
(

VOCs POA
11%) 0.8(3.1%) 0.7 (2.6%)
6.7%) 02(1%)  1.9(8.9%)
35%) 0.1(0.8%) 0.2(1.7%)
%)  0.3(1.3%) 0.5(2.5%)
15%) 0.1 (1%) 0.2 (1.8%)

NH,

4.0 (16 %)
0.8 (4.2%)
0.6 (6.1%)
2.3 (12%)
0.7 (6.4 %)
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(%2}
4
Table 4. Aerosol forcing according to different IPCC reports: Forcing (W m2), BB = Biomass Y
Burning aerosols, FF=Fossil Fuel burning aerosols. S _
Aerosol direct Aerosol indirect (first indirect) = - -
SAR: -0.5 (0.1 to —1.3) sulfate+BB+FF(EC) (-0.0 to —1.5) sulfate only g - -
TAR: —-0.6 (0.5 to —2.2) SAR+dust+FF(OC) (-0.0 to —2.0) all aerosols 0
AR4: —-0.5 (-0.1 to —0.9) all aerosols -0.8 (-0.3 to —1.8) all aerosols é - -
EUCAARI: -0.2 (-0.05 to —0.31) all aerosols -0.7 (-0.2 to —-1.2) all aerosols S
; [N .
= 1
C rseen/Es
(7]
Q
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Table 5. Range, variability, uncertainty, and relative sensitivity estimates for major parameters
describing the first indirect effect of aerosols on climate (Twomey effect).

Parameter

Effective Range  Varia-bility Factor

Relative Uncertainty (

Relative Sensitivity

dX/X = dInX) (dInY/dInX = (dY/Y)/(dXIX))

Pre-EUCAARI  Post-EUCAARI
Aerosol Hygroscopicity, 0.1-1.0 10 1 0.5 13 dIn Nggn/dIn k
Aerosol Particle Number & Size, Ngy(D) (cm™) 10%-10* 100 2 1 1 dIn Neen/dInNgy
CCN Concentration, Negy (cm™) 10'-10* 1000 23 1.2 1 dIn N, /dInNecy
Updraft velocity, w (m s") 0.5-20 40 2 1 1 dinS/dInw
Supersaturation, S (%) 0.1-1 10 3 2 1 din N,/dInS
Initial Cloud Droplet Number Concentration, N, (cm~2) 10'-10° 100 7.3 4.2 1 dInNgp/Nye
Dilution Ratio, Ngp/Nyg 0.4-0.9 2 1 0.3 1 dIn Ngp/dIn kug
Effective Cloud Droplet Number Conc., Ngp (cm™2) 10'-10° 100 8.3 45 1/3 dInCOD/dINNgp
Effective radius correction, k* 0.5-1 2 0.3 0.1 13 dInCOD/dInk*
Spatial heterogeneity, SH 0.1-1 10 1 1 1/5 dInCOD/dInSH
Microphys. inhomogeneity, MI 0.1-1 10 1 1 1/5 dInCOD/dInMI
Liquid Water Path, LWP (gm™2) 20-400 20 1 1 5/6 dInCOD/dInLWP
Cloud Optical Depth, COD 41 2.8
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Table A1. Laboratory infrastructures used in EUCAARI. research from nano

)
Methodology Description Scale Reference Used in 73
(@]
FMI Laminar flow-tube Homogenous  nucleation Nanoscale Brus et al. (2010) Nucleation and growth c
experiment tube & M. Kulmala et al.
IfT Atmospheric pressure flow- Homogenous nucleation Nanoscale Berndt et al. (2005); Sipila et al. (2010) Nucleation and growth (28
tube experiment tube o
Vienna Size Ananlysing Nucle- Expansion Chamber Nanoscale Winkler et al. (2008) Heterogeneous nucleation, )
ation Chamber cluster activation, )
condensation growth Q)
Zurich Ice Nucleation Chamber Ice Nucleation Chamber Nanoscale Stetzer et al. (2008) Ice nucleation ho]
(ZINC) [©)
Portable ice nucleation chamber Ice Nucleation chamber Nanoscale Chou et al. (2010) Ice nucleation -
(PINC)
Immersion mode cooling chamber  Ice Nucleation chamber Nanoscale Niedermeier et al. (2010) Ice nucleation —_ - -
(IMCA)
JPAC Juelich Plant atmosphere Two temperature con- Microscale Mentel et al. (2009); Kiendler-Scharr et al. (2009a, b); SOA formation and OA
chamber trolled, continuously stirred Lang-Yona et al. (2010) partitioning O
flow reactors, housing the 0
plants and the photochem- (@]
PSI Environmental smog Temperature controled 27- Nanoscale Paulsen et al. (2005); Duplissy et al. (2008); Nucleation and growth; ag- %
chamber m? Teflon bag with artificial Metzger et al. (2010); Chirico et al. (2010) ing of SOA and of combus- -
lights tion emissions g
SAPHIR Simulation of Long-term photo-chemical ~Microscale Bohn et al. (2005); Rohrer et al. (2005); SOA formation and OA
Atmospheric PHotochemistry Ina ageing of BSOA formed Wegener et al. (2007); Spindler (2010); Buchholz (2010) ; partitioning U
large Reaction Chamber from a representative mix- QL
ture of Boreal BVOCs 8
UEF Kuopio plant chamber A 6m°® teflon chamber Nano/microscale Hao et al. (2009); Hao et al. (2011) Nucleation and growth, =3
where VOC's from a plant SOA formation
enclosure are mixed with o
O
- IEEESEE
Q
C
(7]
2
-
=)
U
SR
©
()
-
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Table A2. Field infrastructures used in EUCAARI. Q
5 M. Kulmala et al.
@
o
Methodology Description Scale Reference Used in =)
Shangdianzi Station station Station in China, near Beijing Regional: China Shen et al. (2011) Long term measurements outside U
Europe Q
El in station and Station in South Africa Regional: South  Laakso et al. (2010); Collett et al. (2010) Long term measurements outside © _’
Africa Europe D
EUSAAR station network 24 stations in Europe Regional: Europe Philippin et al. (2009) Intensive  measurement  period, -
Ground based measurements
inside Europe
Gual Pahari station Station in India, near New Delhi Regional: India Hyvérinen et al. (2010) Long term measurements outside
Europe
Manaus station Station in Amazon Basin Regional: Brazil Martin et al. (2010) Long term measurements outside D - -
Europe
Hohenpeissenberg Station in Germany Regional Fricke et al. (2007) Intensive  measurement  period, a
Ground based measurements o)
inside Europe (=)
CESAR site (part of EUSAAR) Station in Netherlands Local/Regional Russchenberg et al. (2005) Intensive measurement period wn
SMEAR I (part of EUSAAR) Station in Finland Local/Regional Hari and Kulmala (2005) Atmospheric  nucleation  studies, wn
Biomass burning experiment 6
Jungfraujoch (Part of EUSAAR) Station in Switzerland (free troposphere):  Regional Europe Kammermann et al. (2010); Long-term measurements, Intensive =
Fierz-Schmidhauser et al. (2010); Juranyi et al. (2010) measurement period
Puy de Déme (Part of EUSAAR) Station in Central France (free tropo- Local/Regional Venzac et al. (2009); Sellegri et al. (2003) Long-term measurements, Intensive -U
sphere/Boundary layer) measurement period Q
©
=
m ﬁ
Q
(=
(7]
2]
o
5
)
Q
o
[©]
=
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Table A3. Airborne infrastructures used in EUCAARI. =)
Ny
Methodology Description Scale Reference Used in ko] _
ATR-42 SAFIRE Aerosol-cloud interactions Regional  Crumeyrolle et al. (2010) Aerosol and cloud charac- C—E
terization, IOP
Bae-146 FAAM Aerosols, boundary layer, lower FT Regional (McMeeking et al. (2010); Morgan et al. (2010a, b) Aerosol characterization, o
IoP
DLR Falcon Aerosols, free troposphere, lidar remote sensing Regional Hamburger et al. (2011) Aerosol  characterization, - -
10P )
IfT Helicopter Aerosols, clouds, and radiation, boundary layer  Local Wehner et al. (2010); Henrich et al. (2010) Aerosol  characterisation n
Intensive measurement o)
periOd’ o 7 - -
NERC Dornier 228  Cloud characterization, remote sensing Regional http://arsf.nerc.ac.uk/ Cloud characterisation IOP %
S
=
T
QO
©
e
O
(7
Q
(=
(2}
2
o g
5
T
QO
o
()
=

|
(&)
()
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Table A4. Main computational methods used in EUCAARI (small scale).

to global scales

Methodology Description Scale Reference Used in g
lon-UHMA lon-Particle interaction simulations Local Leppaé et al., 2009 Nucleation 8
A modular series of kinetic models Local Shiraiwa et al. (2009, 2010); Organic aerosol ageing @ M. Kulmala et al.
Pfrang et al. (2010) (7]
Kinetic model framework Universally applicable rate equa- Local Ammann and Péschl (2007); Aerosol transformation 6
tions and parameters for mass trans- Poschl et al. (2007) =)
port and chemical reactions at the o
surface and in the bulk of aerosol Q
particles ©
Benchmark thermodynamic model ~ The state-of-the-science multicom- Microscale Clegg et al. (2008b) Thermodynamics (]
ponent activity coefficient code o
Equilibrium absorptive partitioning  Method to calculate aerosol parti- Microscale Barley et al. (2009) Thermodynamics
tioning o
Absorptive partitioning evaluator automated methodology for evalua- Microscale McFiggans et al. (2010) Thermodynamics
tion of the sensitivities of absorptive o
partitioning to vapour pressure and =
activity coefficient estimation 8
SALSA, ECHAM-SALSA Sectional multicomponent aerosol Microscale, global scale  Kokkola et al. (2008); Aerosol dynamics =
microphysics code for large scale Bergman et al. (2011) ()]
applications 25
Quantum mechanics calculation Simulations of nanocluster be- nanoscale Kurten et al. (2008) Nucleation g
haviour
Hygroscopicity distribution concept Data analysis and simulation of Su et al. (2010); Secondary organic U
aerosol particle properties and mix- Reutter et al. (2011) aerosol formation QO
ing state with regard to CCN activa- o
tion @
e
Adaptive method of lines Multi-component aerosol condensa- microscale Arabas and Pawlowska (2011)  CCN activation
tional growth and CCN activation o
O
(7
Q
(=
(2}
2
o
5
U
QO
o
@
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Table A5. Main computational methods used in EUCAARI (large scale).

Methodology Description Scale Reference Used in
CAM-Oslo global  community  atmospheric  Global Boville et al. (2006); Iversen et al. (2010); Interactions between aerosol-driven tO glObal Scales
model. with aerosol lifecycling with Kirkevag et al. (2008); Seland et al. (2008); climate effects with CO,-driven D
parameterized size-distributions Hoose et al. (2009) Equilibrium  Climate  Sensitivity 6
and interactions with clouds and Modelling, Model intercomparison (@)
:gz;:on, coupled to a slab-ocean % M- Kulmala et al-
ECHAM5-HAM Global community Earth System Global Roeckner et al. (2003); Stier et al. (2005); Natural vs anthropogenic origin (ﬁ
Model, including the modal aerosol Lohmann et al. (2007); Makkonen et al. (2009); of aerosol particles, climate pro- (o)
microphysics scheme M7 (Vignati et Kazil et al. (2010) jections, Earth system feedbacks, >
al., 2004) and water- and ice-cloud- Model intercomparison
aerosol interactions Y
GLOMAP Global aerosol chemical transport Global Spracklen et al. (2006); Mann et al. (2010) Natural vs. anthropogenic origin of Q
model aerosol particles, Modelling, Model o
intercomparison 9;
HadGEM2-ES Climate and Earth system model Global Collins et al. (2010), Jones et al. (2007); Bellouin  Natural vs. anthropogenic origin of
et al. (2008) aerosol particles, climate projec-
tions, Earth system feedbacks —_—
TM4-ECPL 3-dimensional chemistry transport ~Global Myriokefalitakis et al. (2008, 2010, 2011) Natural vs. anthropogenic origin of
model with coupled gas/aerosol Kanakidou et al. (2008) aerosol particles, Modelling OA mul-
chemistry tiphase chemistry (W)
T™M5 Chemistry- Transport model Global Krol et al. (2005) Interaction with policy g
IPSL-INCA Climate model Global Textor et al. (2006); Schulz (2007); Model intercomparison ((g
Balkanski et al. (2006) (=
European scale EMEP model, Community regional and global primarily regional (10— Simpson etal. (2007, 2011) Air quality modelling, for policy sup- )
chemical transport model 50km), but local (5km) port to EU and UNECE. Natural and wn
and global possible anthropogenic aerosols. 6
FLEXPART Atmospheric trajectory and particle Regional Stohl et al. (2007) Natural vs anthropogenic origin of 3
dispersion model aerosol particles, Modelling
PMCAMx-2008 Three dimensional chemical trans- Regional Gaydos et al. (2007) Modelling U
port model Q
CALM Lagrangian transport model Local to regional Tunved et al. (2010) Natural vs anthropogenic origin of ©
aerosol particles, new particle for- (0]
mation —J
PMCAMx-UF Regional chemical transport model ~ Regional Jung et al. (2008) Natural vs. anthropogenic origin of
aerosol particles R
Number-emissions pre- Module for emission scaling Regional Pierce et al. (2007) Emissions pre-processing
processor for Chemical
Transport Models D
(7]
Q
(=
(7]
@,
o
5
Y
Q
©
[©]
=
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Table A6. Databases and inventories used in EUCAARI.

Methodology Description Scale Reference Used in
PM 5 inventory A further size split in the Regional Visschedijk et al. (2004)
CEPMEIP PM, inventory
EBAS databank Comprehensive observa- Global Philippin et al. (2009) Data bank
tion databank
Emission inventories Spatially distributed emis- Regional Denier van der Gon et al. (2010a)
sions of air pollutants and
PM precursors
Optical properties Aeronet/GAW/SKYNET Global Dubovik et al. (2002); Model evaluation
photometers Holben et al. (2001)
Particle Number (PN) Literature derived PN emis-  Regional Denier van der Gon et al. (2009)  Emissions
emission factors sion factors for key sources
complemented with PMj 5-
to-number conversions for
sources with no PN emisi-
son data
IIASA GAINS Particulate matter (PM) in- Regional Kupiainen and Klimont (2007); Emissions
ventories http://gains.iiasa.ac.at
Carbonaceous emission New inventory on Regional Denier van der Gon et al. (2011)  Emissions
inventory European carbonaceous
aerosol
Particle number emission New inventory of European Regional Denier van der Gon et al. (2010b) Emissions
inventory particle number emissions
Vapour pressure compi- Evaluation of vapour pres- Microscale Barley and McFiggans (2010) Thermodynamics
lation and evaluation of sure predictive techniques
vapour pressure estimation against available measure-
techniques ments
Gridded satellite products ~ Gridded POLDER, MISR, Gilobal Deuze et al. (2000); Satellite retrievals

MODIS and OMI aerosol
products

Levy et al. (2010);
Kahn et al. (2009)
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Table A7. Critical instrumentation used in EUCAARI.

Methodology Description Scale  Reference Used in
APCI-MS On-line atmospheric pressure chemical ion- In-situ  Warscheid et al. (2003) Secondary organic aerosol formation.
ization MS-MS (analysis of particulate organ-
ics)
AMS (Aerodyne Aerosol Mass Spectrome- PM, composition, organic aerosol sources, In-situ Jayne et al. (2000); Secondary organic aerosol formation; Nat-
ter) g-AMS, c-ToF-AMS, HR-ToF-AMS fingerprints, and oxidation state De Carlo et al. (2006); ural vs. anthropogenic origin of aerosol
Drewnick et al. (2005); particles, Chemeical Ageing of secondary
Jimenez et al. (2009) aerosols, photoenhancment studies
ANAIS Airborne Neutral cluster and Air lon Measures particles and clusters also below In-situ Mirme et al. (2010) Nucleation; Airborne experiments
Spectrometer 3nm
API-TOF (Atmospheric Pressure Interface Composition of atmospheric ions In-situ  Junninen et al. (2010); Nucleation
Time of Flight Mass Spectrometer) Ehn et al. (2010)
"“c Carbon-14 analyses Filter ~ Szidat et al. (2006, 2007) Natural vs. anthropogenic origin of aerosol
particles
CPCB Condensation Particle Counter Bat- Measures particles below 3nm In-situ  Kulmala et al. (2007b) Nucleation
tery
Direct measurements of OH radicals DOAS long path absorption, absolute method In-situ ~ Schlosser et al., 2007 OH-dose in secondary organic aerosol
to determine OH concentrations ageing studies
CCNC Measures CCN number concentration In-situ  Roberts and Nenes, 2005 Secondary organic aerosol formation,
Cloud Condensation Nuclei Counter intensive measurement period, ground
based measurements inside Europe, long
term measurements outside Europe, air-
borne experiments, cloud characterisation
IoP
AP-CIMS Direct measurements of H,SO, and OH In-situ  Berresheim et al. (2000); Nucleation
Paasonen et al. (2010);
Petéja et al. (2009)
H-NMR Functional group analysis of water-soluble In-situ Decesari et al. (2007) Natural vs. anthropogenic origin of aerosol
oC particles
H-NMR and LC-MS Analysis methods for filter samples In-situ  Kiss et al. (2002); HULIS detection and speciation in SOA for-
Mdiller et al. (2011a) mation and ageing
HPLC/ESI-TOFMS Sensitive analysis method for gas and filter In-situ Kahnt et al. (2011) Speciation in secondary organic aerosol
samples formation
lon-DMPS Measures particles and ions In-situ  Laakso et al. (2007) Nucleation
KEMS Knudsen Effusion Mass Vapour pressure measurement In-situ Booth et al. (2009, 2010a, b, c) Thermodynamics
Spectrometry
NAIS (Neutral cluster and Air lon Neutral cluster and ion concentrations and In-situ Kulmala et al. (2007a) NU ion; Intensive nent period
Spectrometer) size distribution
Nano-CPCs Measures particles below 3nm In-situ  Sipila et al. (2008, 2009); Nucleation
Vanhanen et al. (2011)
TDMA system with laminar flow tube Evaporation rates of particles at different RH; In-situ  Riipinen et al. (2006); Thermodynamics
Vapour pressure measurement Bilde et al. (2003);
Riipinen et al. (2006);
Koponen et al. (2007)
UFO-TDMA Ultrafine particle organic fraction detection Vaattovaara et al., 2005 Nucleation
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Table F1. EUCAARI Partners. ACPD

11, 17941-18160, 2011

Jaded uoissnasiqg

Partner Country
HELSINGIN YLIOPISTO Finland
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS) France
MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V. Germany .
LEIBNIZ INSTITUT FUER TROPOSPHAERENFORSCHUNG e.V. Germany Integrating aerosol
CONSIGLIO NAZIONALE DELLE RICERCHE Italy
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH Switzerland — research from nano
NEDERLANDSE ORGANISATIE VOOR TOEGEPAST NATUURWETENSCHAPPELIJK ONDERZOEK — TNO Netherlands
KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT (KNMI) Netherlands to g|°ba| scales
UNIVERSITY OF LEEDS United Kingdom &)
LUNDS UNIVERSITET Sweden Eg
PANNON EGYETEM Hungary
ILMATIETEEN LAITOS Finland % M. Kulmala et al.
European Community represented by the European Commission — Directorate General JRC EU @,
MET OFFICE United Kingdom o
NORSK INSTITUTT FOR LUFTFORSKNING Norway =
METEOROLOGISK INSTITUTT Norway U
NATIONAL UNIVERSITY OF IRELAND, GALWAY Ireland %
PAUL SCHERRER INSTITUT Switzerland @
UNIVERSITETET | OSLO Norway =
FOUNDATION FOR RESEARCH AND TECHNOLOGY HELLAS Greece
USTAV CHEMICKYCH PROCESU — AKADEMIE VED CESKE REPUBLIKY Czech Republic R
CENTRE NATIONAL DE RECHERCHES METEOROLOGIQUES METEO FRANCE France
FORSCHUNGSZENTRUM JUELICH GMBH Germany
NORTH-WEST UNIVERSITY South Africa @)
THE ENERGY AND RESOURCES INSTITUTE India »
KOBENHAVNS UNIVERSITET Denmark 8
UNIVERSITY OF EAST ANGLIA United Kingdom 7]
UNIVERSITY OF EASTERN FINLAND Finland (723
THE UNIVERSITY OF MANCHESTER United Kingdom [®)
ASSOCIACAO DOS PESQUISADORES DO EXPERIMENTO DE GRANDE ESCALA DA BIOSFERA-ATMOSFERA NA AMAZONIA — APLBA  Brazil S
AKTSIASELTS AIREL Estonia e}
UNIVERSITY OF BIRMINGHAM United Kingdom )
DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V. Germany 8
UNIVERSITY OF CRETE Greece =
THE HEBREW UNIVERSITY OF JERUSALEM Israel
INTERNATIONAL INSTITUTE FOR APPLIED SYSTEM ANALYSIS — IIASA Austria .
STOCKHOLMS UNIVERSITET Sweden
UNIWERSYTET WARSZAWSKI Poland
UNIVERSIDADE DE AVEIRO Portugal O
TARTU UELIKOOL Estonia n
JOHANNES GUTENBERG UNIVERSITAET MAINZ Germany Q
PEKING UNIVERSITY China %
CHINESE ACADEMY OF METEOROLOGICAL SCIENCES China »
PANEPISTIMIO AIGAIOU Greece o
COMMISSARIAT A LENERGIE ATOMIQUE France S
FORSKNINGSCENTER RISOE Denmark o
DEUTSCHER WETTERDIENST Germany Q
o
(0}
-
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Fig. 1. The “EUCAARI arrow” or research chain connecting molecular scale processes with
the global scale through integrated measurements, modeling and theory (Kulmala et al., 2009).
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Fig. 2. Emission of particle numbers from 10—102 nm in Europe for the year 2005 (Denier van

der Gon et al., 2009).
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Fig. 3. Stations and station codes of EUSAAR stations used in EUCAARI.
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Fig. 5. Seasonal behavior of the number size distribution in the Brazilian EUCAARI site. The
black curve represents the mean of all seasons. The upper and lower curves are the averages

of the dry and wet season, respectively.
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mFFC

Fig. 6. Source apportionment for TC for Hyytiala, SPC and Melpitz, based on the different
methods used (**C, NMR, AMS).
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Fig. 7. Average H-NMR spectra from various EUCAARI campaigns compared to the corre-
sponding AMS fingerprints for OOA (Ng et al., 2010). The horizontal axis in the H-NMR spectra
reports the chemical shift scale (in ppm). Functional groups are identified based on chemical
shift intervals: unfunctionalized alkyls (0.7-1.8 ppm), alkyl groups more (2.5-3.0 ppm) or less
(1.8-2.5ppm) functionalized with carbonyls/carboxyls, hydroxyl (3.3—4.2 ppm) and anomeric

(56 ppm) groups, and finally aromatics (6—9 ppm).
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Fig. 8. Vertical distribution of aerosol particles >10nm (left panel) and >250 nm (right panel)
over Europe during May 2010 from 43 individual vertical profiling missions with the DLR Falcon
aircraft, measured by condensation and optical particle counters. In-cloud data are excluded.
Number concentration refers to standard conditions (STP) 273K and 1013 hPa.
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Fig. 10. Statistics of cloud droplet spectrum plotted as a function of altitude for two research
flights (RF51 — upper row, and RF52 — lower row) on May 15 above the North Sea in a Sc
layer. A cumulative distribution of cloud droplet number concentration, liquid water content and
effective radius on each level is represented by a set of 7 percentiles (1/8, 2/8, 3/8, 4/8, 5/8,
6/8 and 7/8) using vertical bars. The analysis carried out separately for regions with a positive
(w>0) and negative (w<0) vertical velocity shows median valuse marked by a green (w<0) and

red (w>0) crosses.
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Fig. 12. Ground level total particle (above 3nm in diameter) average concentrations of (a):
all particles (sum of panels b, ¢ and d); (b): primary particles; (¢): nucleated particles en-
trained from upper troposphere; (d): particles nucleated in the boundary layer, as predicted
with GLOMAP (Merikanto et al., 2009).
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Fig. 13. The 1850-2000 change in cloud albedo with and without boundary layer particle
formation at 300—1000 m above ground level, as predicted with GLOMAP. Results are shown
for an initial albedo R, =0.35 assuming cloud updraft velocity w = 0.4ms™" (Merikanto et al.,
2010).
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Fig. 14. Annual zonal average concentrations (cm'3 STP (1013.25 hPa, 273.15K)) of (a) nucle-
ation mode aerosol number; (b) sum of Aitken mode number concentration: centre ones exper-
iment A1 (using activation nucleation in addition to the standard binary nucleation) as predicted
by the GCM ECHAM5-HAM; and right panels show the ratio of the yearly averages for exper-
iments B and A1. Notice the different color scales between figures (published in Makkonen et

al., 2009).
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Fig. 15. The average number concentrations (cm‘s) at the ground level above (A) 3nm, (B)
50nm, and (C) 100nm as predicted by the regional CTM PMCAMXx-UF for 1-29 May 2008

simulation (Fountoukis et al., 2011a).
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Fig. 16. Comparison of measured and modeled (PMCAMXx-UF, left; GLOMAP, right) number
concentrations of particles larger than 50 nm during May 2008 in a selection of EUCAARI field
stations (see Fig. 3 for explanations of the letter codes for the stations). The model runs have
been conducted using the nucleation parameterisations and primary aerosol emission invento-
ries developed in EUCAARI.

18152

Jadeq uoissnosiq | Jadeq uoissnosiq | J4edeq uoissnosiq | Jaded uoissnosi(

ACPD
11, 17941-18160, 2011

Integrating aerosol
research from nano
to global scales

M. Kulmala et al.



http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

3
8

XCabauw
©Finokalia
4AMace Head
OMelpitz

S

Predicted PM, Sulfate (ug m?)

bod

/”/O .
S
X > 5
) 8’
A
A b

Predicted PM, OA (pg m?)

3

X Cabauw

OFinokalia a1
Mace Head 2
OMelpitz //’
g A
.28
X
= f/ A
P o~

Fig. 17. Comparison of predicted versus observed PM, sulfate and organic aerosol concen-

tration (ug m~3) from 4 measurement stations during the EUCAARI May 2008 campaign. Each
point corresponds to a 24-h average value. Also shown the 1:1, 2:1 and 1:2 lines. Observed

1 10
Measured PM, sulfate (pg m)

data represent AMS measurements.

100

01

18153

Measured PM, OA (g m?)

Jadeq uoissnosiq | Jadeq uoissnosiq | J4edeq uoissnosiq | Jaded uoissnosi(

ACPD
11, 17941-18160, 2011

Integrating aerosol
research from nano
to global scales

M. Kulmala et al.

: III III


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

o

o

PM, OA (pg m?) (@)

&

Altitude (km)

N

2, - —predicted
5 ~-=-measured

®o

& L)

Altitude (km)

N

PM, Sulfate (ug m?3) (b)

—predicleri |
== measured

Altitude (km)
-

N

PM; Ammonium (ug m3) (¢)

o
<
N
.Y
T

0 o

—predicted
--measured

+

)

Altitude (km)
»

~N

0

PM, Nitrate (ug m) (d)

: - -
<,
— predicted
--measured
) 2 a4 6 8 1

Fig. 18. Comparison of predicted (PMCAMX) vs. observed (AMS) vertical profiles of aerosol
chemical composition averaged over the entire EUCAARI-LONGREX campaign for PM, (a)
organics, (b) sulfate, (¢) ammonium and (d) nitrate. The horizontal bars indicate one standard

deviation for each 500 m altitude bin mean value.
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Sulfate

Fig. 19. Ground-level concentration predictions averaged over the entire simulation period (1-
29 May 2008) for PM, 5 total organic aerosol and sulfate (in pg m'3). Different scales are used.
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Fig. 20. Isoprene emissions predicted under present-day conditions (left column) and future
conditions (right column) with an empirical model that does not have CO, inhibition (upper row)
and a mechanistic model that does have CO, inhibition (lower row).

18156

Jaded uoissnasiq Jadeq uoissnosiq | Jadedq uoissnosiq | Jaded uoissnoasiqg

ACPD
11, 17941-18160, 2011

Integrating aerosol
research from nano
to global scales

M. Kulmala et al.

O


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/17941/2011/acpd-11-17941-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

Fig. 21. The upper and lower limit and the best estimate for radiative forcing based on IPCC
results and our own estimate denoted by 2010 for direct effect (left) and for 1st indirect effect

(right).
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and the MFR on Air Quality regulation, global assessment by substance (UNEP, 2011).
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