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16CNRS, LA (Laboratoire d’Aérologie), UMR 5560, Toulouse, France
17King’s College London, London, UK

Received: 8 October 2012 – Accepted: 22 November 2012 – Published: 5 December 2012

Correspondence to: A. Inness (a.inness@ecmwf.int)

Published by Copernicus Publications on behalf of the European Geosciences Union.

31248

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/31247/2012/acpd-12-31247-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/31247/2012/acpd-12-31247-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 31247–31347, 2012

The MACC
reanalysis

A. Inness et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

An eight-year long reanalysis of atmospheric composition data covering the period
2003–2010 was constructed as part of the FP7 funded Monitoring Atmospheric Com-
position and Climate project by assimilating satellite data into a global model and
data assimilation system. This reanalysis provides fields of chemically reactive gases,5

namely carbon monoxide, ozone, nitrogen oxides, and formaldehyde, as well as
aerosols and greenhouse gases globally at a resolution of about 80 km for both the
troposphere and the stratosphere. This paper describes the assimilation system for
the reactive gases and presents validation results for the reactive gases analysis fields
to document the dataset and to give a first indication of its quality.10

Tropospheric CO values from the MACC reanalysis are on average 10–20 % lower
than routine observations from commercial aircrafts over airports through most of the
troposphere, and have larger negative biases in the boundary layer at urban sites af-
fected by air pollution, possibly due to an underestimation of CO or precursor emis-
sions.15

Stratospheric ozone fields from the MACC reanalysis agree with ozone sondes and
ACE-FTS data to within ±10 % in most situations. In the troposphere the reanalysis
shows biases of −5 % to +10 % with respect to ozone sondes and aircraft data in the
extratropics, but has larger negative biases in the tropics. Area averaged total column
ozone agrees with ozone fields from a multi sensor reanalysis data set to within a few20

percent.
NO2 fields from the reanalysis show the right seasonality over polluted urban areas

of the NH and over tropical biomass burning areas, but underestimate wintertime NO2
maxima over anthropogenic pollution regions and overestimate NO2 in Northern and
Southern Africa during the tropical biomass burning seasons.25

Tropospheric HCHO is well simulated in the MACC reanalysis even though no satel-
lite data are assimilated. It shows good agreement with independent SCIAMACHY re-
trievals over regions dominated by biogenic emissions with some anthropogenic input,
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such as the Eastern US and China, and also over African regions influenced by bio-
genic sources and biomass burning.

1 Introduction

MACC (Monitoring Atmospheric Composition and Climate) is a research project with
the aim of establishing the core global and regional atmospheric environmental ser-5

vices for the European GMES (Global Monitoring for Environment and Security) initia-
tive. The project was funded from 1 June 2009 to 31 December 2011 under the Sev-
enth Framework Programme of the European Union. MACC built on the predecessor
projects Global and regional Earth-system Monitoring using Satellite and in-situ data
(GEMS; Hollingsworth et al., 2008) and PROtocol MOniToring for the GMES Service El-10

ement (PROMOTE; http://www.gse-promote.org/). The project combined state-of-the-
art atmospheric modelling with Earth observation data to provide information services
covering European air quality, global atmospheric composition, climate, and UV and so-
lar energy. The global model and data assimilation system used in MACC was based
on the European Centre for Medium-Range Weather Forecasts’ (ECMWF) Integrated15

Forecast System (IFS). More information and a history of changes introduced in the IFS
since 1985 is available from http://www.ecmwf.int/products/data/operational system/
index.html. In GEMS, IFS had been extended to include chemically reactive gases
(Flemming et al., 2009; Inness et al., 2009), aerosols (Morcrette et al., 2009; Benedetti
et al., 2009) and greenhouse gases (Engelen et al., 2009), so that ECMWF’s four-20

dimensional variational data assimilation (4-D-VAR) system could be used to assimilate
satellite observations of atmospheric composition at global scale. Chemical transport
models (CTMs) were coupled to the IFS using the Ocean Atmosphere Sea Ice Soil cou-
pling software (OASIS-4; Valcke and Redler, 2006) to provide initial fields and chemical
production and loss rates for the reactive gases (Flemming et al., 2009).25

MACC generated data records of atmospheric composition for recent years, data for
monitoring present conditions, and forecasts of the distribution of key constituents for
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a few days ahead. As part of MACC an eight-year long reanalysis over the period 2003–
2010 of atmospheric composition data was constructed. The MACC reanalysis built on
the experience gained by producing a reanalysis of atmospheric composition as part
of the GEMS project. MACC used a newer model than the one used in GEMS, and
benefited from the assimilation of more and reprocessed satellite data and from having5

a higher horizontal resolution (80 km instead of 125 km as in GEMS). The period 2003–
2010 was chosen based on consideration of the available satellite data of atmospheric
composition. Reactive gases were calculated with a system configuration where the
CTM Model for OZone And Related chemical Tracers (MOZART-3; Kinnison et al.,
2007; Stein et al., 2009) was coupled to the IFS (Stein et al., 2012).10

Assimilation of satellite data on atmospheric composition with focus on strato-
spheric ozone has been carried out for over a decade (Hólm et al., 1999; Khattatov
et al., 2000; Dethof and Hólm, 2004; Geer et al., 2006; Lahoz et al., 2007; Arel-
lano et al., 2007; Dragani, 2010, 2011), and global ozone forecasts are now pro-
duced routinely by several meteorological centres. ECMWF, for example, produces15

daily ozone analyses and forecasts, the Koninklijk Nederlands Meteorologisch Insti-
tuut (KNMI) uses the TM3-DAM system to produce operational ozone forecasts and
analyses (Eskes et al., 2002), and the National Centers for Environmental Predic-
tion (NCEP) assimilate several ozone products into their operational Global Forecast
System (http://www.cpc.ncep.noaa.gov/products/stratosphere/strat a f/). The Belgian20

Institute for Space Aeronomy has the Belgian Assimilation System for Chemical Ob-
servations (BASCOE, Errera et al., 2008), while the German Aerospace Centre ap-
plies the Synoptic Analyses of chemical Constituents by Advanced Data assimilation
(SACADA) model (Elbern et al., 2010). Both 4D-Var systems are dedicated to the as-
similation of stratospheric chemical observations making use of explicit chemistry. Data25

assimilation is now also increasingly being used for other chemical trace gases in both
global and regional model systems (see overview articles by Sandu and Chai, 2011;
Zhang et al., 2011; Baklanov et al., 2008), and data assimilation code has been imple-
mented in several chemical transport models (e.g. GEOS-Chem, Henze et al., 2007;
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Parrington et al., 2008). Assimilation of tropospheric constituents, however, is still in its
infancy.

While several centres have produced meteorological reanalyses, for example NCEP
(Kalnay et al., 1996), ECMWF (Gibson et al., 1997; Uppala et al., 2005; Dee et al.,
2011), the Japan Meteorological Agency (JMA; Onogi et al., 2007) and the Global5

Modeling and Assimilation Office (Schubert et al., 1993) there has been less activity
with respect to reanalyses of atmospheric composition. ECMWF included the assimi-
lation of ozone data in several of its reanalysis projects, and reanalyzed ozone fields
are available from ERA-40 (Dethof and Hólm, 2004) and ERA-Interim (Dragani, 2010,
2011). At KNMI a 30-yr long ozone dataset was produced from a multi sensor reanaly-10

sis (Van der A et al., 2010).
MACC was in a position to combine a wealth of atmospheric composition data with

a numerical model and data assimilation system to produce a reanalysis of atmo-
spheric composition. This paper describes the setup of the reactive gases data assim-
ilation system used in the MACC reanalysis of atmospheric composition. The reactive15

gases that were included as IFS model variables in the MACC reanalysis were ozone
(O3), carbon monoxide (CO), nitrogen oxides (NOx = NO+NO2), and formaldehyde
(HCHO). These four gases were chosen because they play a key role in the chemistry
of the atmosphere and have been measured by space-borne instruments with sufficient
density and continuity to deliver strongly constrained analyses.20

Carbon monoxide has natural and anthropogenic sources (Seinfeld and Pandis,
2006; Kanakidou and Crutzen, 1999). It is emitted from the soil, plants and the ocean,
but its main sources are incomplete fossil fuel and biomass burning, which leads to
enhanced surface concentrations. Another important source of CO is the oxidation of
anthropogenic and biogenic volatile organic compounds (VOCs). In areas with large25

biogenic emissions (e.g. tropical rain forests), oxidation of biogenic VOCs contributes
strongly to the production of CO (Griffin et al., 2007). Hudman et al. (2008) found that
over the Eastern US during summer the biogenic sources of CO were higher than
the anthropogenic ones due to decreasing anthropogenic emissions. The highest CO
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concentrations are found over the industrial regions of Europe, Asia and North Amer-
ica (see Fig. 3 below). Surface concentrations are higher during the winter than during
the summer months because of the shorter lifetime in the summer due to higher OH
concentrations and more intense mixing processes. Tropical biomass burning is most
intense during the dry season (December–April in the Northern Hemisphere (NH) trop-5

ics, July–October in the Southern Hemisphere (SH) tropics). CO has a lifetime of sev-
eral weeks and can serve as a tracer for regional and inter-continental transport of
polluted air. The main loss process is the reaction with the hydroxyl radical (OH) radi-
cal.

Ozone is an important species for chemistry of the troposphere. Tropospheric ozone10

is a regional scale pollutant and harmful at high concentrations near the surface. Pho-
tolysis of ozone, followed by reaction with water vapour, provides the primary source
of the hydroxyl radical. Ozone is also a significant greenhouse gas, particularly in the
upper troposphere (Hansen et al., 1997). The majority of tropospheric ozone formation
occurs when NOx, CO, and VOCs react in the atmosphere in the presence of sunlight.15

In urban areas in the NH high ozone levels usually occur during spring and summer.
About 90 % of the total ozone amount resides in the stratosphere, a result of oxygen
photolysis (Chapman, 1930) and other catalytic cycles (e.g. review in Solomon, 1999).
This ozone layer absorbs a large part of the sun’s harmful UV radiation. Anthropogenic
chlorofluorocarbons led to a global decrease of the ozone total column, but thanks to20

the Montreal Protocol the ozone layer is expected to recover in the next decades (New-
man et al., 2009; WMO, 2011; Zerefos et al., 2012). Over Antarctica ozone destruction
during Austral spring still leads to strong and rapid depletion of the ozone layer (“ozone
hole”). Stratospheric ozone destruction happens also on a smaller scale over the Arctic
in boreal spring (Manney et al., 2011).25

Nitrogen oxides play a key role in tropospheric chemistry and are the main ingredi-
ent in the formation of ground level ozone. Their sources are anthropogenic emissions,
biomass burning, soil emissions and, at altitude, lightning and aviation. NOx has a life-
time of a few days in the free troposphere and less in the boundary layer, so that

31253

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/31247/2012/acpd-12-31247-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/31247/2012/acpd-12-31247-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 31247–31347, 2012

The MACC
reanalysis

A. Inness et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

concentrations are larger over land than over the cleaner oceans. The largest con-
centrations are found over industrial and urban regions of the Eastern US, California,
Europe, China and Japan (see Fig. 23 below). Loss processes for NOx are the forma-
tion reactions of with OH to HNO3, with O3 to NO3 at night and formation of peroxyacyl
nitrates as well as dry deposition.5

Formaldehyde is one of the most abundant hydrocarbons in the atmosphere. Even
though its primary emission sources are industrial activities, fossil fuel burning, and
biomass burning, the largest contribution to the HCHO budget is its secondary source
from the oxidation of VOCs, in particular isoprene (Atkinson, 1994; Palmer et al., 2003,
2006; Abbot et al., 2003; Millet et al., 2008). The main source of HCHO in the back-10

ground troposphere is the oxidation of methane, which accounts for more than half
of the global HCHO production (Stavrakou et al., 2009). In the continental boundary
layer the oxidation of non-methane VOCs dominates. The main sinks of HCHO are
photolysis and oxidation by OH. HCHO has a short lifetime of a few hours, making it
a good indicator of hydrocarbon emission areas. While the data quality of the individual15

satellite retrievals of HCHO was not sufficient to allow active assimilation in the MACC
reanalysis, passive monitoring was performed by the assimilation system.

In this paper we describe results for the fields of CO, O3, NOx and HCHO. The pa-
per is structured in the following way: Sect. 2 describes the coupled IFS GRG system
and the data assimilation setup for the reactive gases. This includes information about20

the data assimilation system, aspects of the coupling between the IFS and the CTM,
and information about satellite and emission data that were used in the reanalysis.
Section 3 shows results from the reanalysis and comparisons with independent obser-
vations, and Sect. 4 presents the conclusions.
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2 Description of the MACC chemical data assimilation system

2.1 Model system

The MACC data assimilation system for chemically reactive gases was constructed
by extending ECMWF’s integrated forecast system (IFS) to include fields for O3, CO,
NOx, and HCHO. Source and sink terms for these gases are supplied by a CTM that5

is coupled to the IFS using the OASIS4 coupler (Valcke and Redler, 2006). The CTM
holds a detailed representation of the atmospheric chemical system together with its
sources and sinks. For the MACC reanalysis the MOZART-3 CTM (115 species) which
features a comprehensive description of stratospheric and tropospheric chemical pro-
cesses was coupled to the IFS. A description of the MOZART-3 CTM as implemented10

in the MACC system can be found in Stein (2009) and Stein et al. (2012). In the cou-
pled setup the IFS and the CTM run in parallel, exchanging fields through the OASIS4
coupler every hour (Flemming et al., 2009). This means the IFS supplies the meteo-
rological data and updated mixing ratios for the MACC global reactive gases (GRG)
species O3, CO, NOx, and HCHO to the CTM, and the CTM provides IFS with ini-15

tial conditions for the four GRG species and with chemical tendency fields every hour.
These are tendencies due to chemistry, wet deposition and atmospheric emissions,
and tendencies due to surface fluxes (emission, dry deposition). The tendencies for
the individual species are combined before the exchange and one total tendency per
species is given from the CTM to the IFS.20

The global fields in the IFS, as used in the MACC reanalysis, are represented ei-
ther by a spectral method, based on a spherical harmonic expansion, truncated at
a wave number of T255 or in grid point space that is represented in a reduced Gaus-
sian grid (Hortal and Simmons, 1991) of about 80 km horizontal resolution. The vertical
coordinate system is given by 60 hybrid sigma-pressure levels, with a model top at25

0.1 hPa. In order to avoid difficulties in the vertical interpolation by the OASIS4 coupler,
the CTMs use the same 60 vertical levels. The coupler only has to perform horizon-
tal interpolations for which the bi-linear mode is applied. The MOZART-3 resolution is
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1.125◦ ×1.125◦, lower than the IFS resolution, because of the high computational cost
of the CTM that would make a multi-year run unfeasible at higher resolution. The IFS
is run on a higher horizontal resolution than the CTM as this improves the quality of the
meteorological forecasts and because a lower resolution would limit the acceptance of
high resolution observations within the data assimilation. More details of the CTMs and5

the coupling setup are given in Flemming et al. (2009). A modification of MOZART-3 as
described in Kinnison et al. (2007) was used in the MACC reanalysis from 2003–2008
(Version 3.1). From 1 January 2009 onwards MOZART Version 3.5 was used in the
MACC reanalysis, and this implementation is described in Stein et al. (2012). The up-
dated version has a better representation of ozone depletion inside the Antarctic vortex10

(Flemming et al., 2011b).
Ozone had already been included in the IFS as an additional model variable, and

ozone data have been assimilated at ECMWF since 1999 (Hólm et al., 1999; Dethof
and Hólm, 2004). However, the ECMWF approach differs from the MACC approach
because it uses a built-in chemistry routine with a parameterization of photochemical15

sources and sinks based on Cariolle and Teyssèdre (2007) instead of a coupled CTM
to provide the chemical tendencies. Moreover, this relatively simple chemical scheme
is only suited for the description of stratospheric ozone, while the MOZART-3 CTM
represents the whole tropospheric and stratospheric chemistry.

2.2 Data assimilation20

ECMWF’s IFS has used an incremental formulation of 4D-Var since 1997. In 4D-Var
a cost function is minimized to combine the model background and the observations
to obtain the best possible forecast through the length of the assimilation window by
adjusting the initial conditions. The GRG species are integrated into the ECMWF vari-
ational analysis as additional model variables. They are minimized together with the25

other ECMWF fields, which means they can, in principle, influence the analysis of wind
and other meteorological variables in 4D-Var. However, given the uncertainty of the
GRG observations and the lack of observational constraints of variables such as wind
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or temperature in the stratosphere and mesosphere, a possible influence of the GRG
observations on the meteorological fields was suppressed in the reanalysis. Never-
theless, this might be a worthwhile interaction to study in the future (Semane et al.,
2009).

2.2.1 Observation operators for reactive gases5

Observation operators are needed to calculate the model equivalent of the assimilated
observations, i.e. of the satellite retrievals of atmospheric composition. The observa-
tions used in the IFS are total or partial column data, i.e. integrated layers bounded by
a top and a bottom pressure. The model’s background column value is calculated as
a simple vertical integral between the top and the bottom pressure given by the partial10

or total column, at the time and location of the observation.
It is also possible to use averaging kernel information in the observation operator.

This removes the impact of the retrieval a-priori profile in the assimilation (Eskes and
Boersma, 2003). Equation (1) shows how the retrieved quantity x̂r can be described
as a linear combination of the a-priori profile xa and the true profile xt by using the15

averaging kernel matrix A (Deeter et al., 2009). The averaging kernels indicate the
sensitivity of the retrieved profile to the true profile, with the remainder of the information
coming from the a-priori profile (Rodgers, 2000; Emmons et al., 2004, 2007). Where the
averaging kernel matrix elements are small, the retrieved profile shows little sensitivity
to changes in the true profile and the retrieved quantity is largely determined by the20

a-priori.

x̂r ≈ xa +A(xt −xa) (1)

Equation (1) can be used in the observation operator to transform the model field to
have the same vertical resolution and a-priori dependence as the satellite retrievals.
Thus, the difference between the retrieved quantity x̂r and its model equivalent x̂m can25

be given as

x̂r − x̂m = A(xt −xm) (2)
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This means that the model field and the retrieved quantity can be compared in a way
that is not affected by the a-priori profile dependence or by different vertical resolutions.
Averaging kernels were used in the MACC reanalysis if they were provided by the data
producers (more details will be given in Sect. 2.3).

A special observation operator is used for the assimilation of NO2 data. The fast5

diurnal NO2–NO interconversion caused by solar radiation can not be handled by the
coupled model with an exchange frequency for the chemical tendencies of one hour,
and the absence of a full chemistry module in the IFS prevents direct assimilation
of short-lived chemical species. Therefore, NOx is used as the IFS model variable in-
stead of NO2. Its longer chemical lifetime allows both a better simulation by the coupled10

forward model and a correct assimilation in the adjoint model. The use of NOx also re-
duces spatial variability everywhere which is of advantage for the data assimilation.
Since the satellite observations assimilated in the MACC system are NO2 data, a di-
agnostic NO2/NOx interconversion operator was developed, including its tangent linear
and adjoint. This operator is based on a simple photochemical equilibrium between the15

NO2 photolysis rate (JNO2) and the ozone mixing ratio:

[NO2]

[NOx]
≈

k[O3eff]

JNO2 +k[O3eff]
(3)

Here k is the rate coefficient of the reaction O3 +NO → NO2 +O2 and depends on
temperature, while JNO2 depends on surface albedo, solar zenith angle, overhead
ozone column, cloud optical properties and temperature. A parameterized approach20

for the calculation of JNO2 was used based on the band scheme by Landgraf and
Crutzen (1998) in combination with actinic fluxes parameterized following Krol and Van
Weele (1997). In the stratosphere O3eff is equal to O3, but in the troposphere it is equal
to

[O3eff]=[O3]+ [XO2]cosα (4)25

to account for the influence of per-oxy-radicals (XO2 = HO2 +RO2). In an ad-hoc ap-
proach a per-oxy-radical concentration of 80 ppt in the troposphere was assumed
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(Kleinman et al., 1995), which was scaled by the cosine of the solar zenith angle α
to account for the diurnal cycle of the per-oxy-radical concentration. This improved the
match of the NO2/NOx ratios from the operator and the MOZART-3 fields (Flemming
et al., 2011a).

2.2.2 Observation errors for the reactive gases5

The observation error and background error covariance matrices determine the relative
weight given to the observation and the background in the analysis. For the reactive
gases, observation errors given by the data providers were used. If these values were
below 5 %, a minimum value of 5 % was taken. The observation error was assumed to
include any observation operator error, and a representativeness error that could arise10

because of differences in resolution of observation and the model, and that accounts
for scales unresolved by the model. The satellite data were thinned in the data pre-
processing to ensure a minimum distance between two observations from the same
platform. This was done to reduce the data volume and helped to avoid redundant
observations that did not contain any independent information. It also avoided the in-15

troduction of spatial observation error correlation that was not accounted for in the data
assimilation algorithm. In the MACC reanalysis, the reactive gases satellite retrievals
were thinned to a horizontal resolution of 1◦ ×1◦ by randomly selecting an observation
in the grid box.

Variational quality control (Andersson and Järvinen, 1999) and background quality20

checks were applied to the reactive gases observations. In the background quality
check, the square of the normalized background departure was considered as suspect
when it exceeded its expected variance by more than a predefined multiple. In this case
the observation was not used in the analysis.
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2.2.3 Background errors for the reactive gases

In the ECMWF data assimilation system the background error covariance matrix is
given in a wavelet formulation (Fisher, 2004, 2006). This allows both spatial and spec-
tral variations of the horizontal and vertical background error covariances. The back-
ground error standard deviations determine the relative weight of the background in5

the analysis, while the correlations determine how the analysis increments are spread
in the horizontal and in the vertical. This is particularly important for vertically inte-
grated observations, such as total column trace gas retrievals. In this case the vertical
structure of the increments is determined by the vertical correlations of the background
errors since the observations do not give information about this distribution.10

The background error correlations used in the operational ECMWF data assimila-
tion system were derived from an ensemble of forecast differences, using a method
proposed by Fisher and Andersson (2001). This ensemble consisted of ten members,
all run for one month. For the MACC ozone field the same background error statis-
tics used in ECMWF’s operational ozone assimilation were used. A different method15

had to be chosen to determine background error statistics for the other GRG fields
because they had not been included in the ensemble of forecast runs. The National
Meteorological Center (NMC) method (Parrish and Derber, 1992) was used to derive
initial background error statistics for the reactive gases. For this, 150 days of 2-day
forecasts were run with the coupled system initialized from fields produced by the free20

running MOZART-3 CTM, and the differences between 24-h and 48-h forecasts valid
at the same time were used as a proxy for the background errors. These differences
were then used to construct a wavelet background error covariance matrix according
to the method described by Fisher (2004, 2006). This background error covariance
matrix contains the statistics for the reactive gases as well as the original statistics for25

the other meteorological fields. Background errors determined with the NMC method
usually have longer horizontal and vertical correlations than those calculated with the
analysis ensemble method (Fisher and Andersson, 2001).

31260

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/31247/2012/acpd-12-31247-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/31247/2012/acpd-12-31247-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 31247–31347, 2012

The MACC
reanalysis

A. Inness et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

For the assimilation of NOx data it was found that the analysis based on mixing ratio
was prone to large extrapolation errors, due to the large range of NOx concentrations
which make it difficult to model the background error covariances. Therefore a logarith-
mic control variable was developed for NOx.

The GRG background errors are univariate in order to minimize the feedback effects5

of the GRG fields on the other variables. Examples of the GRG background error stan-
dard deviation profiles and correlations used in the MACC reanalysis can be found in
Inness et al. (2009).

2.3 Satellite data

2.3.1 Satellite data used in the reanalysis10

Table 1 lists the data sets that are actively assimilated in the MACC reanalysis to con-
strain the reactive gases. These contain profile (PROF), total column (TC), partial col-
umn (PC) and tropospheric column (TRC) data. The usage criteria for the datasets
are also given in the table. In addition to the listed criteria, data were not used if qual-
ity flags given by the data producers mark the data as bad quality. HCHO data were15

not assimilated in the MACC reanalysis because the data quality of individual satel-
lite retrievals was not sufficient, but analysis fields are available. Monthly mean HCHO
observations generally have a total error of 20–40 %, but individual observations can
have large errors (greater than 50 % for individual pixels of the SCanning Imaging Ab-
sorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) or Global Ozone20

Monitoring Experiment (GOME) instruments; De Smedt et al., 2008), which did not
favour assimilating individual observations. Hence, the HCHO reanalysis fields were
entirely determined by the MOZART-3 chemistry, the MACCity and biomass burning
emissions (see Sect. 2.4 below), and the atmospheric transport.

Averaging kernels were used in the observation operators if they were provided by25

the data producers. This was the case for CO data from the Measurements of Pollution
in the Troposphere (MOPITT) instrument and from the Infrared Atmospheric Sounding
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Interferometer (IASI) and NO2 data from SCIAMACHY. Figure 1 shows averaging ker-
nels from MOPITT CO and IASI CO day time total column retrievals averaged over
a 5◦ ×25◦ box over Europe in July 2009, and global mean averaging kernels for SCIA-
MACHY NO2 averaged over the period June 2009 to May 2010. MOPITT and IASI
have the main sensitivity to CO in the mid troposphere, i.e. between 300–700 hPa.5

SCIAMACHY has broad averaging kernels for NO2, indicating some sensitivity to all
tropospheric levels. The global mean profile peaks at 300 hPa. Even though the main
sensitivity is to NO2 above 700 hPa, as the vertical profile of NO2 in polluted regions
is dominated by the lowest layers, the retrieved column (which is the product of NO2
profile times averaging kernel) is mainly determined by NO2 in the boundary layer, at10

least for cloud free situations. The sensitivity at higher altitudes is larger, but as result
of the low NO2 concentrations usually found there, this has only small effect on the
NO2 columns retrieved from satellite data.

2.3.2 Bias correction and quality control for the reactive gases satellite data

To improve the assimilation of atmospheric composition data, the variational bias cor-15

rection scheme (VarBC) developed at ECMWF for radiance data (Dee, 2004; McNally
et al., 2006; Auligné et al., 2007; Dee and Uppala, 2009) was extended to data of
atmospheric composition. Without applying a bias correction scheme to the data, the
assimilation would either have to be limited to one retrieval product for a reactive gas, or
data would be used that are inconsistent with each other or with the reactive gases fore-20

cast. Biases in the variational scheme are estimated during the analysis by including
bias parameters in the control vector. The bias corrections are continuously adjusted
to optimize the consistency with all information used in the analysis. Extending VarBC
to atmospheric composition data has the advantage that it can be easily applied to
a variety of sensors and species.25

For the reactive gases in the MACC reanalysis a start from zero bias was used at
the beginning of the experiment. The reanalysis was started on 1 December 2002,
so that a month-long spin-up of the bias correction and the fields was possible. For
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the assimilation of ozone retrievals solar elevation and a global constant were used
as bias predictors, and data from Solar Backscatter Ultraviolet (SBUV/2) instruments
(from various NOAA platforms) and Microwave Limb Sounder (MLS) ozone profiles
from 1 January 2008 onwards were used as anchor for the bias correction, i.e. no bias
correction was applied to these data. Using anchors for the bias correction should help5

to avoid drifts in the system. The reason for choosing SBUV/2 data as anchor was that
the data were available for the whole reanalysis period, they had been reprocessed
and inter-calibrated and should hence make a good anchor for the other ozone data
sets. While experience at ECMWF had shown this to work well when total column
ozone data were assimilated, it was found in the MACC reanalysis that SBUV/2 ozone10

data (whose lowest layer is between 16 hPa and the surface) could not stop the bias
correction drifting for individual MLS layers that have a finer vertical resolution. This drift
did not affect the total ozone column much, but it became noticeable in the troposphere
and above 15 hPa after a few years (see Sect. 3.2 below). Once the cause of the
apparent ozone trend had been identified, it was decided to stop bias correcting MLS15

data, and from 1 January 2008 onwards, both MLS and SBUV/2 data were used as
anchors, i.e. assimilated without bias correction. For the assimilation of CO retrievals
a globally constant predictor was used for IASI data while MOPITT CO retrievals were
used as an anchor. The latter was used as the anchor simply because these data
were available from the beginning of the reanalysis, not because their data quality was20

assumed to be better than that of the IASI data. No bias correction was applied to NO2
data, because retrievals from only one instrument (SCIAMACHY) were assimilated.

2.4 Emissions

For the MACC reanalysis an updated dataset of anthropogenic emissions (MACCity)
was produced (Granier et al., 2011a). The emissions are injected into the surface layer25

in the CTM, which is about 10 m thick, and quickly distributed within the boundary layer
by model processes such as convection and diffusion. The anthropogenic emissions
for MACCity were developed as an extension of the historical Atmospheric Chemistry
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and Climate Model Intercomparison Project (ACCMIP) emissions dataset (Lamarque
et al., 2010) developed for the Intergovernmental Panel on Climate Change Fifth As-
sessment Report. The ACCMIP dataset provides decadal emissions up to the year
2000. The 2000–2011 MACCity emissions were obtained by using the 2005 and 2010
emissions from the future scenarios called Representative Concentration Pathways5

(RCPs; Moss et al., 2010). For the MACCity emissions, scenario RCP 8.5 was chosen,
since it includes information on regional emissions after 2000 (Van Vuuren et al., 2011;
Riahi et al., 2011): a linear interpolation was then applied to obtain the yearly MACC-
ity emissions. Ship emissions are based on Eyring et al. (2010) and a source-specific
seasonality developed for the REanalysis of the TROpospheric chemical composition10

(RETRO) project (http://retro.enes.org/) was applied to the emissions. Monthly aver-
age emissions were derived using the seasonal patterns developed within the RETRO
project.

Biomass burning emission for the MACC reanalysis for the years 2003–2008 were
generated from a preliminary version (v3.0) of the Global Fire Emissions Database15

(GFED, van der Werf et al., 2010) and Fire Radiative Power (FRP) observations by the
Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instruments (Jus-
tice et al., 2002). The Global Fire Assimilation System (GFAS) of MACC was used to
create daily gridded FRP maps, with which the monthly GFED emission were redis-
tributed amongst the days of each month (Kaiser et al., 2011). Thus the monthly bud-20

gets of GFEDv3.0 were maintained. In Central and South America, the carbon com-
bustion rate is about 8 % larger in GFEDv3.0 than in the final, published GFEDv3.1
dataset. In all other regions, it is smaller. The global average is smaller by 9 %. The
carbon combustion rate in GFEDv3.1 is in turn smaller than in GFEDv2 (van der Werf
et al., 2006) in all regions but Boreal North America, Australia and the Middle East; the25

global average is reduced by 13 %.
For the years 2009 and 2010, daily biomass burning emissions from MACC’s GFAS,

Version 1.0 (Kaiser et al., 2012), were used. These are based on MODIS FRP observa-
tions, have a horizontal resolution of 0.5×0.5 degrees and are now available from 2003
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onwards, but were not available when the reanalysis was started. The global average
carbon combustion rate is 8 % larger than in GFEDv3.1 and thus about 18 % larger
than during the first 5 yr of the reanalysis. (Due to slightly modified emission factors
and burning patterns, the carbon monoxide emissions are only about 6 % larger than
in GFEDv3.1, though.) Overall, the GFAS Version 1.0 emissions are approximately5

20 % larger than the data used prior to 2009.
Biogenic emissions in the MOZART-3 CTM came from a recent update (Barkley,

2010) of the Model of Emissions of Gases and Aerosols from Nature version 2
(MEGAN2; Guenther et al., 2006, http://acd.ucar.edu/∼guenther/MEGAN/MEGAN.htm)
and were used in MOZART-3 as monthly surface flux fields without interannual vari-10

ation. These data were for 2003 and have no interannual variability. The biogenic
sources are in particular sensitive to temperature, and there might be inconsisten-
cies between those of the MACC model and of the Goddard Earth Observing Sys-
tem used to generate the biogenic emissions. However, this effect is expected to be
small. MOZART-3 also included several other natural emissions like NOx from soils and15

oceanic emissions from various sources, including the POET inventory (Granier et al.,
2005, available from the ECCAD database, http://eccad.sedoo.fr/) and accounted for
in-situ production of NOx by lightning.

After the MACC reanalysis had been started it became apparent that using the
MACCity emission led to an underestimation of CO concentrations in the Northern20

Hemisphere compared to independent observations (Granier et al., 2011b, see also
Sect. 3.1 below). This could be due to an underestimation of surface emissions, to an
underestimation of the chemical production of CO from the oxidation of VOCs, or to
some missing reaction in the CTM. It should be noted that low CO values are found
by most of all CTMs regardless of the emission inventory used (e.g. Shindell et al.,25

2006; Kopacz et al., 2010; Fortems-Cheiney et al., 2011), and that the MACCity an-
thropogenic emissions are in the same range as the emissions provided by the few
other emission inventories available for the post-2000 period (Granier et al., 2011a).
MACCity CO emissions are much higher than the most recent inventory developed
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for 2005, i.e. EDGAR-v4. In the MACC project offline simulations with the MOZART-3
CTM were conducted to test the model sensitivity to different emission inventories. It
was found that the model results improved when increasing anthropogenic CO and
VOC emissions or when changing the wet deposition in the CTM. Further studies are
being carried out to establish exactly why the MACCity emissions and other emissions5

inventories lead to low CO values in the coupled IFS-MOZART system.

2.5 Control run

It would have been computationally too expensive to produce a control analysis ex-
periment that was identical to the MACC reanalysis, but did not actively assimilate
observations of reactive gases. Instead, a MOZART-3 stand-alone run was carried out10

that applied the same settings (model code, resolution, emissions) as MOZART in the
MACC reanalysis. The meteorological data for the stand alone run were taken from
the reanalysis, but the control run had free running chemistry. The results from this
control run can be used to detect the impact of the assimilation of GRG observations
in the MACC-reanalysis. Since the meteorological input data were derived from inter-15

polation of archived 6-hourly output from the MACC reanalysis, and not through hourly
exchange as in the reanalysis, the standalone run was not a completely clean control
run. However, these differences would be small.

3 Results

This section presents fields from the MACC reanalysis and compares them with ob-20

servations. It provides a basic first assessment of the quality of the reactive gases re-
analysis fields, and it highlights problems in the reanalysis that users should be aware
of. Shown are time series and seasonal climatologies of the MACC analysis fields, as
well as comparisons with independent observations where possible. Also shown are
some results from the control run to highlight the impact of assimilating atmospheric25
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composition data on the reanalysis fields. First, CO, O3 and NOx analysis fields are
assessed for which observations were assimilated in the MACC reanalysis (see Ta-
ble 1). Subsequently, results are presented for HCHO fields where no observations
were assimilated in the MACC reanalysis.

3.1 CO analysis5

MOPITT Version 4 CO retrievals were assimilated in the MACC reanalysis (see Table 1)
from 2003 to 2010. IASI CO retrievals were assimilated from April 2008 onwards. Both
instruments measure in the thermal infrared part of the spectrum and provide data dur-
ing day and night. In the MACC reanalysis both day and night time data were assimi-
lated. Because averaging kernels were used in the observation operators, differences10

in sensitivity to CO in the lower troposphere between day and night time observations
(Deeter et al., 2003) were accounted for in the analysis.

Figure 2 shows time series of zonal mean total column CO data from the MACC
reanalysis, the control run, MOPITT and IASI data for the period 2003–2010. The CO
field shows a pronounced seasonal cycle in both hemispheres, as well as differences15

between the hemispheres. Larger anthropogenic emissions in the NH lead to larger
CO values compared to the SH. The NH emissions peak in late winter/early spring
because of increased fossil fuel burning for heating and increased power requirements
(Edwards et al., 2004). This together with the seasonal cycle of OH which accounts
for 90 % of CO loss (Thompson, 1992) leads to maximum CO values in the NH in20

March and April. In the SH, the seasonal cycle is determined by a large contribution
from biomass burning and some contribution from the oxidation of biogenic VOCs that
lead to high CO values between the equator and 40◦ S with maximum values during
September and October, the months of peak fire activity in the SH (Torres et al., 2010;
Kaiser et al., 2012). The interannual variability is dominated by changing emissions25

from biomass burning in both hemispheres (Kaiser et al., 2012) which is largely related
to precipitation rates (Torres et al., 2010). In the SH, CO maxima are lower in 2003,
2008 and 2009 compared to other years. In October 2006 a CO maximum is visible
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just south of the equator. This is a result of the 2006 wildfires in Indonesia which led
to the highest CO emissions over Indonesia in over a decade (Fortems-Cheiney et al.,
2011; Kaiser et al., 2012). The lower values seen in the reanalysis in the NH from 2008
onwards are the result of assimilating IASI data in addition to MOPITT data.

The reanalysis agrees well with the assimilated MOPITT and IASI data. However, the5

control run with the free running MOZART-3 CTM underestimates CO concentrations. It
starts from realistic initial conditions, but drifts towards lower CO concentrations within
the first 6 months, though the seasonal cycle is well represented. The low bias of the
control points to either a problem with the MACCity emissions or a short coming in the
MOZART CTM, and is being investigated in other studies.10

Figure 3 shows the reanalysis seasonal mean CO columns for the years 2003–2010.
The figure again highlights the interhemispheric differences, with CO values generally
larger in the NH than in the SH, except in the biomass burning regions in the tropics.
This reflects the greater anthropogenic emissions in the NH (e.g. Fortems-Cheiney,
2011). The largest values are found over South-East Asia in DJF and MAM, and there15

is transport of CO rich air from South-East Asia out into the Pacific. Values in the NH
have a minimum in JJA and are still low in SON.

CO from biomass burning in the tropics shows a different seasonality. In Africa, max-
imum CO columns are seen north of the equator in DJF, when biomass burning takes
place in the Sahel region and equatorial West Africa during the local dry season. In20

MAM the fire signal over Africa is much weaker, and by JJA the affected area moves
south of the equator. In SON the signal is weaker than in JJA but extends further to
the south and east. This agrees well with studies by Torres et al. (2010) who found
that biomass burning in Central Africa normally starts in June at about 10◦ S and then
moves southwards. It generally peaks in August, but the season extends to November.25

In all seasons, there is indication of CO rich air being transported from Africa down-
wind into the Atlantic. Convective activity over Africa (and also over South America)
transports the smoke into the free troposphere from where it is then transported by the
prevailing winds (e.g. Jonquières et al., 1998; Mari et al., 2008; Real et al., 2010).
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In South America the strongest biomass burning signal is seen in SON. Deforesta-
tion fires and agricultural fires occur south of 10◦ S during August–October with peak in
September. In Indonesia and North-West Australia the strongest biomass burning sig-
nal is also seen in SON, but the climatological biomass burning signal here is weaker
than over Africa and South America. The large values over Indonesia in SON come5

from the strong fires in 2006 (see also Fig. 2).
The vertical structure of the MACC CO field in the troposphere can be seen in the

seasonal mean cross sections in Fig. 4. In the NH the highest values are found in DJF
and MAM when anthropogenic emissions are largest and the photochemical lifetime of
CO is longest. There is some indication of large scale convective transport lifting CO10

into the upper troposphere in the tropics. Deep convection is known to carry biomass
burning products into the upper troposphere (Pickering et al., 1996; Thompson et al.,
1996; Kar et al., 2004). In the SH, high CO from biomass burning can be seen between
0–20◦ in JJA and SON, and again there is evidence of large scale transport lifting CO
into the free troposphere.15

To validate CO from the reanalysis, fields are compared with independent observa-
tions, i.e. data that were not used in the assimilation. Figure 5 shows a comparison of
CO concentrations from the reanalysis with NOAA/GMD ground-based measurements
(Novelli et al., 2010) over Mace-Head, Tenerife, Key Biscayne and South Pole stations.
The uncertainty of the NOAA/GMD CO observations is around 1–3 ppmv (Novelli et al.,20

2003). The results show that the magnitude and seasonal variability of surface CO is
generally well captured by the reanalysis over most stations and improved compared
to the control run, apart at South Pole from 2003–2007. This indicates that, despite low
sensitivity of satellite measurements near the surface, assimilation of CO data from
such products can lead to a good representation of surface CO concentrations. Assim-25

ilation of satellite measurements can therefore overcome to some extent the underes-
timation of surface CO concentrations in the Northern Hemisphere seen in most global
models (Isaksen et al., 2009; Holloway et al., 2000; Shindel et al., 2006) which could be
related to uncertainties in surface emissions as mentioned in Sect. 2.4. Interestingly,
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the reanalysis agrees better with the observations over South Pole station after April
2008, i.e. after the assimilation of IASI CO data was introduced. On the other hand,
over some stations at high northern latitudes (Alert and Barrow, not shown), the re-
analysis tends to underestimate CO during the same period. These lower values after
April 2008 can also be seen in Fig. 2. This could be related to long-range transport of5

air masses from regions where satellite retrievals are assimilated.
Next, CO from the reanalysis is compared with data from the MOZAIC (Measurement

of Ozone, Water Vapour, Carbon Monoxide and Nitrogen Oxides by Airbus in-service
Aircraft) programme (Marenco et al., 1998; Nédélec et al., 2003). This programme pro-
vides profiles of various parameters, including CO and O3 taken during aircraft ascents10

and descents at various airports. MOZAIC data were available from January 2003 until
December 2010, with limited data availability in 2010. MOZAIC CO data have an accu-
racy of ±5 ppbv, a precision of ±5 %, and a detection limit of 10 ppbv (Nédélec et al.,
2003).

Figure 6 shows the time mean vertically averaged relative CO bias between 30015

and 1000 hPa from the MACC reanalysis. The reanalysis has a negative bias in the
troposphere with the exception of a few airports. The averaged biases are usually less
than 15 %, but larger at some tropical airports. The control run has a bias that is more
than twice as large (not shown).

Figure 7 shows time mean profiles from the reanalysis (black) and the MOZAIC data20

(red) averaged over NH extratropical airports (solid lines) and tropical airports (dashed
lines). Also shown are the mean differences between the reanalysis and MOZAIC data
for both hemispheres. The highest CO concentrations are found near the surface and
values get smaller in the free troposphere. The biases between 700–300 hPa are less
than −5 % in the NH and around −10 % in the tropics, but larger in the lower tropo-25

sphere. By assimilating CO satellite data the biases are greatly reduced in the re-
analysis compared to the control run without data assimilation. This was also seen by
Elguindi et al. (2010). The assimilated satellite data have only little sensitivity to CO in
the lower troposphere (see Fig. 1). Here the influence of the emissions is important and
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accurate emissions are crucial to reproducing the high CO values seen in the MOZAIC
data. The low bias of the MACC reanalysis suggests an underestimation of CO or
precursor emissions (Elguindi et al., 2010) or a missing process in the CTM. The im-
portance of the emissions for correct CO values in the lower troposphere in the MACC
system was also found in a study of the 2010 Russian wildfires (Huijnen et al., 2012).5

Furthermore, some of the bias in the lower troposphere is likely to be a representa-
tiveness error, because the model with a horizontal resolution of T255 (corresponding
to a reduced Gaussian grid of about 80km×80km) is not able to reproduce the high
values observed by MOZAIC over polluted airports. Larger positive biases are seen in
the NH above 300 hPa.10

Figure 8 shows a time series of monthly mean CO bias profiles at Frankfurt airport.
Frankfurt is the most frequented airport in the MOZAIC database and the most reli-
able in terms of data availability. A total of 7182 MOZAIC profiles were available over
Frankfurt between January 2003 and December 2010. Concentrations are larger dur-
ing the winter months and larger concentration extend higher up in the troposphere.15

The plot confirms that CO is underestimated in the surface layer as seen in Fig. 7. This
was also found for other MOZAIC urban sites affected by air pollution such as Beijing,
Tokyo and Cairo (not shown). Whilst the bias is generally less than 10 % in the free
troposphere (850 hPa to the upper troposphere), large positive biases are found in the
upper troposphere and lower stratosphere, with the largest values during winter and20

spring, possibly due to too much upward transport of CO.

3.2 O3 analysis

The ozone retrievals assimilated in the MACC reanalysis are listed in Table 1. MIPAS
and MLS measure in the mid-infrared and microwave part of the spectrum, respec-
tively, and are the only ozone data used in the MACC reanalysis that are available in-25

dependent of illumination condition, including during the polar night. Together with the
GOME O3 profile retrievals they are also the only assimilated ozone profile data with
higher vertical resolution, which had been shown in the past to be crucial for obtaining
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a realistic vertical ozone distribution in MACC and ECMWF analyses (Flemming et al.,
2011b; Dethof, 2003). By assimilating GOME, MIPAS or MLS data with their vertically
resolved information in the stratosphere together with total column ozone data of OMI
and SCIAMACHY, tropospheric ozone can also be constrained.

3.2.1 Total column and stratospheric ozone5

Figure 9 shows time series of zonal mean total column ozone from the MACC reanal-
ysis, the control run, SCIAMACHY and OMI data. The reanalysis shows a realistic
seasonal cycle in both hemispheres. In the NH extratropics, ozone values are highest
during boreal winter and spring. This is a result of poleward and downward transport
of ozone by the large scale Brewer-Dobson circulation (Weber et al., 2011; Brewer,10

1949; Dobson, 1956). In the tropics, where there is slow large scale ascent, the ozone
columns are lower. In the SH, the reanalysis shows the very low values of the Antarctic
ozone hole, and also the higher values seen in a belt around the Antarctic. The assim-
ilation of MIPAS and MLS data gives information during the polar night when the UV
instruments GOME, SBUV/2, SCIAMACHY and OMI can not observe the ozone field.15

The time series of total column ozone from the control run illustrates that the free
running model generally overestimates the ozone column. The control run has a posi-
tive total column bias compared to SCIAMACHY and OMI data everywhere. This bias
points to problems with the stratospheric ozone distribution in the MOZART-3 CTM,
which dominates the ozone column. Similar results were found by Kinnison et al. (2007)20

when they used ECMWF meteorological fields to drive the MOZART-3 model. Also,
the Antarctic ozone hole is not deep enough in the control run, a known problem of
MOZART-3 in the MACC configuration (Flemming et al., 2011b).

Figure 10 shows the mean relative bias between the MACC reanalysis and KNMI’s
multi sensor reanalysis (MSR, van der A et al., 2010) for the years 2003–2008 which25

is based on SBUV/2, GOME, TOMS, SCIAMACHY and OMI observations, and the
SCIAMACHY data (Eskes et al., 2003) for the years 2003–2010, in order to evaluate
the data after 2008. Bias correction of satellite retrievals in the MSR was done using
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Brewer-Dobson observations. There is good agreement between the datasets at var-
ious latitude bands, showing a clear improvement in total columns compared to the
control run. Biases of the MACC reanalysis with respect to the MSR and the SCIA-
MACHY assimilation system are generally of similar magnitude, which constrains the
evaluation for 2009–2010, for which no MSR data is available. Zonal-average, monthly5

mean biases of the reanalysis compared to the MSR over the extratropical Northern
Hemisphere are less than 3 %. The reanalysis shows a general positive bias except
for the NH winter season. During this season observed average O3 total columns in-
crease. The negative biases suggest a slightly too slow response of the reanalysis to
this increase, compared to the MSR. Biases in the tropics are very small (< 2 %). Only10

a period of ∼ 1.5 yr, mainly covering 2008, a slightly larger of ∼ 3 % was found. Over
the extratropical Southern Hemisphere the biases are less than 5 % during 2003–2004,
and below 3 % during later years when MLS and OMI data were assimilated. The sea-
sonal oscillations seen in the NH and SH are the result of a seasonally varying model
bias in the MOZART-3 CTM and the fact that MLS and MIPAS data are assimilated in15

the reanalysis and give information about ozone in the polar night that is not included
in the MSR.

Seasonal mean climatologies of total column ozone from the reanalysis for the years
2003–2010 are shown in Fig. 11. The figure shows the largest ozone columns over the
NH extratropics in DJF and MAM and lowest values in SON, as already seen in Fig. 9.20

In the Tropics the lowest values are seen in DJF, when the Brewer-Dobson circulation
is strongest. In the SH, the Antarctic ozone hole is visible in SON with seasonal mean
total column values lower than 200 DU. Ozone columns in the circum Antarctic belt are
at their highest in SON, when large scale descent brings down ozone rich air.

The vertical structure of the MACC ozone field can be seen in the seasonal mean25

cross sections in Fig. 12. Ozone concentrations in the stratosphere are the result of the
balance of ozone production, ozone loss and transport. The figure clearly depicts the
ozone layer which is at higher altitude in the tropics than in the extratropics as a result
of the large scale Brewer-Dobson circulation. Even though the tropics are an area of
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net ozone production, the lowest zonal mean ozone values are found in the tropical
upper troposphere from where ozone is transported upwards into the stratosphere and
then poleward and downward in the extratropics. The concentrations in the tropics are
lowest in DJF when the upwelling branch of the Brewer-Dobson circulation is strongest.
At the same time, the ozone layer in the NH extratropics is strongest because descent5

brings ozone rich air down. In SON, the impact of the chemical ozone destruction over
Antarctica is clearly visible. Here the ozone layer is very thin and values around the
ozone maximum are less than 9 mPa in the seasonal mean.

Next, MACC ozone is validated against independent data that were not assimilated
in the reanalysis. First, stratospheric ozone fields from the reanalysis are compared10

with data from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer
(ACE-FTS, Dupuy et al., 2009). ACE-FTS data show good agreement with correlative
measurements, with a small positive bias with mean relative differences of about +5 %
between 15–45 km, and a larger positive bias above 42–45 km (Dupuy et al., 2009).
ACE-FTS data were available from January 2004 to September 2010, with a gap from15

December 2009 to May 2010. Figure 13 shows time series of monthly mean relative
biases between the reanalysis and ACE-FTS data at 10, 46 and 100 hPa for extra-
polar and polar regions. The reanalysis generally has a small positive bias. At 100 hPa
the biases are less than 10 % in most regions. Noticeable are larger biases between
April and August 2004 and after March 2009, a result of changes in the assimilated20

data. Between April and August 2004 no ozone profile data were assimilated in the
reanalysis because MIPAS data were not available anymore and MLS data were not
available yet. The larger biases after March 2009 are the result of assimilating NRT
MLS data (see Table 1). For the NRT MLS data the data producers recommend not
to use the ozone values below 64 hPa (bottom three levels) because those values are25

largely influenced by the a-priori of the retrieval. Therefore the NRT MLS data can not
constrain ozone in the lower stratosphere and upper troposphere. The largest negative
biases at 100 hPa are seen over the South Pole in September and November.
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The change to NRT MLS data does not have a noticeable impact at higher levels (46
and 10 hPa). At 46 hPa, the biases are less than 10 % in the extra-polar regions and
less than 5 % in the polar regions. At 10 hPa we see an impact of the changed bias
correction in January 2008 (Sect. 2.3.2), particularly in the polar regions, and biases
are reduced after January 2008. At 46 and 100 hPa the change to the variational bias5

correction does not have a noticeable impact. In this altitude range, where the bulk of
the ozone column is located, the ozone bias correction is successfully anchored by
SBUV/2 data alone. The monthly mean standard deviations of the differences between
ACE-FTS data and the reanalysis are usually around 10 % at 10 and 46 hPa, but up to
20 % at 100 hPa, and even larger over the South Pole during the ozone hole season10

(not shown).
Figure 14 shows profiles of seasonal mean relative biases of MACC ozone with

respect to ACE-FTS data for extra-tropical and tropical areas. The biases are negative
above 3 hPa and below 100 hPa (where ACE-FTS errors are large) and mainly positive
between 3 and 100 hPa. In the stratosphere, they are smallest between 20 and 50 hPa15

where they are less than 5 % for most areas. The largest positive bias of up to 15 % is
found around 10 hPa, i.e. at the level of maximum ozone mixing ratio. Below 100 hPa
the ACE-FTS data have large uncertainties.

Next, MACC ozone is compared with ozone sonde data. The ozone sondes are
available for the whole 8 yr of the reanalysis and come from a variety of data sources:20

WOUDC, SHADOZ, NDACC, MATCH campaigns, and from the ECWMF Meteorologi-
cal Archive and Retrieval System (MARS). The precision of Electrochemical Concen-
tration Cell ozone sondes is of the order of ±5 % in the range between 200 and 10 hPa,
between −14 % and +6 % above 10 hPa, and between −7 % and +17 % below 200 hPa
(Komhyr et al., 1995). Larger errors are found in the presence of steep gradients and25

where the ozone amount is low. The same order of precision was found by Steinbrecht
et al. (1998) for Brewer-Mast sondes. We did not include carbon iodine sondes in the
validation because they have larger biases.
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Figure 15 shows the time mean vertically averaged relative biases between 5 and
100 hPa from the MACC reanalysis minus ozone sondes. The mean stratospheric bi-
ases are less than ±10 % for most stations and in many cases even less than ±5 %.
Larger biases are found over South East Asia. The control run has considerably larger
positive biases in the stratosphere than the reanalysis. Biases of up to 40 % can be5

seen over Antarctica which is in agreement with the large total column biases seen in
Fig. 9.

To assess the vertical structure of these biases in more detail Fig. 16 shows time
averaged ozone profiles and bias profiles from the reanalysis and ozone sondes for
the NH extratropics, the Tropics, and the SH extratropics. The figure demonstrates that10

the reanalysis agrees to within ±5 % in the NH and to within −5 % to +10 % in the
SH, where the largest biases are seen near the surface. In the tropics the reanaly-
sis and sondes agree to within ±10 % above 70 hPa, but have larger negative relative
differences below 100 hPa. The tropospheric bias is discussed further in the next sub-
section.15

3.2.2 Tropospheric ozone

Figure 16 shows larger tropospheric than stratospheric relative biases between MACC
ozone and ozone sondes, particularly in the tropics. To investigate this bias in more
detail the reanalysis ozone is compared with ozonesondes and MOZAIC data in the
altitude range between 200 and 1000 hPa. The MOZAIC ozone data have a detection20

limit of 2 ppbv and a precision of ± (2 ppbv+2 %) (Marenco et al., 1998).
Figure 17 shows the mean relative ozone bias of MACC ozone with respect to ozone

sondes and MOZAIC data averaged between 200 and 1000 hPa averaged over the
period from January 2003 to December 2010. With respect to ozone sondes, the re-
analysis biases are within ± (5–10) % in the NH and over the Antarctic, but larger neg-25

ative biases are found in the Tropics. With respect to MOZAIC data, the reanalysis
has mainly positive biases of less than 10 % over Europe, North and South America
and negative biases of up to −10 % over Africa. Larger positive biases with respect to
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MOZAIC are found over East Asia. Larger biases over East Asia were also seen for
CO data (Fig. 6) suggesting that either the horizontal resolution is not high enough to
reproduce the high values seen over polluted airports, or that the differences are due
to the chemical coupling O3 and other fields. At the very high NOx concentrations over
Asia, especially in polluted regions near cities (where the airports are), O3 will be de-5

stroyed. The model has too little NOx here (see Sect. 3.3 below), so it might not destroy
enough O3, which could explain the positive bias seen in these regions.

The differences seen in the biases with respect to ozone sondes and MOZAIC data
are consistent with findings by Tilmes et al. (2011) who showed that ozone sondes
measure higher concentrations than MOZAIC data in the free troposphere over West-10

ern Europe, North and South America, but to agree to within the given error bars.
Saunois et al. (2011) investigated uncertainties as a result of different sampling fre-
quencies and found these to be of the order 7–14 % in the free troposphere and larger
above and below. These sampling frequency uncertainties have to be considered when
comparing ozone sonde and MOZAIC data which have a very different measurement15

frequency, and they are large enough to explain the differences between the ozone
sonde and MOZAIC biases seen in Fig. 17.

Figure 18 shows the time mean relative tropospheric bias profiles of the analysis mi-
nus ozone sondes and minus MOZAIC data. In the tropical troposphere, the reanalysis
shows a large negative bias with respect to sondes above 650 hPa, and the opposite20

below. Elsewhere the biases are small which is in agreement with Fig. 17. Compared to
MOZAIC data the reanalysis shows the largest positive bias below 800 hPa. The bias
of the reanalysis is small and positive in the free troposphere in the NH extratropics,
and small and negative in the tropics.

A time series of the monthly mean biases with respect to ozone sondes at Ho-25

henpeissenberg and MOZAIC profiles at Frankfurt (Fig. 19) shows good agreement
between the two data sets. Large negative biases are seen at the beginning of the re-
analysis, when the system was still adjusting and fewer ozone retrievals were available.
From the end of 2004 until the end of 2007, biases in the troposphere increase to up
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to 50 % in the free troposphere and more near the surface. These drifts were traced
back to the problem with the variational bias correction for ozone (see Sect. 2.3.2)
which was resolved on 1 January 2008. Figure 19 shows that the biases in the free
troposphere return to below 20 % after January 2008. The large negative biases above
300 hPa seen after March 2009 are a result of using NRT MLS data instead of the5

offline product, as already discussed above in Sect. 3.2.1.

3.2.3 Surface ozone

Surface ozone from the reanalysis is validated against data from the European Monitor-
ing and Evaluation Programme (EMEP, http://www.emep.int/). Ozone measurements
within EMEP are conducted with commercial UV monitors. An overview on the cali-10

bration/maintenance and data quality can be found on the EMEP web site. A typical
accuracy for a commercial UV instrument is about 1.5 ppbv. The precision is also close
to 1.5 ppbv for a 10 s measurement. Hourly mean EMEP observations of O3 from all
available (close to surface level) EMEP stations (altitude< 600 m) are used for the vali-
dation of the reanalysis simulations for the years 2003–2008. Only stations meeting the15

75 % availability threshold per day and per month are taken into account. Ground level
three-hourly averages from the reanalysis are used to produce daily ozone averages,
and the data are interpolated horizontally to the location of the EMEP stations. The
EMEP surface ozone values and the interpolated surface reanalysis values are com-
pared on a seasonal basis for the latitude bands of 30◦ N–40◦ N (Southern Europe),20

40◦ N–50◦ N (Central Europe) and 50◦ N–70◦ N (Northern Europe) and the results are
shown in Fig. 20. Over Northern Europe, the reanalysis underestimates O3 levels dur-
ing the first half of the year and overestimates O3 during the second half. This results
in a negative bias (model minus observations) during winter and spring and a posi-
tive one during summer and autumn. Over Central and Southern Europe, the seasonal25

variability of ozone from the reanalysis agrees well with the observations, but a large
negative bias is observed over Central Europe during winter and spring. Over South-
ern Europe the reanalysis systematically over-predicts ozone mixing ratios with the
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highest discrepancies observed during summer and autumn. It should be noted that
the reported absolute biases are significantly higher than the typical accuracy (1 ppbv)
of the commercial UV monitoring instruments.

To better understand the above mentioned seasonal variability of the biases, the
model simulations and the EMEP observations have been separated into daytime5

(12:00–15:00 h) and nighttime (00:00–03:00) datasets (Fig. 21). Over South Europe,
the overestimated reanalysis ozone (Fig. 20) coincides with positive daytime biases,
which are largest between May and October. Over Central Europe and despite the
overall good agreement between the observations and the reanalysis during the warm
period (March–October), large amplitudes were computed between the nighttime and10

daytime biases. Specifically, during daytime the reanalysis strongly overpredicts ozone
levels. During nighttime on the other hand, the reanalysis has large negative biases.
Lastly, over North Europe, three well defined temporal periods describe the biases.
During the first period (January–April) the reanalysis systematically underestimates
the surface ozone mixing ratios. The second period (April–August) is characterized by15

a progressive shift of the biases from negative to positive values whilst for the third pe-
riod (August–December) the day and night biases are positive. The differences of the
daytime and nighttime biases are larger during the warmer periods when the highest
amplitudes are observed. The reason for the diurnal variations of the biases is not un-
derstood at present and is being investigated further. It could be a result of using NOx20

emissions that do not have a diurnal cycle in the MOZART-3 CTM. During the day this
would result in too low emissions and hence too little O3 destruction, during the night
emissions and hence O3 would be too large.

3.2.4 Discussion of ozone analysis

To put the magnitude of the ozone biases seen in the MACC reanalysis into perspec-25

tive, MACC ozone is compared with ozone data from the ERA Interim reanalysis (Dee
et al., 2011). This dataset is ECMWF’s latest reanalysis product, and its ozone anal-
ysis fields have better quality than the ERA-40 ozone fields (Dragani, 2010, 2011).
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Figure 22 shows time series of monthly mean ozone bias profiles with respect to son-
des from the reanalysis and ERA Interim for a station at high northern latitudes (Alert),
a tropical station (Natal), and an Antarctic station (South Pole). The MACC bias plots
confirm what was already seen in Figs. 13 and 19. At all 3 stations the biases are
larger during 2004 when no profile data were available, and after March 2009 when5

NRT MLS data were used. At Alert and South Pole the issues with the bias correction
lead to larger biases in the troposphere and above 15 hPa between August 2004 and
December 2007. At all three stations tropospheric biases are reduced after 1 January
2008 when the problem with the variational bias correction for ozone was resolved.
Figure 22 also shows that at South Pole the largest positive stratospheric biases are10

seen in austral spring during the ozone hole season. Here, the control run has a large
bias and the ozone analysis can not completely remove this bias.

Figure 22 illustrates that the biases of ERA Interim ozone are larger than those of the
MACC reanalysis almost everywhere. This is particularly noticeable in the tropical tro-
posphere, where biases greater than 100 % are found near the surface in ERA Interim.15

At Alert and South Pole, there are large changes in ERA Interim between negative bi-
ases during winter/spring and positive biases during summer/autumn. In ERA Interim
ozone data are assimilated without bias correction and it is possible that a bias in one
of the UV sensors can lead to a seasonally varying ozone bias with respect to sondes,
depending on when data were available in the analysis. In ERA Interim NRT MLS data20

have been used since November 2008, and like in the MACC reanalysis they lead to
larger departures in the upper troposphere and lower stratosphere where the profile in-
formation is missing after this date. Also, the representation of the ozone hole is worse
when NRT MLS data are used. The comparison shown in Fig. 22 illustrates that ozone
from the MACC reanalysis has smaller errors than other available reanalysis products.25

3.3 NO2 analysis

Tropospheric NO2 column retrievals from SCIAMACHY produced in the TEMIS
project (Boersma et al., 2004) were assimilated in the MACC reanalysis. The largest
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uncertainties in the retrieval of tropospheric NO2 are due to errors in the description
of clouds, albedo, a-priori profile shape of the trace gas and aerosol description, and
assumptions made for aerosol conditions. While some of the uncertainties as those
from the a-priori profile shape are canceled in the assimilation by using the averaging
kernels of the product, others have to be taken into account. Boersma et al. (2004)5

found that retrieval results were generally best for regions with strong NO2 sources or
high surface albedo. Here, the errors of the retrieved tropospheric NO2 columns were
of the order 35–60 %. In clean areas with small background concentrations the signal to
noise ratio was very small and relative errors were very large. In the MACC reanalysis
SCIAMACHY tropospheric NO2 columns V1.04 data were used until the end of June10

2007, and V1.1 data after 11 September 2007 (see Table 1). Version 1.1 used an im-
proved cloud algorithm in the retrieval of tropospheric trace gases and as a result V1.1
tropospheric NO2 columns were lower than those from V1.04, in particular over heavily
polluted areas with low clouds (Wang et al., 2008). This data change did however not
have a large impact on the NO2 reanalysis fields (see Fig. 26 below).15

SCIAMACHY has a local overpass time of 10:00. A dedicated observation operator
was used to convert the model NOx to NO2 in the reanalysis at the time and loca-
tion of the observations (see also Sect. 2.2.1). This is important, because NO2 has
an atmospheric lifetime in the boundary layer of the order of an hour in summer and
about one day in winter and shows large spatial and temporal variability around source20

areas. Figure 23 shows seasonal mean tropospheric NO2 columns from the MACC
reanalysis. The largest tropospheric NO2 columns are found in the industrial areas of
the NH, with maxima during DJF over Europe, China and the Eastern US. This is the
result of seasonal variations in the photochemical lifetime of NO2 and increased an-
thropogenic emissions during this season. In the SH there are some hot spots with25

high NO2 columns from fossil fuel emissions over the urban areas and coal fired power
plants of South Africa, and over cities in South-East Australia. In the tropics, the largest
NO2 values come from biomass burning events during the local dry season. This is
during DJF in Northern Africa and during JJA and SON in Africa south of the equator.
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Over South America the strongest NO2 signal is seen in SON when biomass burning
activity is strongest here. Values in this region are lower than over Africa as result of
the lower NOx/CO emission ratio for tropical forest fires compared to Savannah fires.
Over Indonesia and North-West Australia the biomass burning signal is strongest dur-
ing SON. The seasonality of the NO2 signal from biomass burning is in good agreement5

with the CO signal (see Fig. 3).
To validate the tropospheric NO2 fields from the MACC reanalysis a comparison

was made with SCIAMACHY tropospheric column data retrieved by IUP-Bremen. This
dataset is different to the TEMIS SCIAMACHY data that are assimilated in the reanaly-
sis (see Table 1). Even though the two SCIAMACHY retrievals are based on the same10

level 1 spectral irradiance data, the retrieval products are completely independent, from
the spectral fit to the assumptions made on the a priori used for the air mass factor cal-
culations. While this is not ideal in terms of having fully independent validation data, it
can provide a critical evaluation of the model performance on a global scale. The IUP
retrieval of tropospheric NO2 columns from SCIAMACHY measurements is performed15

in several steps, starting with the retrieval of NO2 slant column (SC) with the DOAS
(differential optical absorption spectroscopy) technique in the 425–450 nm wavelength
windows. The tropospheric SC is calculated by subtracting the stratospheric contribu-
tion from the total columns retrieved, assuming that the region over the Pacific (180◦ E–
220◦ E) is clean in the lower atmosphere. Airmass factors determined from radiative20

transfer calculations are used to convert the tropospheric slant columns to vertical
columns. As a rough estimate, systematic uncertainties in polluted regions are of the
order 30–50 %. Further details regarding the retrieval can be found, for example, in
Richter and Burrows (2002) and Richter et al. (2005). NO2 tropospheric columns are
only determined for clear sky pixels, i.e. for cloud fractions smaller than 20 % according25

to the cloud cover data from the FRESCO database (Koelemeijer et al., 2001; Wang
et al., 2008). For the comparison with the IUP-satellite retrievals, the model was sam-
pled at the time and location of the SCIAMACHY overpass and the satellite data been
averaged to the model spatial resolution.
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Figure 24 shows the seasonal mean differences between tropospheric NO2 columns
from the MACC reanalysis and IUP-SCIAMACHY. As the satellite data are relative to
the clean Pacific reference sector, the same correction has been applied to the model
data. These plots show that the largest differences are found over the urban areas of
the NH, where the MACC reanalysis underestimates NO2 with respect to the SCIA-5

MACHY data. The largest differences in the NH are found in DJF over East Asia and
the Eastern US. The best agreement for the polluted areas of the NH is seen over
the US in JJA. Negative differences are also seen for NO2 hotspots in South Africa.
Several reasons might explain the low bias of the reanalysis NO2 with respect to the
IUP-SCIAMACHY data over the urban areas of the NH. Firstly, the anthropogenic NOx10

emissions from the MACCity dataset could be too low, but considering the observed
downward trend in NOx emissions (van der A et al., 2008) this is unlikely. Secondly,
there is no daily cycle in emissions applied in MOZART-3, which may result in under-
estimation of emissions at 10:00, i.e. during day time and shortly after the rush hour.
Thirdly, because of the short lifetime the information brought into the system by as-15

similating SCIAMACHY data is lost quickly, and the impact of the NO2 assimilation is
actually small. Finally, with the relatively low resolution of MOZART-3, the maximum
emissions in urban areas might not be modelled correctly. Over Northern Europe the
reanalysis is higher than the IUP-SCIAMACHY data in MAM and SON. This might be
related to a problem in life time leading to too much transport of pollution into these20

areas.
Over tropical biomass burning regions the reanalysis NO2 columns are higher than

the IUP-SCIAMACHY data, for example in Northern Africa during DJF, in Southern
Africa in JJA, and in South America in JJA and SON. Over Indonesia the reanalysis
generally overestimates the NO2 columns relative to the data, with the largest devia-25

tions in SON. Over North-West Australia the differences are also positive in SON.
Other interesting aspects are clear spots of positive differences for the boreal fires

(e.g. Asia in MAM, North America in JJA) that are captured in the reanalysis, but not
seen by the satellite. This could be related to a too large NOx/CO emission ratio used
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for fires in boreal forests. The reanalysis background concentrations over clean areas
agree to within ±0.5×1015 moleculescm−2 with IUP-SCIAMACHY data, which is close
to the detection limit of the instrument.

Next, time series of area-averaged monthly mean tropospheric NO2 from the re-
analysis and from IUP-SCIAMACHY data are compared. The areas used for the NO25

comparison are shown in blue in Fig. 25. Only land points are used to calculate the
monthly area averages. The MACCity emissions have a positive trend for NOx emis-
sions over China, and negative trends over Western Europe and the US (Granier et al.,
2011a).

Figure 26 shows the time series for the polluted regions of the NH for the reanaly-10

sis, the control run and the IUP-SCIAMACHY data. The plots show the impact of the
NO2 assimilation is small, because reanalysis and control run are very similar. This can
have several reasons. First, the NO2 data have larger observation errors than the CO
or O3 data, and are therefore given less weight in the analysis. Secondly, because of
the short lifetime of NO2 and the fact that NO2 data are only assimilated once per day15

the impact of the analysis is lost again quickly. A larger impact might be obtained by
assimilating data from an additional instrument with different overpass time (e.g. NO2
from OMI which has a local overpass time of 13:40). Figure 26 shows that the simula-
tion of tropospheric NO2 in the reanalysis has a realistic seasonal cycle with maxima
during the winter months and minima during the summer. There is good agreement20

during the summer, but winter values are too low. Particularly, over East Asia there is
an underestimation of tropospheric NO2 by about a factor of 2 during winter in the re-
analysis, as already seen in Fig. 24. For Europe and the US, the agreement between
the IUP-SCIAMACHY data and the reanalysis is better. Considering the low resolution
of the MOZART-3 CTM, maximum NOx emissions in urban areas are not modelled25

adequately and at least some of the differences seen in Fig. 26 are likely to be repre-
sentativeness errors.

Figure 27 shows time series of monthly mean tropospheric NO2 columns from
the reanalysis and IUP-SCIAMACHY for the biomass burning areas of Northern and
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Southern Africa. Again the differences between the reanalysis and the control run are
negligible. The figure shows that the reanalysis has the right seasonality with maximum
values in Northern Africa during DJF and in Southern Africa during June to Septem-
ber. However, the reanalysis overestimates the tropospheric NO2 columns during the
biomass burning seasons, as already seen in Fig. 24. The overestimation during the5

biomass burning season could again be related to a too large NOx emission factors
used for fires.

The correlation between the global and seasonally averaged reanalysis NO2 and
the IUP- SCIAMACHY data (over all surfaces) averaged over the years 2003 to 2010
is 0.83 in DJF, 0.87 in MAM, 0.82 in JJA and 0.84 in SON, indicating a good spatial10

agreement between the reanalysis and the satellite retrievals. Table 2 shows correla-
tions between the seasonal trends of reanalysis and IUP-SCIAMACHY data for the five
NO2 regions (data considered only from land grid boxes). The high correlation over
East Asia shows that the reanalysis captures the seasonal NO2 trend well, despite the
winter time biases.15

Table 3 summarizes the seasonal mean biases between IUP-SCIAMACHY NO2 data
and the reanalysis fields for the five regions discussed above. For this table daily dif-
ferences between the reanalysis and SCIAMACHY were calculated over land and then
averaged over the years 2003–2010 for the corresponding months and regions. The
table confirms that the largest negative biases can be seen over the industrial areas20

of the NH, with maxima during the winter months. The biases in the African biomass
burning areas are smaller. Over Northern Africa the bias is positive apart from JJA
when it is small and negative. In Southern Africa biases are largest and positive in JJA
and small and negative in the other seasons.

Figure 28 shows seasonal mean zonal average NOx altitude cross sections from the25

MACC reanalysis to illustrate the vertical structure of the NOx field. NOx concentra-
tions are largest near the surface and fall off rapidly with height. This illustrates the
dominating importance of the emissions for the NOx field.
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3.4 HCHO analysis

HCHO data are not assimilated in the MACC reanalysis because the data quality of
individual satellite retrievals is not sufficient. Monthly mean observations generally have
a total error of 20–40 %, but individual observations can have much large errors (De
Smedt et al., 2008). Over Europe, for example, the mean HCHO column is smaller5

than the random error of SCIAMACHY observations which does not favour assimilating
individual observations. Hence, the HCHO reanalysis fields are entirely determined by
the MOZART-3 chemistry, the MACCity emissions and the atmospheric transport.

Figure 29 shows seasonal mean tropospheric HCHO columns from the MACC re-
analysis. The largest HCHO columns are found in the tropics and reflect the regions of10

high biogenic VOC emissions and biomass burning. High values are also found over
the South-Eastern US in JJA and are indicative of the oxidation of isoprene emitted
during the growing season in the summer. Values over Europe are much lower but
also peak in JJA. Figure 29 agrees well with the global maps shown in De Smedt
et al. (2008). Over South America, the maximum HCHO values are seen during the15

fire season (August to November). In Africa, north of the equator, maximum values are
found during the main fire season in DJF. South of the equator, the maximum values
are observed in JJA. Over South-East Asia the largest HCHO concentrations occur
during MAM and JJA, and are likely to be associated with biogenic VOC emissions.
For the region of Indonesia the HCHO concentrations are always high, with a minimum20

observed during DJF. Over Northern Australia HCHO concentrations are largest during
the main growing season SON and DJF.

To validate the tropospheric HCHO columns from the reanalysis they are compared
with SCIAMACHY HCHO data retrieved by IUP-Bremen. The IUP retrieval of HCHO
columns follows a similar approach as the NO2 method described in the previous sec-25

tion, using also the approach of reference sector to correct for instrumental drift and
appropriate airmass factors to convert the slant to vertical columns. To account for
the tropospheric HCHO amount present over the region between 180–200◦ E used
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for normalization, a mean value of 3.5×1015 moleculescm−2 is added. Further details
on the retrieval can be found in Wittrock (2006) and Wittrock et al. (2006). The to-
tal error on the monthly and regionally averaged data is between 20–40 %, and the
detection limit is 2×1015 moleculescm−2. The uncertainty in the mean of the obser-
vations is estimated to be of the order 1016 moleculescm−2 (Wittrock, 2006). However,5

for HCHO hotspots, both the absolute values and the seasonality can be retrieved
with confidence. Figure 30 shows the seasonal mean differences between IUP HCHO
tropospheric columns and the reanalysis fields. The figure shows that there are limita-
tions with the satellite retrievals at low solar elevations, that lead to large differences
and large scatter in the NH during DJF and in the SH during JJA. The difference plots10

also show scatter over the area of the South Atlantic anomaly in JJA. This localized
discrepancy is due to an artifact in the observations, because here the SCIAMACHY
instrument is exposed to high energy solar particles, leading to a reduced signal to
noise ratio and a large scatter in the data. Figure 30 shows that the reanalysis overes-
timates the HCHO tropospheric columns with respect to SCIAMACHY in regions with15

high biogenic emissions and biomass burning. This is the case in the Eastern US,
Europe and China during JJA, and in Northern Africa, South America and Indonesia
throughout the year. In Southern Africa the seasonal mean differences between the
IUP-SCIAMACHY data and the reanalysis are small.

The plots indicate that the reanalysis underestimates HCHO for background con-20

centrations over the oceans, where oxidation of methane is the main source of HCHO.
This could point to a problem with the retrieval over sea, but the HCHO values here
are close to the detection limit of the instrument and the differences hence not very
meaningful.

Next, time series of monthly mean tropospheric HCHO from the reanalysis and IUP-25

SCIAMACHY data are compared. The regions used for the HCHO comparison are
shown in red in Fig. 25 and focus on areas with a strong HCHO signal. Only land
points are used to calculate the monthly area averages.The differences between the
reanalysis and the control are very small which was to be expected because no HCHO
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data were assimilated in the MACC reanalysis. For this reason the control run is not
shown in the timeseries plots below. Figure 31 shows time series over China and the
Eastern US, regions dominated by biogenic emissions with some anthropogenic input.
Figure 32 shows time series for Northern Africa, Southern Africa, and Indonesia, i.e.
regions with biogenic sources and biomass burning. The seasonality and magnitude is5

well captured for China and the Eastern US. In the biomass burning areas of Northern
Africa, the reanalysis overestimates HCHO during the main fire season, but the agree-
ment between reanalysis and data in Southern Africa is good. The largest differences
are seen over Indonesia where the reanalysis is almost constantly higher than the
satellite data by at least 5×1015 moleculescm−2. However, during the Indonesian fires10

in October 2006 the reanalysis and the satellite data show good agreement, capturing
the very high values of HCHO registered for this month.

The regional correlations between the monthly mean reanalysis time series and the
IUP-SCIAMACHY data are shown in Table 4 (data considered only from land grid
boxes). They are low for the world, confirming that a meaningful statement can only15

be made for regions with large HCHO concentrations. In the five regions discussed
above the correlations are lowest over Indonesia and Northern Africa, confirming what
was seen in Fig. 32.

Figure 33 shows seasonal mean zonal average cross sections of HCHO from the
reanalysis. It shows that the largest concentrations are confined to the boundary layer20

and decrease with height. There is some sign of transport of HCHO into the upper
troposphere by deep convection in the tropics. In DJF the zonal mean maximum is
found around 10◦ N, pointing to high HCHO values in Africa north of the equator. In JJA
the highest values are seen around 40◦ N (North American signal) and around 10◦ S
(combination of South America, Africa and Indonesia).25
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4 Conclusions

A data assimilation system for global reactive gases, aerosols and greenhouse gases
was developed and consolidated as part of the EU funded GEMS and MACC projects.
This system was used in the MACC project to produce an 8-yr long reanalysis of at-
mospheric composition data for the period 2003–2010, by assimilating satellite data to5

constrain O3, CO, NO2, CO2, CH4, and aerosol optical depth. The reanalysis data are
constrained in a consistent way by observations and the model simulation. This paper
describes the assimilation system for the reactive gases used in the MACC reanaly-
sis and presents some validation results of the reanalysis fields for CO, O3, NO2 and
HCHO. Total column values are generally in very good agreement with independent10

observations, but profiles can show some problems in the boundary layer where con-
centrations are dominated by emissions. There are some discontinuities in the dataset
related to instrument changes and issues with the bias correction of ozone data. The
most important issues are summarized in Appendix A.

Assimilating MOPITT and IASI CO retrievals in the MACC reanalysis leads to an15

improved CO field compared to a MOZART-3 standalone run carried out with the
MACC configuration. The reanalysis CO field has a realistic seasonal cycle and inter-
hemispheric differences. Total column values in 2008 to 2010 are low compared to
the satellite retrievals at high northern latitudes, but in other areas the agreement with
MOPITT and IASI is good. Using MACCity emissions to provide boundary conditions20

for the MOZART-3 CTM leads to tropospheric CO values that are 10–20 % too low
compared to MOZAIC data through most of the troposphere. In the boundary layer at
urban sites affected by air pollution the negative biases are larger, suggesting an un-
derestimation of CO or precursor emissions. Surface CO from the MACC reanalysis
agrees well with NOAA/GMD observations which indicates that, despite uncertainties25

of satellite measurements in the lower troposphere, assimilation of CO data from such
products can lead to a good representation of surface CO concentrations for unpolluted
regions.
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Comparison with independent data has shown ozone from the MACC reanalysis to
be considerably better than a free running MOZART-3 CTM. Stratospheric ozone fields
from the MACC reanalysis agree with ozone sondes and ACE-FTS data to within ±10 %
in most situations. In the troposphere the reanalysis shows biases of −5 % to +10 %
with respect to ozone sondes and MOZAIC aircraft observations in the extratropics, but5

has larger negative biases in the tropics (up to −40 % around 100 hPa). These biases
are partly due to biases in the underlying MOZART-3 CTM, but a time varying bias
in the troposphere is the result of using a variational bias correction scheme without
MLS as an anchor before 2008 (see also Sect. 2.3.2). Area averaged total column
ozone agrees with data from KNMI’s multi sensor reanalysis product to within a few10

percent. Surface ozone from the reanalysis agrees with EMEP surface observations
over Europe to within ± (5–10) ppbv. However, there are some diurnal variations in the
surface ozone biases that need to be investigated further. The biases of the MACC
reanalysis with respect to ozone sondes are smaller than biases of ERA Interim ozone
fields.15

Assimilating NO2 retrievals from SCIAMACHY in the MACC reanalysis has only lit-
tle impact, and the NO2 fields from the reanalysis and the control run are very similar.
A possible reason for this is the short lifetime of NO2, so that the impact the data have in
the analysis is lost again quickly. NO2 fields from the reanalysis show the right season-
ality over polluted urban areas of the NH and over tropical biomass burning areas, but20

underestimate wintertime NO2 maxima over anthropogenic regions and overestimate
NO2 in Northern and Southern Africa during the tropical biomass burning seasons.

Tropospheric HCHO is quite well simulated in the MACC reanalysis even though
no satellite data are assimilated. It agrees well with independent IUP-SCIAMACHY
observations over regions dominated by biogenic emissions with some anthropogenic25

input, such as the Eastern US and China, and also over African regions influenced by
biogenic sources and biomass burning. Over Indonesia, however, the reanalysis has
a large positive bias that is not seen in the control run, but the high HCHO values
observed during the Indonesian fires of 2006 are very well captured by the reanalysis.
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The MACC reanalysis is a valuable 8-yr long atmospheric composition data set that
can, for example, be used as boundary conditions for regional models, climatologi-
cal studies or for model evaluation. In addition to the four GRG IFS fields analyzed in
this paper more chemical species are available from the MOZART-3 CTM output. The
MACC model and assimilation system is also run in NRT to produce daily analyses and5

5-day forecasts of reactive gases and aerosols. Data from the MACC reanalysis and the
NRT analysis are available from the MACC data server http://www.gmes-atmosphere.
eu. Further validation results from the MACC reanalysis can be found on the MACC ver-
ification web page http://www.gmes-atmosphere.eu/services/gac/global verification/.

Since November 2011, the MACC-II project has begun as a successor to MACC.10

This project will continue to deliver the daily analyses and forecasts of atmospheric
composition. There are no plans for a new reanalysis in MACC-II, but the MACC re-
analysis will be extended to more recent years and selected periods will be rerun to
test changes to the assimilation system and new input datasets.

Appendix A15

Summary of known issues with the reactive gases fields

There are some issues with the reactive gases analysis fields that a user should be
aware of, because they cause discontinuities in the data set:

– The biomass burning emissions were changed on 1 January 2009 from a prelim-
inary version of GFED3 to GFAS Version 1.0. The GFAS Version 1.0 emissions20

budget is about 18 % higher than those used during the first 6 yr.

– Using MACCity emissions to provide lower boundary conditions for the MOZART-
3 CTM led to too low CO analysis values, especially in the boundary layer.
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– After 23 March 2010 NRT MOPITT CO data were used in the reanalysis instead of
the offline product. This change did not have a noticeable impact on the reanalysis
fields.

– Assimilation of IASI CO after 1 April 2008 led to some changes in the CO field.

– Using variational bias correction for MLS ozone profiles led to increased tropo-5

spheric ozone and changes to ozone above 15 hPa. However, it did not affect the
total column ozone field. These drifts stopped on 1 January 2008 when the bias
correction was switched off for MLS, and afterwards agreement with independent
ozone sondes and MOZAIC data was improved.

– Using NRT MLS data instead of the offline product after 16 March 2009 resulted10

in larger departures in the upper troposphere and lower stratosphere, because
the lowest 3 layers (68–100, 100–146, and 146–215 hPa) of the MLS data could
not be used.

– NRT OMI ozone columns were assimilated instead of the off-line product between
21 March 2007 and 31 December 2007. This did not have a noticeable impact on15

the ozone analysis.

– A model upgrade to MOZART 3.5 was implemented on 1 January 2009, which
slightly improved the representation of the ozone hole in the control run but did
not affect the other model fields.

– NO2 SCIAMACHY retrievals V1.04 were assimilated until 30 June 2007, SCIA-20

MACHY V1.1 data were assimilated after 11 September 2007, but this only has
a minor impact on the analysis fields.
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Hólm, E. V., Untch, A., Simmons, A., Saunders, R., Bouttier, F., and Andersson, E.: Multivariate10

ozone assimilation in four-dimensional data assimilation, in: Proceedings of the Soda Work-
shop on Chemical Data Assimilation, 9–10 December 1998, KNMI, De Bilt, The Netherlands,
89–94, 1999.

Hortal, M. and Simmons, A. J.: Use of reduced Gaussian grids in spectral models, Mon.
Weather Rev., 119, 1057–1074, 1991.15

Hudman, R. C., Murray, L. T., Jacob, D. J., Millet, D. B., Turquety, S., Wu, S., Blake, D. R.,
Goldstein, A. H., Holloway, J., Sachse, G. W.: Biogenic versus anthropogenic sources of CO
over the United States, Geophys. Res. Lett., 35, L04801, doi:10.1029/2007GL032393, 2008.

Huijnen, V., Flemming, J., Kaiser, J. W., Inness, A., Leitão, J., Heil, A., Eskes, H. J.,
Schultz, M. G., Benedetti, A., Hadji-Lazaro, J., Dufour, G., and Eremenko, M.: Hindcast ex-20

periments of tropospheric composition during the summer 2010 fires over western Russia,
Atmos. Chem. Phys., 12, 4341–4364, doi:10.5194/acp-12-4341-2012, 2012.

Inness, A., Flemming, J., Suttie, M. and Jones, L.: GEMS data assimilation system for chem-
ically reactive gases, ECMWF RD Tech Memo 587, available at: http://www.ecmwf.int/
publications/library/do/references/list/14 (last access: 29 November 2012), 2009.25

Isaksen, I. S. A., Granier, C., Myhre, G., Berntsen, T. K., Dalsøren, S. B., Gauss, M., Klimont, Z.,
Benestad, R., Bousquet, P., Collins, W., Cox, T., Eyring, V., Fowler, D., Fuzzi, S., Jöckel, P.,
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Table 1. Satellite retrievals of reactive gases that were actively assimilated in the MACC re-
analysis. PROF denotes profile data, TC total columns, TRC tropospheric columns, PC partial
columns, and SOE solar elevation. PC SBUV/2 data consist of 6 layers between the surface
and 0.1 hPa. NRT (near-real time) data are available within a few hours after the observation
was made, and are being used in operational forecast systems. For periods towards the end
of the MACC reanalysis period, NRT data were used for some of the species when no offline
products were available.

Sensor Satellite Provider Version Period Type Data usage
criteria

Reference

GOME ERS-2 RAL 20030101–
20030531

O3 PROF Used if SOE > 15◦

and
80◦ S < lat < 80◦ N

Siddans et al. (2007)

MIPAS ENVISAT ESA 20030127–
20040326

O3 PROF All data used Carli et al. (2004)

MLS AURA NASA V02 20040808–
20090315,
NRT data from
20090316

O3 PROF All data used Waters et al. (2006)

OMI AURA NASA V003 From
20041001,
NRT data
20070321–
20071231

O3 TC Used if SOE > 10◦ Bhartia et al. (2002);
Levelt et al. (2006)

SBUV/2 NOAA-16 NOAA V8 From 20040101 O3 PC Used if SOE > 6◦ Bhartia et al. (1996)
SBUV/2 NOAA-17 NOAA V8 From 20030101 O3 PC Used if SOE > 6◦ Bhartia et al. (1996)
SBUV/2 NOAA-18 NOAA V8 From 20050604 O3 PC Used if SOE > 6◦ Bhartia et al. (1996)
SCIAMACHY ENVISAT KNMI From 20030101 O3 TC Used if SOE > 6◦ Eskes et al. (2005)
IASI METOP-A LATMOS/ULB From 20080401 CO TC Used if 70◦ S < lat

< 70◦ N
George et al. (2009),
Clerbaux et al. (2009)

MOPITT TERRA NCAR V4 From
20030101,
NRT data after
20100323

CO TC Used if 65◦ S < lat
< 65◦ N

Deeter et al. (2010)

SCIAMACHY ENVISAT KNMI V1.04 20030101–
20070630

NO2 TRC Used if SOE > 6◦

and
60◦ S < lat < 60◦ N

Boersma et al. (2004)

SCIAMACHY ENVISAT KNMI V1.1 From 20070911 NO2 TRC Used if SOE > 6◦

and
60◦ S < lat < 60◦ N

http://www.temis.nl,
Wang et al. (2008)
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Table 2. Correlation between the seasonal trends of the monthly averaged MACC reanalysis
and IUP-SCIAMACHY NO2 data over land.

Region World Europe East Asia US Northern Africa Southern Africa

Correlation 0.89 0.72 0.96 0.85 0.86 0.91
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Table 3. Seasonal mean biases and rms errors in 1015 moleculescm−2 of MACC reanalysis
and IUP SCIAMACHY NO2 averaged over the years 2003 to 2010 for the 5 regions illustrated
above. Only land points were used in the calculations.

DJF MAM JJA SON
bias RMS bias RMS bias RMS Bias RMS

East-Asia −4.10 6.91 −1.12 2.60 −0.01 1.34 −1.80 3.58
Europe −0.41 3.09 −0.62 1.34 −0.34 0.88 −0.05 1.73
US −1.12 2.70 −0.61 1.22 −0.05 0.66 −0.22 0.90
Northern Africa 0.53 0.67 0.20 0.40 −0.01 0.22 0.16 0.33
Southern Africa −0.02 0.11 −0.02 0.21 0.53 0.86 −0.01 0.47
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Table 4. Correlation between the seasonal cycles of monthly averaged MACC reanalysis and
IUP-SCIAMACHY HCHO data over land.

Region World China US Indonesia Northern Africa Southern Africa

Correlation 0.24 0.85 0.81 0.69 0.54 0.84
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Table 5. Seasonal mean biases and rms error in 1015 moleculescm−2 of MACC reanalysis and
IUP-SCIAMACHY HCHO averaged over the years 2003 to 2010 for the 5 regions discussed
above. Only land points were used in the calculation.

HCHO DJF MAM JJA SON
Bias RMS bias RMS bias RMS bias RMS

China 0.50 1.31 1.02 1.27 −1.23 3.74 0.03 1.64
East-US −1.90 1.48 1.43 1.25 2.25 1.70 1.55 1.09
Indonesia 5.01 2.34 7.83 2.55 8.57 2.81 6.29 2.05
Northern Africa 2.56 3.15 1.00 2.54 0.23 2.94 1.40 2.73
Southern Africa −0.42 1.22 −0.43 2.26 −1.24 4.12 −1.80 2.38
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Fig. 1. Left panel: mean averaging kernels for MOPITT (solid) and IASI (dashed) day time to-
tal column CO retrievals for July 2009 averaged over a 5◦ ×25◦ box over Europe (46–51◦ N,
3–28◦ E). Right panel: global mean averaging kernels for tropospheric column NO2 from SCIA-
MACHY averaged over the period June 2009 to May 2010.
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Fig. 2. Time series of zonal mean total column CO field in 1018 moleculescm−2 for the period
2003 to 2010 from the MACC reanalysis (top left), the control run (top right), MOPITT (bottom
left) and IASI (bottom right). The MOPITT time series shows the change to NRT data in 2010,
for which no data are available polewards of 65◦. Red indicates higher values of the field, blue
lower values.
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Fig. 3. Seasonal mean CO total columns from the MACC reanalysis in 1018 moleculescm−2

for DJF (top left), MAM (top right), JJA (bottom left) and SON (bottom right) averaged over the
years 2003 to 2010. Red indicates higher values of the field, blue lower values.
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Fig. 4. Seasonal mean zonal average CO altitude cross sections from the MACC reanalysis in
ppbv for DJF (top left), MAM (top right), JJA (bottom left) and SON (bottom right) averaged over
the years 2003 to 2010. Red indicates higher values of the field, blue lower values.
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Fig. 5. Time series (2003–2010) of monthly mean CO concentrations (ppbv) from the MACC
reanalysis (red), the control run (blue), and from NOAA/GMD ground-based measurements
(black) over Mace-Head (top left), Key Biscayne (top right), Tenerife (bottom left), and South
Pole (bottom right) stations.
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Fig. 6. Vertically (300–1000 hPa) averaged CO bias in % of MACC reanalysis minus MOZAIC
ascent/descent data averaged over the period January 2003 to December 2010. The diameter
of the circles indicates the number of profiles over the respective airports.
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Fig. 7. Left panel: mean CO profiles in ppbv from the MACC reanalysis (red) and MOZAIC
data (black). The solid lines show the means for NH airports (north of 30◦ N), the dashed lines
the means for tropical airports (30◦ S–30◦ N). Right panel: CO bias in % of MACC reanalysis
minus MOZAIC for NH airports (solid) and tropical airports (dashed). Data are averaged over
the period January 2003 to December 2010.
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Fig. 8. Time series of monthly mean CO biases (MACC reanalysis minus MOZAIC) in % at
Frankfurt airport (50.0◦ N, 8.6◦ E) for the period January 2003 to December 2010.
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Fig. 9. Time series of zonal mean total column O3 field in Dobson Units (DU) for the period
2003 to 2010 from the MACC reanalysis (top left), the control run (top right), SCIAMACHY
(bottom left) and OMI (bottom right). Red indicates higher values of the field, blue lower values.
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Fig. 10. Time series of the mean difference of the MACC reanalysis minus total O3 columns
from the multi sensor reanalysis (solid) and SCIAMACHY fields (dashed) in % averaged over
(a) the NH extratropics (30◦ N–90◦ N), (b) tropics (30◦ S–30◦ N) and (c) SH extratropics (90◦ S–
30◦ S) for the years 2003 to 2010.
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Fig. 11. Seasonal mean total column ozone field from the MACC reanalysis in DU for DJF (top
left), MAM (top right), JJA (bottom left) and SON (bottom right) averaged over the years 2003
to 2010. Red indicates higher values of the field, blue lower values.
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Fig. 12. Seasonal mean zonal average ozone cross sections from the MACC reanalysis in mPa
for DJF (top left), MAM (top right), JJA (bottom left) and SON (bottom right) averaged over the
years 2003 to 2010. Red indicates higher values of the field, blue lower values.
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Fig. 13. Time series of monthly mean relative ozone biases between the MACC reanalysis and
ACE-FTS data (MACC minus ACE-FTS) in % for the period January 2004 to September 2009
at 10 hPa (top), 46 hPa (middle), and 100 hPa (bottom). The left panels show time series for
extra-polar regions, the right panels time series for polar regions. There are not enough good
quality ACE-FTS data at 100 hPa between 30◦ S and 30◦ N for a meaningful validation, hence
this curve is omitted from the bottom left panel.
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Fig. 14. Seasonally averaged relative ozone bias profiles (left) of MACC reanalysis minus ACE-
FTS data, and seasonally averaged standard deviation profiles of the differences (right) in %
for polar and extra-polar areas (as defined in the figures).
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Fig. 15. Mean stratospheric O3 bias in % of MACC reanalysis minus ozone sonde data aver-
aged between 5–100 hPa for the period January 2003 to December 2010. The diameter of the
circles indicates the number of profiles over the respective stations.
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Fig. 16. Time mean ozone profiles (left) in mPa from the MACC reanalysis (red) and ozone
sondes (black), and averaged ozone bias in % of MACC reanalysis minus ozone sondes (right)
averaged over the period January 2003 to December 2010. Solid lines show means for the NH
extratropical stations (i.e. north of 30◦ N), dashed lines for tropical stations (30◦ S–30◦ N), and
dotted lines for SH extratropical stations (south of 30◦ S).
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Fig. 17. Mean tropospheric ozone bias in % of MACC reanalysis minus ozone sondes (left) and
minus MOZAIC data (right) for the period January 2003 to December 2010 averaged between
200–1000 hPa. The diameter of the circles indicates the number of profiles over the respective
stations. Grey circles depict biases of greater than −30 %.
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Fig. 18. Time mean ozone biases in % from the MACC reanalysis minus sondes (left) and
MACC minus MOZAIC data (right) averaged over the period January 2003 to December 2010.
Solid lines show means for the NH extratropical stations (i.e. north of 30◦ N), dashed lines for
tropical stations (30◦ S–30◦ N), and dotted lines for SH extratropical stations (south of 30◦ S).
Note that there are no MOZAIC flights in the SH in our database.
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Fig. 19. Time series of monthly mean ozone biases (MACC reanalysis minus observations)
with respect to ozone sondes at Hohenpeissenberg (left, 47.5◦ N, 11◦ E) and MOZAIC profiles
at Frankfurt airport (right, 50.0◦ N, 8.6◦ E) for the period January 2003 to December 2010 in %.
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Fig. 20. Mean monthly annual variability during the period 2003–2008 of the MACC reanalysis
(black) and observations (blue), and the absolute bias (red bars) over Northern Europe (top
panels, based on 72 monitoring stations), Central Europe (middle, based on 27 stations) and
Southern Europe (bottom, based on 5 stations) in ppbv.
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Fig. 21. Monthly mean variability (2003–2008) of the biases (MACC reanalysis minus EMEP)
during daytime (blue line), nighttime (black line) and during the 24 h time period (red line) over
Northern Europe (top panel), Central Europe (middle) and Southern Europe (bottom).
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Fig. 22. Time series of monthly mean ozone bias profiles from the MACC reanalysis (left pan-
els) and ERA Interim (right panels) with respect to ozone sondes at Alert (82.5◦ N, 62.3◦ W,
top), Natal (5.5◦ S, 35.3◦ W, middle) and South Pole (bottom) for the period 2003 to 2010 in %.
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Fig. 23. Seasonal mean tropospheric NO2 columns from the MACC reanalysis in
1015 moleculescm−2 for DJF (top left), MAM (top right), JJA (bottom left) and SON (bottom
right) averaged over the years 2003 to 2010. The analysis data were sampled to match the
coverage and overpass time of the SCIAMACHY data. Red indicates higher values of the field,
blue lower values.
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Fig. 24. Seasonal mean differences between tropospheric NO2 vertical columns from the
MACC reanalysis and IUP-SCIAMACHY data in 1015 moleculescm−2 for DJF (top left), MAM
(top right), JJA (bottom left) and SON (bottom right) averaged over the years 2003 to 2010. For
proper comparison with the measurements, the reference sector was also subtracted from the
reanalysis data.
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Fig. 25. Regions used for validation of MACC NO2 data (blue) and MACC HCHO data (red)
against IUP- SCIAMACHY data. NO2 regions: (1) Europe, (2) East Asia, (3) US, (4) Northern
Africa, and (5) Southern Africa. HCHO regions: (6) China, (7) Eastern US, (8) Indonesia, (9)
Northern Africa, and (10) Southern Africa.
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Fig. 26. Time series of monthly mean area averaged tropospheric NO2 columns in
1015 moleculescm−2 from the MACC reanalysis (red), the control run (blue) and IUP-
SCIAMACHY data (black) for the period 2003 to 2010 for Europe (top), East Asia (middle)
and the US (bottom). Only land points were used in these calculations.
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Fig. 27. Time series of monthly mean area averaged tropospheric NO2 columns in
1015 moleculescm−2 from the MACC reanalysis (red), the control run (blue) and from IUP-
SCIAMACHY data (black) for the period 2003 to 2010 for Northern Africa (top) and Southern
Africa (bottom). Only land points were used in these calculations.
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Fig. 28. Seasonal mean zonal average NOx cross sections from the MACC reanalysis in ppb
for DJF (top left), MAM (top right), JJA (bottom left) and SON (bottom right) averaged over the
years 2003 to 2010. Red indicates higher values of the field, blue lower values.
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Fig. 29. Seasonal mean tropospheric HCHO columns from the MACC reanalysis in
1015 moleculescm−2 for DJF (top left), MAM (top right), JJA (bottom left) and SON (bottom
right) averaged over the years 2003 to 2010. The analysis data were sampled to match the
coverage and overpass time of the SCIAMACHY data. Red indicates higher values of the field,
blue lower values.
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 1 

Figure 30: Seasonal mean differences between tropospheric HCHO columns from the MACC 2 

reanalysis and IUP-SCIAMACHY data in 1015molec/cm2 for DJF (top left), MAM (top 3 

right), JJA (bottom left) and SON (bottom right) averaged over the years 2003 to 2010. 4 

Fig. 30. Seasonal mean differences between tropospheric HCHO columns from the MACC re-
analysis and IUP-SCIAMACHY data in 1015 moleculescm−2 for DJF (top left), MAM (top right),
JJA (bottom left) and SON (bottom right) averaged over the years 2003 to 2010.
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Fig. 31. Time series of monthly mean area averaged tropospheric HCHO columns in
1015 moleculescm−2 from the MACC reanalysis (red), and IUP-SCIAMACHY (black) for China
(top) and the Eastern US (bottom). Only land points were used in these calculations.
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Fig. 32. Time series of monthly mean area averaged tropospheric HCHO columns in
1015 moleculescm−2 from the MACC reanalysis (red), and IUP-SCIAMACHY (black) for North-
ern Africa (top), Southern Africa (middle) and Indonesia (bottom). Only land points were used
in these calculations.
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Fig. 33. Seasonal mean zonal average HCHO cross sections from the MACC reanalysis in
ppbv for DJF (top left), MAM (top right), JJA (bottom left) and SON (bottom right) averaged
over the years 2003 to 2010. Red indicates higher values of the field, blue lower values.
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