Atmos. Chem. Phys. Discuss., 13, 4491–4533, 2013 www.atmos-chem-phys-discuss.net/13/4491/2013/ doi:10.5194/acpd-13-4491-2013 © Author(s) 2013. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Identifying the sources driving observed PM_{2.5} variability over Halifax, Nova Scotia, during BORTAS-B

M. D. Gibson¹, J. R. Pierce^{2,3}, D. Waugh⁴, J. S. Kuchta¹, L. Chisholm⁴, T. J. Duck², J. T. Hopper¹, S. Beauchamp⁴, G. H. King¹, J. E. Franklin², W. R. Leaitch⁵, A. J. Wheeler⁶, Z. Li⁷, G. A. Gagnon⁸, and P. I. Palmer⁹

¹Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada

²Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada

³Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA ⁴Environment Canada, Dartmouth, Nova Scotia, Canada

⁵Environment Canada, Toronto, Ontario, Canada

⁶Health Canada, Ottawa, Ontario, Canada

⁷College of Environmental Science and Engineering, Ocean University of China, Qingdao, China

⁸Department of Civil and Resources Engineering, Dalhousie University, Halifax, Nova Scotia, Canada

⁹School of GeoSciences, University of Edinburgh, Edinburgh, UK

Received: 23 January 2013 – Accepted: 1 February 2013 – Published: 15 February 2013

Correspondence to: M. D. Gibson (mark.gibson@dal.ca)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

The source attribution of observed variability of total PM_{2.5} concentrations over Halifax, Nova Scotia was investigated between 11 July-26 August 2011 using measurements of PM25 mass and PM25 chemical composition (black carbon, organic matter, anions, cations and 33 elements). This was part of the BORTAS-B (quantifying the impact of BOReal forest fires on Tropospheric oxidants using aircraft and satellites) experiment, which investigated the atmospheric chemistry and transport of seasonal boreal wild fire emissions over eastern Canada in 2011. The US EPA Positive Matrix Factorization (PMF) receptor model was used to determine the average mass (percentage) source contribution over the 45 days, which was estimated to 10 be: Long-Range Transport (LRT) Pollution $1.75 \,\mu g \,m^{-3}$ (47%), LRT Pollution Marine Mixture $1.0 \,\mu g \,m^{-3}$ (27.9%), Vehicles $0.49 \,\mu g \,m^{-3}$ (13.2%), Fugitive Dust $0.23 \,\mu g \,m^{-3}$ (6.3%), Ship Emissions $0.13 \,\mu g \,m^{-3}$ (3.4%) and Refinery $0.081 \,\mu g \,m^{-3}$ (2.2%). The PMF model describes 87 % of the observed variability in total $PM_{2.5}$ mass (bias = 0.17

- and RSME = $1.5 \mu g m^{-3}$). The factor identifications are based on chemical markers, 15 and they are supported by air mass back trajectory analysis and local wind direction. Biomass burning plumes, found by other surface and aircraft measurements, were not significant enough to be identified in this analysis. This paper presents the results of the PMF receptor modelling, providing valuable insight into the local and upwind sources
- impacting surface PM_{2.5} in Halifax during the BORTAS-B mission. 20

1 Introduction

25

Numerous studies have shown an association between exposure to ambient fine atmospheric particles, less than or equal to a median aerodynamic diameter of 2.5 microns (PM_{2.5}), and acute and chronic health effects (Pope et al., 2002; Dominici et al., 2006). Studies have shown that biomass derived PM_{2.5} is at least as harmful to health as fossil fuel combustion related PM_{2.5} (Allen et al., 2008; Norris et al., 2000). In addition, forest

fire derived PM_{2.5} chemical components and associated gases are known to impact climate and local air quality (Parrington et al., 2011; Gambaro et al., 2008). Remote sensing estimates of the 10-yr average number of forest fires each year in North America is 5062, covering an area of 1 323 736 ha, making biomass burning a major source of PM_{2.5} in North America (Palmer et al., 2013).

Because of the importance of understanding the impact of North American boreal forest wildfires on Northern Hemisphere tropospheric chemistry, a multi-national project, led by the University of Edinburgh was conducted out of Halifax, Nova Scotia, Canada during the summer of 2011. The study aim was to quantify the impact of "BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites". Central to BORTAS-B was a measurement campaign with the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe146 research aircraft (Parrington et al., 2011; Palmer et al., 2013). In addition, numerous satellite observations of trace pyrogenic gases were made (Tereszchuk et al., 2012).

- One component of the BORTAS-B project was to determine the surface impact of boreal forest fire plumes as they were transported across Nova Scotia. This led to the establishment of the Dalhousie University Ground Station (DGS) in Halifax that utilized a variety of instruments to measure size-resolved particulate composition and gas species concentrations both in-situ and through the atmospheric column. The ad ditional BORTAS-B DGS instrumentation not included in this paper are described in
 - Palmer et al. (2013).

Presented here are the results of receptor modelling used to identify the major sources that are responsible for observed variability of total $PM_{2.5}$ in Halifax sampled during the BORTAS-B mission.

25 2 Measurements

Figure 1 shows the geographical location of the DGS. The DGS is 65 m a.s.l. with the sampling inlets 15 m above ground level on the roof of the Sir James Dunn

building, Dalhousie University in the south end of Halifax (Lat $44^{\circ}38'17.46''$ N, long $63^{\circ}35'37.52''$ W). The building is located in a residential area of Halifax away from strong local sources of PM_{2.5}. However, during the BORTAS-B study there was visible fugitive dust emissions caused by street landscaping and building renovations taking place in the vicinity of the DGS. This fugitive dust did not cause any operational issues with the instruments related to the receptor modelling of PM_{2.5}.

5

10

24-h integrated filter samples were collected at the BORTAS-B DGS from 19:00 UTC on 11 July 2011, with continuous measurements from 19:00 UTC on 13 July 2011 to 19:00 UTC on 26 August 2011 resulting in 44 consecutive days of $PM_{2.5}$ samples. Continuous measurements of black carbon (BC), organic matter (OM) and meteorology were also collected over the same sampling period.

The PM_{2.5} were sampled simultaneously onto two separate filter media (Teflon and nylon). A Thermo 3500 ChemComb (Thermo Fisher Scientific Inc. Waltham, MA, US 02454) sampler loaded with a 47 mm diameter nylon filter was operated at a flow rate of 10 Lmin^{-1} for the collection of PM_{2.5} anions (Cl⁻, Br⁻, NO₃⁻ and SO₄²⁻), cations (Na⁺, K⁺, NH₄⁺, Mg²⁺, Ca²⁺) and water soluble metals (P, Cr, As, Se, Pb, Sr and Mn). A sodium carbonate denuder was used in the ChemComb to scrub SO₂ from the sample air stream to prevent the formation of SO₄ artifacts on the nylon filter (Maykut et al., 2003). The ChemComb PM_{2.5} size-selection was achieved using a Teflon coated in-

- ²⁰ let containing two polyurethane foam (PUF) impactors located directly behind the inlet slit. Clean PUF impactors were used for each new sample. A Medo (MEDO USA, Inc., 46 Chancellor Drive, Roselle, IL, 60172) pump was used with each ChemComb sampler at a flow rate of 10 Lmin⁻¹. The flow rate of the ChemComb sampler was checked at the start and end of sampling with a NIST traceable Dry Cal Defender
- flow meter (accuracy of ±2% of flow reading). A flow rate of ±20% was deemed acceptable. Collocated with the nylon filter ChemComb sampler was a Thermo Partisol 2025-dichotomous (Partisol) sampler. The Partisol is designated as a USEPA Equivalent Sampler (EQPS-0509-177), collecting PM onto two separate 47 mm diameter, ring supported, 2.0 µm pore size Teflon filters (Whatman part #7592-104). One filter

collects PM_{2.5} (fine particles) with the second filter simultaneously collecting PM_{2.5-10} (coarse particles). The Partisol operates by first drawing air through a standard PM₁₀ size selective inlet at a flow rate of 16.7 Lmin⁻¹ (Gibson et al., 2009). The flow is then split, with 15.0 Lmin⁻¹ passing through the PM_{2.5} collection filter and 1.67 Lmin⁻¹ passing through the PM_{2.5-10} collection filter providing a dichotomous sample of fine and coarse PM (Dabek-Zlotorzynska et al., 2011). Only the PM_{2.5} filter was used for source apportionment. The Partisol flow rate was checked weekly with a Dry Cal Defender

- flow meter. The Partisol stopped sampling if the flow rate deviated by more than ±10% of the set flow. The Partisol flow rate was maintained by an onboard volume flow controller. Because of the volume flow controller the uncertainty of the Partisol flow rate was found to be < 0.5%. Weekly internal and external leak checks were performed on the Partisol as per the manufactures instructions with no failures reported during the study.
- Assembly and disassembly of the ChemComb sampler and Partisol filter cassettes ¹⁵ was conducted in a Clean-Ceil, high efficiency particle air (HEPA) cleaner hood (Microzone, Corporation, Ottawa, Ontario, Canada, K2S2C7) in the Atmospheric Forensics Research Group (AFRG) laboratory, Department of Process Engineering and Applied Science, Dalhousie University. The Clean-Ceil HEPA hood operated at low flow to provide particle free air while handling filters.
- The total PM_{2.5} mass concentration was determined by gravimetric analysis of the Teflon filter sample at Alberta Innovates (Highway 16A and 75th Street, Vegreville, Alberta, Canada, T9C 1T4). The gravimetric analysis was conducted in accordance with USEPA protocol for the determination of ambient PM_{2.5} mass concentration using filter based sampling systems (USEPA, 1998). The Teflon filters used for mass determination were housed in 47 mm contact plates, triple wrapped in airtight Ziplock bags and shipped to, and from, Alberta Innovates in coolers by express airfreight.

After gravimetric determination, the PM_{2.5} Teflon filter samples were shipped in the same fashion to RTI International (3040 Cornwallis Road, Building 7, RTP, NC, USA 27709) for the analysis of 33 elements (Ag, Al, As, Ba, Br, Ca, Cd, Ce, Cl, Co, Cr,

Cs, Cu, Fe, In, K, Mg, Mn, Na, Ni, P, Pb, Rb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn and Zr) using a Thermo Fisher Scientific Quant'X energy dispersive x-ray fluorescence (ED-XRF) instrument. Due to low PM_{2.5} mass, 14 of the following elements measured by ED-XRF were not detected in any of the samples: Ag, Cd, Ce, Cs, In, P, Pb, Rb, Sb, Se, Sn, Sr, Ti and Zr.

The anions, cations and water soluble metals were extracted from each nylon filter in a clean, 50 mm diameter, screw cap NALGENE extraction bottle.

The nylon filter was then wetted with $100 \,\mu$ L of HPLC grade isopropanol, and extracted with 8 mL Type-1, $18 \,M\Omega$ cm water followed by 30 min sonication. The anion and cation analysis was conducted in the AFRG laboratory using a Thermo Fisher Scientific, Dionex ICS-1000 ion chromatograph (Dionex Canada Ltd, RPO Maple Grove Village, Oakville, Ontario, L6J 7P5). Details of the Dionex instrument configuration and analysis protocol for the anion analysis is reported in Gibson et al. (2013). Cations were

10

- analyzed using the Dionex ICS-1000 fitted with an IonPac CS-12 analytical column and
 guard column, 20 mM methanesulfonic acid eluent with an inject loop of 25 μL. Seven point standard curves were used to quantify both anions and cations. The method used to determine the detection limit of the anions and cations is described in Gibson et al. (2013). Anions and cations not detected by ion chromatography in any of the samples included F⁻, NO₂⁻, Br⁻, HPO₄²⁻ and Mg²⁺. The water soluble metals (P, Cr,
- ²⁰ Mn, As, Se, Pb and Sr) extracted from the nylon filter were analyzed using a Thermo X-Series II single quadrupole inductively coupled plasma-mass spectrometer (ICP-MS) in the Department of Civil and Resources Engineering at Dalhousie University. A five-point standard curve of the isotope masses ³¹P, ⁵²Cr, ⁵⁵Mn, ⁷⁵As, ⁸²Se, ²⁰⁸Pb and ⁸⁸Sr were used for qualification and quantification. These elements were found to be above the detection limits in all samples.

Black carbon was estimated from continuous 1-min averages of light absorption at 880 nm using a Magee Scientific Corporation, AE42 aethalometer (1916A M. L. King Jr. Way Berkeley CA 94704, USA) (Lawless et al., 2004; Babu and Moorthy, 2002). The mass absorption conversion factor used was 16.6 (Hansen, 2005). The precision of the

AE42 aethalometer was determined by side-by-side comparisons with a second AE42 instrument. The precision of the 1-min averages was found to be 18%. The 1-min data points were integrated to match the 24-h $PM_{2.5}$ filter samples.

- An Aerodyne Research, Inc., (Billerica, MA, US, 01821-3976) Aerosol Chemical Speciation Monitor (ACSM) (Ng et al., 2011) was operated by Environment Canada for the purposes of measuring continuous OM, NH₄, SO₄, CI and NO₃ at a temporal resolution of 30 min. The ACSM, 30-min data points were integrated to match the 24-h PM_{2.5} filter samples. Only the OM from the ACSM was used in the receptor modelling of the PM_{2.5} as the NH₄, SO₄ and CI from the nylon filter are recognized as the standard protocol for PM_{2.5} speciation used in receptor modelling (Dabek-Zlotorzynska et al., 2011). Filter based samples of OM were not available in this study, hence the use of the ACSM OM. The upper size cutoff (50 % transmittance) for the ACSM is close ~ 650 nm and the lower cut is 80–100 nm (Liu et al., 2007). While most of the organic (both primary and secondary) organic aerosol mass is at sizes smaller than 650 nm,
- it is possible that some of the mass between 650 nm and 2.5 µm was lost (Ng et al., 2011). Mass calibrations were performed before and after the experiment at Environment Canada in Toronto using nearly monodisperse particles of ammonium nitrate. The data completeness for the ACSM during BORTAS-B was 85 % (missing data between 2 August and 8 August). Stepwise regression (SR) was used to predict OM during
- ²⁰ the period of missing data. 21 $PM_{2.5}$ species variables and meteorological variables were used in the SR model. The significant OM predictor variables (*p*-values, coefficient) used in the SR model were K (*p* = 0.001, 10.801), Ni (*p* = 0.007, -204.097), Zn (*p* = 0003, 121.884) and SO₄ (*p* < 0.001, 0.531). The SR constant was 0.157 with a model r^2 of 0.86. The artificial data generated for the 7 missing days of OM samples
- were used in the PMF model. It was felt that this was superior to using the median OM concentration for the missing data period as suggested in the PMF user guide.

Meteorological data at the BORTAS-B DGS was collected every 15 min using a Davis Vantage Pro II weather station (Davis Instruments Corp. Hayward, California 94545 USA). The Davis Vantage Pro II weather sensors included wind speed, wind direction,

temperature, pressure, solar radiation, UV radiation, relative humidity and precipitation. The meteorological data was integrated to match the 24-h filter based sampling. The descriptive statistics of the meteorological variables that cover the PM_{2.5} sampling period at the BORTAS-B DGS are provided in Table 1. The average wind vector coinciding with each 24-h PM_{2.5} sample was determined using WRPLOT View (Lakes Environmental Waterloo Ontario N2V 249 Canada). The daily wind vectors and the

Environmental, Waterloo, Ontario, N2V 2A9, Canada). The daily wind vectors and the apportioned source masses were used to generate the source contribution rose shown in Fig. 9.

In addition, Environment Canada used the meteorological data from Halifax International airport to provide an overview of meteorological conditions within the Halifax Regional Municipality during the 45 days of filter sampling at the BORTAS-B DGS. A climatology review of synoptic meteorology patterns over Maritime Canada indicates a general west to east progression of transport flow. The period of the filter-based measurements at the DGS in summer 2011 was influenced by numerous weak low pressure

- systems during the first half of the sampling period (to 4 August). These systems, along with onshore moist southerly air flows provided extended periods with low level clouds and occasional periods of rain, drizzle and fog. Low cloud tends to inhibit photochemistry and promote aqueous-phase production of sulphate. Precipitation favors removal of particles from the atmosphere. Of the 45 sampling days, 13 had periods with sunny
- ²⁰ skies (6 + h). Ten of these days were in the latter portion of the sampling period, from 6 August onward, indicating limited photochemistry in the first portion of the sample period. Wind speed was significant ($8.0 \,\mathrm{ms}^{-1}$ or more) on 7 days with 20 August being the windiest. Rain with amounts > 0.2 mm occurred on 16 days with 3 days (20 July, 2 August, 8 August) when amounts were greater than 20 mm. The 2 August rain event
- ²⁵ was due to a nearly stationary line of thunderstorms that developed over Halifax in the late afternoon. The line of thunderstorms did not move east of the area until the early hours of 3 August after providing 60 + mm of rain. A daily climatology review prepared by Environment Canada is presented in Table 2. These data was accessed via: http://www.climate.weatheroffice.gc.ca/climateData/canada_e.html.

3 Models

The HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to investigate the source regions of $PM_{2.5}$ measured at the DGS during BORTAS-B. Figure 2 shows 2-day ensemble air mass back trajectories for the Halifax DGS during

- ⁵ BORTAS-B we generated using HYSPLIT (Draxler and Rolph, 2012; Rolph, 2012). Two trajectories were obtained for each 24-h sampling period (07:00 UTC and 19:00 UTC). The HYSPLIT default of 950 hPa (500 m) was chosen as the arrival height to avoid trajectories hitting the ground before they arrive at the DGS. The mean location of the trajectory over the 2-day travel time was used to group the trajectories into four clus-
- ters: (1) N (315° to 45°), (2) marine (45° to 235°), (3) SW (235° to 265°), and (4) W-NW (265° to 315°). These clusters were chosen to reflect known source regions in Central Canada, Atlantic Canada and the North East United States, e.g. trajectory clusters coloured cyan are clearly under the influence of marine aerosol, the SW cluster (red) covers the Ohio valley, the interstate-95 corridor and other source regions in the NE US
- (Jeong et al., 2011; Dabek-Zlotorzynska et al., 2011). The NW cluster (green) covers the Windsor–Québec corridor, which is the population and industrial core of Central Canada and, as such, a major source region of secondary inorganic species and secondary OM (Jeong et al., 2011; Dabek-Zlotorzynska et al., 2011). The N cluster (blue) is a region of low anthropogenic emissions and should represent fairly clean air parcels
- impacting Halifax. Figure 3 shows the altitudes of these back trajectories, which we use to partition between the boundary layer (2 km) and free troposphere (> 2 km) en route to Halifax. These back trajectories will be discussed further in the results section.

The US EPA Positive Matrix Factorization (PMF) receptor model v3 was used for source apportionment of the $PM_{2.5}$ sampled during BORTAS-B in Halifax. PMF method

has an extensive heritage, having been applied to many PM_{2.5} source apportionment studies (Gugamsetty et al., 2012; Paatero, 1997; Paatero and Trapper, 1994; Henry, 1997; Martello et al., 2008; Jeong et al., 2008, 2011; Kim et al., 2004; Chen et al., 2007b; Brown et al., 2007; Larson et al., 2004; Song et al., 2001; Bari et al., 2009). The

PMF model uses a mass balance equation, Eq. (1), that can be written to account for all *m* chemical species in the *n* samples as contributions from p independent sources (Hopke, 1991).

$$\chi_{ij} = \sum_{k=1}^{p} f_{ik} g_{kj}$$

- ⁵ where χ_{ij} is the *i*th elemental concentration measured in the *j*th sample, f_{ik} is the gravimetric concentration $(ngmg^{-1})$ from the *i*th element in the material from the *k*th source, and g_{kj} is the airborne PM_{2.5} mass concentration (mgm^{-3}) of material from the *k*th source contributing to the *j*th sample. The following physical constraints are applied to the PMF model: (1) the model must fit the original data, (2) no negative source con-¹⁰ tributions are allowed and (3) the sum of the source contributions must be less than or equal to the total mass measured (Hopke, 1991). PMF then uses factor analysis to estimate the number and composition of the sources as well as their contribution to the total PM_{2.5} mass. A priori knowledge of sources, meteorology and the chemical markers present in each PMF factor is used to identify the source associated with
- each factor (e.g. factors containing K and BC are likely associated with biomass burning). Correlation matrices and principal component analysis of the PM_{2.5} mass, PM_{2.5} chemical species, associated volatile organic compounds (VOCs), other gas measurements, air mass back trajectory models and other meteorological variables are often used to aid the identification of the source of the chemical species in each PMF factor
 (Jeong et al., 2011; Martello et al., 2008).

The task of PMF is to determine the loss function (Q), defined in Eq. (2), as follows:

$$Q = \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\frac{e_{ij}}{S_{ij}} \right)^2$$

where e_{ij} residual matrix of the *i*th element measured in the *j*th sample, S^{ij} is the uncertainty in the *i*th element measured in the *j*th sample. The loss function, Q, should

(1)

(2)

be approximately equal to the degrees of freedom (Martello et al., 2008). When the calculated Q value is below the degrees of freedom then the uncertainty in the overall model fit is smaller than would be expected from random error, providing confidence that the data set is well defined by the model solution (Martello et al., 2008). When

- ⁵ calculating *Q*, PMF ensures that all the species profiles (matrix F) are non-negative and that each source contribution to the PM_{2.5} mass is positive (matrix G). The PMF model simultaneously changes the elements of G and F in iterative steps to minimise *Q*. The procedure of Polissar et al. (1998) was used to determine each species measurement uncertainty based upon one-sigma analytical uncertainty values and minimum
- detection limits. The sum of the analytical uncertainty and one-third of the detection limit value was used as the overall uncertainty assigned to each measured concentration. Any component found to have a high signal-to-noise ratio were down-weighted as described by Paatero and Hopke (2003). The total PM_{2.5} mass values were downweighted to weak as described in the PMF user guide (Eberly, 2005).
- ¹⁵ For the model base run, twenty random PMF initializations were conducted. Once the base run was completed the scatter plots and times series of the modelled and observed $PM_{2.5}$ species were scrutinised with outliers being investigated. The normality of the model scaled residuals for each $PM_{2.5}$ species was also scrutinized. Any $PM_{2.5}$ species scaled residuals found to be ±3 from zero were investigated further for poor
- ²⁰ model fit. Two checks on model performance were then made, bootstrapping and the PMF FPeak function. To fine tune the model the FPeak function within PMF was used to robustly minimise the effect of outliers. However, FPeak failed to improve the model and so was set to zero. The G-Space function was used to also check for model performance with no issues found with any of the species bi-plots. Once confidence in the
- ²⁵ model was achieved the PMF factor profiles were allocated a "source name" based upon the factor loadings of the key chemical markers present.

Chemical markers are used to help identify sources within the PMF source profiles, e.g. biomass burning has a number of characteristic chemical markers, e.g. potassium, BC and levoglucosan (1,6-anhydro- β -D-glucopyranose) (Bergauff et al., 2010; Ward

et al., 2012; Jeong et al., 2008). Potassium is our preferred marker of long-range wildfire smoke plumes as it is conserved from source to receptor. Levoglucosan is a good marker for local biomass burning, but it is readily oxidized to 17% of its original primary mass after 3.5 h of exposure to hydroxyl radicals (OH) (Hennigan et al., 2011), which reduces its ability to identify Long Range Transport (LRT) of biomass burning. However, 5 internally mixed Levoglucosan may not be oxidized, being protected by the outer layer of the particulate, and so may still be useful as a marker of LRT Boreal wildfire burning (Hennigan et al., 2011). Robust chemical markers of ship emissions include sulfate (SO₄), vanadium (V), nickel (Ni) and BC (Hobbs et al., 2000; Isakson et al., 2001; Zhao et al., 2013). V/Ni ratios originating from heavy fuel oil (HFO) used in ships range from 10 1.9-6.5 (Zhao et al., 2013). The sulphur content of HFO is currently between 1.0% and 3.5%, and during combustion produces particulate SO₄ (Lack et al., 2011). Ship emissions also contain large quantities of BC particulate (Lack and Corbett, 2012). Unambiguous markers of fugitive surficial dust include iron (Fe), aluminium (AI), calcium (Ca) and silicon (Si) (Jeong et al., 2011; Martello et al., 2008; Gugamsetty et al., 15 2012). Primary sea salt markers include sodium (Na), chloride (Cl), magnesium (Mg), and Ca (Gibson et al., 2009) and Na, Ca, Mg and nitrate (NO₃) for aged marine secondary aerosol (Jeong et al., 2011; Gibson et al., 2009). Nitrate, ammonium (NH₄) and SO_4 are markers of long-range secondary inorganic PM produced by photochemical reactions of pre-cursor gases NO₂, SO₂ and ammonia (NH₃) (Yin and Harrison, 2008; 20 Gibson et al., 2009). Chemical markers for vehicular emissions include BC, bromine (Br), antimony (Sb), manganese (Mn), and Fe (Larson et al., 2004; Huang et al., 1994). Copper (Cu), barium (Ba) and Fe are markers for vehicle brake wear (Harrison et al., 2011; Bukowiecki et al., 2010; Chen et al., 2007a) and zinc (Zn) and cadmium (Cd) are markers for vehicle tire wear (Bukowiecki et al., 2010; Olajire and Ayodele, 1997; Chen 25 et al., 2007a). Diesel emissions have been previously characterized by high PMF loading of PM_{2.5} mass and BC (Martello et al., 2008; Chen et al., 2007a). Selenium (Se) is often used as a good marker for coal combustion (Chow et al., 2004). The source chemical profiles contained in the US EPA Speciate database provide additional ev-

idence to identify source chemical markers in PMF chemical species factor profiles (Ward et al., 2012; Jaeckels et al., 2007).

4 Results and discussion

4.1 HYSPLIT cluster analysis

⁵ Figure 2 shows using the ensemble HYSPLIT, 2-day, air mass back trajectories that 40% of the air masses entering Halifax during the BORTAS-B PM_{2.5} sampling campaign originated from the marine sector, 16% from the SW (NE US), 27% from the WNW (Windsor–Quebec source region) and 16% from the N. Figure 3 shows that air mass back trajectories from all four clusters have a high likelihood that the trajectory profiles were in the boundary layer during the previous 48 h. Our analysis also showed that over 80% of the back trajectories were below 1.5 km for the entire 48 h. The profiles from the N (blue) show the highest probability of air subsiding from the free troposphere; however, we expect these profiles to be associated with clean air regardless of the altitude of the back trajectories. The Marine cluster mostly originate
¹⁵ from the boundary layer, as expected (Holzinger et al., 2007). Of the two potentially

polluted clusters shown in Fig. 3, the SW cluster and WNW cluster appear to be mainly associated with boundary layer flow.

4.2 Descriptive statistics

Table 3 provides the descriptive statistics for the $PM_{2.5}$ species and associated meteorological variables sampled during BORTAS-B. The median $PM_{2.5}$ concentration is $3.9 \,\mu g m^{-3}$, which is considerably lower than historical (2006–2008) summer time value (median $9.0 \,\mu g m^{-3}$) measured at the NAPS station in down town Halifax and reported by Jeong et al. (2011). The difference between these two values might be due to greater vehicle density in the downtown core of Halifax compared to the BORTAS-B DGS in

the more residential south end of Halifax. Unfortunately, the Federal Government $PM_{2.5}$ monitoring in downtown Halifax during BORTAS-B was too sparse to make any direct comparison with our data possible. The BORTAS-B $PM_{2.5}$ median is also considerably lower than summertime median $PM_{2.5}$ concentrations found in Toronto ($12 \mu gm^{-3}$) and Windsor, Canada ($15 \mu gm^{-3}$) (Jeong et al., 2011), which we attribute to the significantly

- ⁵ Windsor, Canada (15 µgm⁻⁰) (Jeong et al., 2011), which we attribute to the significantly lower population, vehicle and industrial density in Halifax in comparison to these other Canadian cities. In addition, with reference to Table 2, precipitation amounts > 0.2 mm occurred on 16 days, with two days (2 August and 8 August) when amounts were greater than 20 mm. The significant precipitation occurring during roughly half of the sampling period helps explain the reduced average PM_{2.5} concentrations observed
- during BORTAS-B when compared with previous years. Despite the low $PM_{2.5}$ sample mass, the key chemical species needed to conduct PMF modelling were above the limit of detection (LOD).

4.3 PM_{2.5} composition

- Figures 4–7 show time series of daily major, macro, minor and trace PM_{2.5} components together with the total PM_{2.5} mass concentration. The main contributing species seen during the relatively low PM_{2.5} concentrations observed between 13 July and 15 July were Na and Cl (indicative of Sea Salt) as well as some OM and BC (local combustion emissions; also, filter absorption can be affected by other absorbers, such as brown carbon, and at 880 nm by scattering due to larger particles of sea salt), with greatly
- reduced, or absent, NH₄, SO₄, NO₃, Se and Pb (indicative of LRT pollution), compared to other time periods. The air mass back trajectories during this low PM_{2.5} mass period were from the north, a region of low primary and secondary PM_{2.5} emission, thus providing evidence to explain the low concentrations experienced on 13 July and 15
- $_{25}$ July. Between 16 July and 24 July there was a PM_{2.5} episode as shown by Fig. 4. Figures 4 and 5 show that the dominant species during this period were BC, NH₄, S, SO₄, NO₃ and OM with input from Se and Pb, as shown in Fig. 7. The presence of

Se indicates input from coal fired power stations and Pb being a marker of industry, the likely source region being the NE US airshed (Martello et al., 2008). The elevated Na and Cl provide evidence that the air mass also crossed the ocean before reaching Halifax. This is corroborated by air mass trajectories over this period which show that

the airflow was from the SW and Eastern seaboard of the US, and this will be discussed later with the PMF results. With reference to Table 2, there was a thunderstorm on 19 July that likely explains the sudden reduction in PM_{2.5} concentration due to aerosol "wash-out" on this day compared to the preceding and following days.

Figure 6 shows a fugitive dust event on 23 August, which is characterized by elevated
 concentrations of Si, K, Fe, Ca and Al that are known crustal elements. The weather on 23 August was dry, warm (23°C), with clear skies and accompanied by high winds (3–4 m s⁻¹) throughout the 24-h period, conditions favourable to the re-suspension of surficial dust. There was also considerable street landscaping and exterior building restoration taking place on this day, again providing supportive evidence for fugitive dust suspension. Figure 7 shows elevated Ba and Cu on 23 August, which are known

- markers of brake wear contamination of re-suspended road dust and urban soils (Harrison et al., 2011; Bukowiecki et al., 2010). Therefore, brake wear components are probably an additional component of the elevated fugitive dust seen on 23 August. From Fig. 7 it can be seen that there were elevated concentrations of Ba, Cu, Zn and
- As on 31 July and 13 August which are known markers for vehicles (Harrison et al., 2011; Bukowiecki et al., 2010). The wind direction on these two days was from the NW, which is in-line with the 102 Highway and other major and minor roads upwind of the sampling site (again, this will be shown with the PMF results). In addition, on 31 July and 13 August it was dry, with winds between 4–6 m s⁻¹ and 4 m s⁻¹, respectively,
- ²⁵ conditions that favour transport and re-suspension of vehicle emissions, tire debris and brake wear which are the probable sources of these elevated metal concentrations seen on 31 July and 13 August. Figure 7, also shows elevated Ni, V and SO₄ on 10 August. The local wind direction on this day was from the SE and aligned with Halifax harbour. The wind direction coincident with the harbour, together with the presence of

elevated Ni, V and SO₄ suggest ship emissions as the probable source contributing to the $PM_{2.5}$ mass on this day (Zhao et al., 2013).

4.4 PMF receptor modelling

- The number of factors (sources) that PMF could apportion were explored in an iterative process from 5 factor profiles through to 15 factor profiles. The number of factors chosen was based on the high factor loadings of key chemical markers, the ensemble HYSPLIT trajectory clusters (Fig. 2), wind roses analysis and a priori knowledge of known sources impacting Halifax. The seven factors chosen were LRT Pollution (LRTP), LRT Pollution Marine Mixture (LRTPMM), Refinery, Ship Emissions, Vehicles, Fugitive Dust and Sea Salt which were anticipated by the individual chemical markers 10 related to these sources as discussed in Sect. 4.3. High factor loadings of OM, PM_{2.5}, SO₄, S and NH₄ were used to identify LRTP. High factor loadings of OM, NO₃ and Na were used to identify LRTPMM. The LRTPMM is likely a mixture of aerosol pollution outflow from the NE US and Sea Salt that has undergone CI loss via reactions with acidic aerosol (Gibson et al., 2009; Leaitch et al., 1996; Calvert et al., 1985). The pres-15 ence of NO₃ in the LRTPMM could also be attributed to night-time reactions of NO₂ with O₃, with NO₃ also reacting with sea salt to remove CI (Finlayson-Pitts and Pitts, 1999; Calvert et al., 1985). The Refinery factor was identified by the presence of Pb, Zn, Cu, Cr and V (Jeong et al., 2011). Ship Emissions were identified by the high factor loadings of Ni, V, BC and SO₄ (Zhao et al., 2013). Vehicles were identified by the high 20 factor loadings of BC, OM, Ba, Cu, Br and Zn (Gietl et al., 2010). It was not possible with this data set to split the vehicle factors into gasoline or diesel emissions, brakes or tire wear sources. Fugitive Dust was identified by high factor loadings for AI, Ca, K, Fe
- and Si (Jeong et al., 2011). Sea Salt was identified from the high factor loadings for Na, ²⁵ Cl, 55% and 88% respectively, which is the same ratio as found in sea water (Gibson et al., 2009). Although Sea Salt was observed in all PMF factor iterations, 5 through 15, the mass contribution was so low that PMF failed to apportion mass to any of the PMF model runs. This is perhaps not surprising given the very low PM_{2.5} mass observed

during BORTAS-B and the fact that Sea Salt PM are mostly associated with the coarse size fraction. However, there was evidence of a contribution of aged marine aerosol (as indicated by the presence of Na and NO₃ markers) to the LRTPMM source coincident with airflow from the NE US and crossing the ocean en route to Halifax (Leaitch et al.,

⁵ 1996). Therefore, the PMF receptor model apportioned six PM_{2.5} sources. Figure 8 presents a time series of the six contributing sources to PM_{2.5} mass estimated using PMF during BORTAS-B.

Figure 9 shows the local wind directional dependence of the $PM_{2.5}$ source contributions estimated by PMF. Ship emission $PM_{2.5}$ source contribution aligns with the cruise ship terminal, harbour shipping lane and Naval base with little ship emission contribu-

- ¹⁰ ship terminal, harbour shipping lane and Naval base with little ship emission contribution directly to WNW, which is in the opposite direction to the harbour. Figure 9 confirms that ship emissions were correctly allocated to the PMF factor profile. Figure 8 shows that between 13 July and 16 July the main contributing PM_{2.5} source were Vehicles, which can be explained by the N and NW wind directions (Table 2) aligned with the
- ¹⁵ highways directly upwind of the DGS. The Fugitive Dust source is most probably associated with immediate local surficial material re-suspension (Harrison et al., 2011). From Fig. 9., we found that the Fugitive Dust was associated with a westerly wind direction. This wind direction is coincident with the major street landscaping that occurred directly below the western side of the DGS throughout BORTAS-B. It was found that the
- Refinery Source does not appear to have a strong local wind directional dependence. The refinery is on the other side of Halifax harbour so that the local wind direction is less appropriate than for more immediate local sources such as vehicles and fugitive dust. Air mass back trajectory analysis did not yield any further insight into wind direction dependence for the refinery source. Marine inversions and the complexity of
- the harbour and city topography that lay between the refinery and the DGS may have perturbed any wind directional dependence for this source.

Figure 10 shows the PMF source contribution for LRTP and LRTPMM associated with the SW and W air mass back trajectories. The back trajectories associated with the days with high loadings of LRTP have all passed over eastern Canada or the NE

US (Fig. 10). This is the region where we expect the largest sulphur sources. The days with high loadings of LRTPMM (Fig. 10) have more variability. While the trajectories generally come from the W, several of the back trajectories have primarily been over the ocean for most of the 48-h. The presence of Na and the loss of Cl associated with the LRTPMM source suggests continental acidic aerosol outflow mixing with marine aerosol en route to Halifax (Holzinger et al., 2007; Sirois and Bottenheim, 1995; Gibson

et al., 2009; Leaitch et al., 1996). Figure 11 shows the average mass and (percentage) contribution from the six sources estimated by PMF during BORTAS-B. The Refinery contribution of 0.081 μgm⁻³ (2.2%) during BORTAS-B is somewhat lower than 0.3 μgm⁻³ (3.5%) obtained by PMF conducted by Jeong et al. (2011) (Jeong-PMF). The comparison for the BORTAS-B PMF vehicles with Jeong-PMF vehicle PM_{2.5} mass contribution was 0.49 μgm⁻³ (13.2%) and 1.0 μgm⁻³ (14.2%) respectively which is very similar in terms of % contribution but half the PM_{2.5} mass seen during BORTAS-B. The comparison be-

- tween the BORTAS-B PMF and Jeong-PMF for the Ship Emission was 0.13 µg m⁻³ (3.4%) and 0.6 µg m⁻³ (9.1%) respectively, showing a 4.6 times mass reduction and 3 times reduction in % contribution between the previous PMF study conducted on 2006–2008 data and the BORTAS-B study. This could be due to the reduction in the sulphur content (3.5% to 1%) of HFO used in ships in the intervening period between these two studies which, coincidentally, is the same ratio of sulphur reduction in HFO as the PM_{2.5} mass reduction seen in the BORTAS-B study. The comparison
- between BORTAS-B PMF and Jeong-PMF Fugitive Dust is $0.23 \mu gm^{-3}$ (6.3%) and $0.3 \mu gm^{-3}$ (3.8%) respectively, both are similar in magnitude for PM_{2.5} mass but with a 39% greater contribution to PM_{2.5} during BORTAS-B. The fugitive dust contribu-²⁵ tion during BORTAS-B can be explained by street landscaping and exterior building restoration work that occurred during BORTAS-B. The comparison between BORTAS-B B PMF and Jeong-PMF for the LRTP was 1.75 μgm^{-3} (47%) and 2.6 μgm^{-3} (37.3%), which are similar in magnitude; providing confidence in the BORTAS-B PMF results. In a comparison between BORTAS-B PMF LRTPMM and Jeong-PMF LRTPMM, Jeong

et al. (2011) estimated that secondary NO₃ aerosol in Halifax was $1.0 \,\mu\text{gm}^{-3}$ (27.9%) and 0.7 μgm^{-3} (9.3%), which is again similar in mass contribution to BORTAS-B but roughly three times the % contribution when compared to the Jeong-PMF results. The factor associated with "unaltered" sea salt was identified in the BORTAS-B samples ⁵ but there was too little mass for PMF to apportion, although aged marine aerosol did contribute to the LRTPMM source. The Jeong-PMF reported a Sea Salt contribution of $1.3 \,\mu\text{gm}^{-3}$ (18.3%) contribution to PM_{2.5} mass in Halifax, however this was an average over 2 yr and include all seasons (Jeong et al., 2011).

The sum of the masses associated with the six apportioned sources obtained from PMF were compared with the original total $PM_{2.5}$ mass. The bias of the PMF model was calculated as (A - T)/T, where A is the PMF $PM_{2.5}$ mass concentration and T is observed $PM_{2.5}$ mass concentration over the 45 days of sampling. The root-meansquare error (RMSE) was used to determine the accuracy of the PMF model, Eq. (3).

15 RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}$$

where $\hat{y} = PMF$ model total $PM_{2.5}$ mass concentration and y = observed total $PM_{2.5}$ mass concentration with units expressed in μgm^{-3} .

Linear regression of the PMF model versus observed $PM_{2.5}$ mass yielded a slope of 0.874, intercept of 1.24 and $r^2 = 0.87$. The PMF model bias = 0.17 and the RSME = $1.5 \mu gm^{-3}$, showing that the PMF model skill was high.

5 Conclusion

20

The PMF model was used to determine six major sources contributing to the $PM_{2.5}$ mass sampled during the BORTAS-B study. Although other BORTAS-B related observations (Palmer, 2013) showed that transient Boreal wildfire smoke plumes did pass

(3)

over and impact the surface in Halifax, there was insufficient mass for PMF to apportion. However, this study does provide valuable new insight into the major local and distant sources contributing to surface $PM_{2.5}$ mass at the DGS during BORTAS-B. It was shown that the dominant source contribution to summertime $PM_{2.5}$ mass in Hal-

- ⁵ ifax was from LRT Pollution with a contribution from aged marine aerosol (75%) coincident with SW air flow. This is consistent with the conventional wisdom that Nova Scotia is the "tail pipe of North America". Comparison of the PMF total $PM_{2.5}$ mass with the observed total $PM_{2.5}$ mass over the sampling period showed good agreement ($r^2 = 0.87$, bias = 0.17 and RSME = $1.5 \mu g m^{-3}$), demonstrating the PMF receptor
- ¹⁰ model performed well. The study highlights the utility of using air mass back trajectories coupled with local wind direction dependence to help identify the source of PM_{2.5}. The techniques used in this study show considerable promise for further application to other sites and to identify other source categories of PM_{2.5}. This study provides new data that will be useful for other BORTAS-B related investigations as well as new infor-¹⁵ mation that can be used for population air pollution exposure assessment, air quality
- management and urban planning in Halifax.

20

Acknowledgements. We are grateful to Paul Palmer (University of Edinburgh) for funding project consumables via his Philip Leverhulme Prize. We would like to thank Health Canada for the loan of the Magee black carbon Aethalometer, Thermo ChemComb samplers, filter weighing and XRF analysis. Many thanks to CD-NOVA for the loan of the Thermo Partisol 2025-Dichotomous sampler. Gratitude to Heather Daurie, Department of Civil and Resources

Engineering, Dalhousie University for analysing the water soluble metals species. We acknowledge the support of Environment Canada and Nova Scotia Environment, Air Quality Section, for the provision of comparative air pollution data, meteorological data and general support and advice.

References

15

- Allen, R. W., Mar, T., Koenig, J., Liu, L. J. S., Gould, T., Simpson, C., and Larson, T.: Changes in lung function and airway inflammation among asthmatic children residing in a woodsmokeimpacted urban area, Inhal. Toxicol., 20, 423–433, 2008.
- ⁵ Babu, S. S. and Moorthy, K. K.: Aerosol black carbon over a tropical coastal station in India, Geophys. Res. Lett., 29, 13-11-13-14, doi:10.1029/2002GL015662, 2002.
 - Bari, M. A., Baumbach, G., Kuch, B., and Scheffknecht, G.: Wood smoke as a source of particle-phase organic compounds in residential areas, Atmos. Environ., 43, 4722–4732, doi:10.1016/j.atmosenv.2008.09.006, 2009.
- Bergauff, M. A., Ward, T. J., Noonan, C. W., Migliaccio, C. T., Simpson, C. D., Evanoski, A. R., and Palmer, C. P.: Urinary levoglucosan as a biomarker of wood smoke: results of human exposure studies, J. Expo. Sci. Env. Epid., 20, 385–392, 2010.
 - Brown, S. G., Frankel, A., and Hafner, H. R.: Source apportionment of VOCs in the Los Angeles area using positive matrix factorization, Atmos. Environ., 41, 227–237, doi:10.1016/j.atmosenv.2006.08.021, 2007.
- Bukowiecki, N., Lienemann, P., Hill, M., Furger, M., Richard, A., Amato, F., Prévôt, A. S. H., Baltensperger, U., Buchmann, B., and Gehrig, R.: PM₁₀ emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland, Atmos. Environ., 44, 2330–2340, doi:10.1016/j.atmosenv.2010.03.039, 2010.
- ²⁰ Calvert, J. G., Lazrus, A., Kok, G. L., Heikes, B. G., Walega, J. G., Lind, J., and C. A. Cantrell: Chemical mechanisms of acid generation in the troposphere, Nature, 317, 27–35, 1985.
- Chen, F., Dimmick, F., Williams, R., and Baldauf, R.: Particulate matter concentration measurements from Near Road Studies (NRS) in Raleigh, North Carolina, 17th Annual Conference of the International Society for Exposure Analysis, Abstract No. 43, 14 October 2007, Durham, Research Triangle Park, North Carolina, 2007a.
 - Chen, L. W. A., Watson, J. G., Chow, J. C., and Magliano, K. L.: Quantifying PM_{2.5} source contributions for the San Joaquin Valley with multivariate receptor models, Environ. Sci. Technol., 41, 2818–2826, doi:10.1021/es0525105, 2007b.

Chow, J. C., Watson, J. G., Kuhns, H., Etyemezian, V., Lowenthal, D. H., Crow, D., Kohl, S. D.,

³⁰ Engelbrecht, J. P., and Green, M. C.: Source profiles for industrial, mobile, and area sources in the big bend regional aerosol visibility and observational study, Chemosphere, 54, 185– 208, doi:10.1016/j.chemosphere.2003.07.004, 2004.

- Dabek-Zlotorzynska, E., Dann, T. F., Martinelango, P. K., Celo, V., Brook, J. R., Mathieu, D., Ding, L., and Austin, C. C.: Canadian National Air Pollution Surveillance (NAPS) PM_{2.5} speciation program: methodology and PM_{2.5} chemical composition for the years 2003–2008, Atmos. Environ., 45, 673–686, 2011.
- ⁵ Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S. L., and Samet, J. M.: Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases, J. Am. Med. Assoc., 295, 1127–1134, doi:10.1001/jama.295.10.1127, 2006.
 - Draxler, R. R. and Rolph, G. D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY Website, NOAA Air Resources Laboratory, Silver Spring, MD, 2012.
- Eberly, S.: EPA PMF 1.1 User's Guide, US Envionmental Protection Agency National Exposure Research laboratory Research Laboratory Triangle Park, NC 27711, available at: http:// www.epa.gov/heasd/products/pmf/EPAPMF3.0UserGuidev16_092208_final.pdf (last access: 11 January 2013), 2005.

10

20

- ¹⁵ Finlayson-Pitts, B. J. and Pitts, J. N.: Chemistry of the Upper and Lower Atmosphere, Academic Press, an Imprint of Elsevier, USA, ISBN: 0-12-257060-x, 2000.
 - Gambaro, G., Zangrando, R., Gabrielli, P., Barbante, C., and Cescon, P.: Direct determination of levoglucosan at the picogram per milliliter level in Antarctic ice by High-Performance Liquid Chromatography/Electrospray Ionization Triple Quadrupole Mass Spectrometry, Anal. Chem., 80, 1649–1655, 2008.
 - Gibson, M. D., Heal, M. R., Bache, D. H., Hursthouse, A. S., Beverland, I. J., Craig, S. E., Clark, C. F., Jackson, M. H., Guernsey, J. R., and Jones, C.: Using mass reconstruction along a four-site transect as a method to interpret PM₁₀ in West-Central Scotland, UK, J. Air Waste Manag., 59, 1429–1436, 2009.
- Gietl, J. K., Lawrence, R., Thorpe, A. J., and Harrison, R. M.: Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road, Atmos. Environ., 44, 141–146, 2010.
 - Gugamsetty, B., Wei, H., Liu, C. N., Awasthi, A., Hsu, S. C., Tsai, C. J., Roam, G. D., Wu, Y. C., and Chen, C. F.: Source characterization and apportionment of PM₁₀, PM_{2.5} and PM_{0.1} by using positive matrix factorization, Aerosol Air Qual. Res., 12, 476–491, 2012.
- using positive matrix factorization, Aerosol Air Qual. Res., 12, 476–491, 2012.
 Hansen, A. D. A.: The Aethalometer, Magee Scientific Company, Berkeley, California, USA, 1–209, 2005.

Harrison, R. M., Beddows, D. C. S., and Dall'Osto, M.: PMF analysis of wide-range particle size spectra collected on a major highway, Environ. Sci. Technol., 45, 5522–5528, doi:10.1021/es2006622, 2011.

Hennigan, C. J., Miracolo, M. A., Engelhart, G. J., May, A. A., Presto, A. A., Lee, T., Sullivan, A. P., McMeeking, G. R., Coe, H., Wold, C. E., Hao, W.-M., Gilman, J. B., Kuster, W. C., de Gouw, J., Schichtel, B. A., Collett Jr., J. L., Kreidenweis, S. M., and Robinson, A. L.: Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber, Atmos. Chem. Phys., 11, 7669–7686, doi:10.5194/acp-11-7669-2011, 2011.

¹⁰ Henry, R. C.: History and fundamentals of multivariate air quality receptor models, Chemometr. Intell. Lab., 37, 525–530, 1997.

Hobbs, P. V., Garrett, T. J., Ferek, R. J., Strader, S. R., Hegg, D. A., Frick, G. M., Hoppel, W. A., Gasparovic, R. F., Russell, L. M., Johnson, D. W., O'Dowd, C., Durkee, P. A., Nielson, K. E., and Innis, G.: Emissions from ships with respect to their effects on clouds, J. Atmos. Sci., 57, 2570–2590, 2000.

- 15 2570–2590, 2000.
 - Holzinger, R., Millet, D. B., Williams, B., Lee, A., Kreisberg, N., Hering, S. V., Jimenez, J., Allan, J. D., Worsnop, D. R., and Goldstein, A. H.: Emission, oxidation, and secondary organic aerosol formation of volatile organic compounds as observed at Chebogue Point, Nova Scotia, J. Geophys. Res., 112, D10S24, doi:10.1029/2006jd007599, 2007.
- ²⁰ Hopke, P. K.: An introduction to Receptor Modeling, Chemometr. Intell. Lab., 10, 21–43, 1991. Huang, X., Olmez, I., Aras, N. K., and Gordon, G. E.: Emissions of trace elements from motor vehicles: Potential marker elements and source composition profile, Atmos. Environ., 28, 1385–1391, doi:10.1016/1352-2310(94)90201-1, 1994.

Isakson, J., Persson, T. A., and Lindgren, E. S.: Identification and assessment of ship emissions and their effects in the harbour of Goteborg, Sweden, Atmos. Environ., 35, 3659–3666, 2001.

and their effects in the harbour of Goteborg, Sweden, Atmos. Environ., 35, 3659–3666, 2001. Jaeckels, J. M., Bae, M.-S., and Schauer, J. J.: Positive Matrix Factorization (PMF) analysis of molecular marker measurements to quantify the sources of organic aerosols, Environ. Sci. Technol., 41, 5763–5769, doi:10.1021/es062536b, 2007.

Jeong, C.-H., Evans, G. J., Dann, T., Graham, M., Herod, D., Dabek-Zlotorzynska, E., Math-

ieu, D., Ding, L., and Wang, D.: Influence of biomass burning on wintertime fine particulate matter: source contribution at a valley site in rural British Columbia, Atmos. Environ., 42, 3684–3699, 2008.

- Jeong, C.-H., McGuire, M. L., Herod, D., Dann, T., Dabek-Zlotorzynska, E., Wang, D., Ding, L., Celo, V., Mathieu, D., and Evans, G.: Receptor model based identification of PM_{2.5} sources in Canadian cities, Atmos. Pollut. Res., 2, 158–171, doi:10.5094/APR.2011.021, 2011.
- Kim, E., Hopke, P. K., and Edgerton, E. S.: Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization, Atmos. Environ.,

38, 3349–3362, 2004.

- Lack, D. A. and Corbett, J. J.: Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing, Atmos. Chem. Phys., 12, 3985–4000, doi:10.5194/acp-12-3985-2012, 2012.
- Lack, D. A., Cappa, C. D., Langridge, J., Bahreini, R., Buffaloe, G., Brock, C., Cerully, K., Coffman, D., Hayden, K., Holloway, J., Lerner, B., Massoli, P., Li, S.-M., McLaren, R., Middlebrook, A. M., Moore, R., Nenes, A., Nuaanan, I., Onasch, T. B., Peischl, J., Perring, A., Quinn, P. K., Ryerson, T., Schwartz, J. P., Spackman, R., Wofsy, S. C., Worsnop, D., Xiang, B., and Williams, E.: Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality. Environ. Sci. Technol., 45, 9052–9060.
- emissions: implications for climate and air quality, Environ. Sci. Technol., 45, 9052–9060, doi:10.1021/es2013424, 2011.
 - Larson, T., Gould, T., Simpson, C., Liu, L. J., Claiborn, C., and Lewtas, J.: Source apportionment of indoor, outdoor, and personal PM_{2.5} in Seattle, Washington, using Positive Matrix Factorization, J. Air Waste Manag., 54, 1175–1187, 2004.
- Lawless, P. A., Rodes, C. E., and Ensor, D. S.: Multiwavelength absorbance of filter deposits for determination of environmental tobacco smoke and black carbon, Atmos. Environ., 38, 3373–3383, 2004.
 - Leaitch, W. R., Banic, C. M., Isaac, G. A., Couture, M. D., Liu, P. S. K., Gultepe, I., Li, M. M., Klienman, L., Daum, P. H., and MacPherson, J. I.: Physical and chemical observations in
- ²⁵ marine stratus during the 1993 North Atlantic Regional Experiment: factors controlling cloud droplet number concentrations, J. Geophys. Res., 101, 29123–29135, 1996.
 - Liu, P. S. K., Deng, R., Smith, K. A., Williams, L. R., Jayne, J. T., Canagaratna, M. R., Moore, K., Onasch, T. B., Worsnop, D. R., and Deshler, T.: Transmission efficiency of an aerodynamic focusing lens system: comparison of model calculations and laboratory mea-
- ³⁰ surements for the aerodyne aerosol mass spectrometer, Aerosol Sci. Technol., 41, 721–733, doi:10.1080/02786820701422278, 2007.
 - Martello, D. V., Pekneya, N. J., Anderson, R. R., Davidson, C. I., Hopke, P. K., Kim, E., Christensen, W. F., Mangelson, N. F., and Eatough, D. J.: Apportionment of ambient pri-

mary and secondary fine particulate matter at the Pittsburgh National Energy Laboratory particulate matter characterization site using Positive Matrix Factorization and a potential source contributions function analysis, J. Air Waste Manag., 58, 357–368, doi:10.3155/1047-3289.58.3.357, 2008.

Maykut, N. N., Lewtas, J., Kim, E., and Larson, T. V.: Source apportionment of PM_{2.5} at an urban IMPROVE site in Seattle, Washington, Environ. Sci. Technol., 37, 5135–5142, doi:10.1021/es030370y, 2003.

Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L., Onasch, T. B., Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L., and Jayne, J. T.: An Aerosol Chemical Spe-

 ciation Monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient aerosol, Aerosol Sci. Technol., 45, 780–794, doi:10.1080/02786826.2011.560211, 2011.

Norris, G., Larson, T., Koenig, J., Claiborn, C., Sheppard, L., and Finn, D.: Asthma aggravation, combustion, and stagnant air, Thorax, 55, 466–470, 2000.

- ¹⁵ Olajire, A. A. and Ayodele, E. T.: Contamination of roadside soil and grass with heavy metals, Environ. Int., 23, 91–101, doi:10.1016/s0160-4120(96)00080-3, 1997.
 - Paatero, P.: Least squares formulation of robust non-negative factor analysis, Chemometr. Intell. Lab., 37, 23–35, 1997.

Paatero, P. and Trapper, U.: Positive Matrix Factorization: a non-negative factor model with

optimal utilization of error estimates of data values, Environmetrics, 5, 111–126, 1994. Paatero, P. and Hopke, P. K.: Discarding or downweighting high-noise variables in factor analytic models, 8th International Conference on Chemometrics and Analytical Chemistry, Analytica Chimica Acta, 490, 277–289, 2003.

Palmer, P. I., M. Parrington, Lee, J. D., Lewis, A. C., Rickard, A. R., Bernath, P. F., Duck, T. J.,

- Waugh, D. L., Tarasick, D. W., Andrews, S., Aruffo, E., Bailey, L. J., Barrett, E., Bauguitte, S. J. B., Curry, K. R., Carlo, P. D., Chisholm, L., Dan, L., Drummond, J. R., Forster, G., Franklin, J. E., Gibson, M. D., Griffin, D., Helmig, D., Hopkins, J. R., Hopper, J. T., Jenkin, M. E., Kindred, D., Kliever, J., Breton, M. L., Matthiesen, S., Maurice, M., Moller, S., Moore, D. P., Oram, D. E., O'Shea, S. J., Owen, R. C., Pagniello, C. M. L. S., Pawson, S.,
- Percival, C. J., Pierce, J. R., Punjabi, S., Purvis, R. M., Remedios, J. J., Rotermund, K. M., Sakamoto, K. M., Strawbridge, K. B., Strong, K., Taylor, J., Trigwell, R., Tereszchuk, K. A., Walker, K. A., Weaver, D., Whaley, C., and Young, J. C.: Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BOR-

TAS) experiment: design, execution and science overview, Atmos. Chem. Phys. Discuss., 13, 4127–4181, doi:10.5194/acpd-13-4127-2013, 2013.

- Parrington, M., Palmer, P. I., Henze, D. K., Tarasick, D. W., Hyer, E. J., Owen, R. C., Helmig, D., Clerbaux, C., Bowman, K. W., Deeter, M. N., Barratt, E. M., Coheur, P.-F., Hurtmans, D.,
- Jiang, Z., George, M., and Worden, J. R.: The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010, Atmos. Chem. Phys., 12, 2077–2098, doi:10.5194/acp-12-2077-2012, 2012.
 - Polissar, A. V., Hopke, P. K., Paatero, P., Malm, W. C., and Sisler, J. F.: Atmospheric aerosol over Alaska: 1. Elemental composition and sources, J.Geophys. Res., 103, 19045–19057, 1998.
 - Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., and Thurston, G. D.: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, J. Am. Med. Assoc., 287, 1132–1141, doi:10.1001/jama.287.9.1132, 2002.

Rolph, G. D.: Real-time Environmental Applications and Display sYstem (READY), NOAA Air Resources Laboratory, Silver Spring, MD, 2012.

Sirois, A. and Bottenheim, J. W.: Use of backward trajectories to interpret the 5-yr record of PAN and O₃ ambient air concentrations at Kejimkujik National Park, Nova Scotia, J. Geophys. Res., 100, 2867–2881, 1995.

Song, X.-H., Polissar, A. V., and Hopke, P. K.: Sources of fine particle composition in the north-

20 eastern US, Atmos. Environ., 35, 5277–5286, 2001.

10

15

30

- Tereszchuk, K. A., González Abad, G., Clerbaux, C., Hadji-Lazaro, J., Hurtmans, D., Coheur, P.-F., and Bernath, P. F.: ACE-FTS observations of pyrogenic trace species in boreal biomass burning plumes during BORTAS, Atmos. Chem. Phys. Discuss., 12, 31629–31661, doi:10.5194/acpd-12-31629-2012, 2012.
- ²⁵ USEPA: PM_{2.5} Mass Weighing Laboratory Standard Operating Procedures for the Performance Evaluation Program, Quality Assurance Guidance Document Method Compendium, 1–165, 1998.

Ward, T. J., Trost, B., Conner, J., Flanagan, J., and Jayanty, R. K. M.: PM_{2.5} source apportionment in a Subarctic airshed – Fairbanks, Alaska, Aerosol Air Qual. Res., 12, 536–543, doi:10.4209/aagr.2011.11.0208, 2012.

Yin, J. and Harrison, R. M.: Pragmatic mass closure study for PM_{1.0}, PM_{2.5} and PM₁₀ at roadside, urban background and rural sites, Atmos. Environ., 42, 980–988, 2008.

Zhao, M., Zhang, Y., Ma, W., Fu, Q., Yang, X., Li, C., Zhou, B., Yu, Q., and Chen, L.: Characteristics and ship traffic source identification of air pollutants in China's largest port, Atmos. Environ., 64, 277–286, doi:10.1016/j.atmosenv.2012.10.007, 2013.

Diecuesion Da	ACPD 13, 4491–4533, 2013						
nor Diecueei	Identifying sources driving observed PM _{2.5} variability M. D. Gibson et al.						
5							
2000	Title Page						
	Abstract	Introduction					
-	Conclusions	References					
	Tables	Figures					
	I	۶I					
		•					
_	Back	Close					
	Full Scre	Full Screen / Esc					
	Printer-frier	dly Version					
	Interactive	Discussion					
Dr		•					

Table 1. Descriptive statistics for the meteorological variables obtained at the DGS during the $PM_{2.5}$ sampling period based upon 5-min average data.

	Ν	Mean	Std Dev	Min	25th Pctl	Median	75th Pctl	Max
Wind Speed (ms ⁻¹)	42	2.6	1.1	0.9	1.5	2.5	3.3	5.4
Temperature (°C)	42	19.6	6.3	15.5	17.4	19.2	20.1	58.4*
Relative Humidity (%)	42	84	9	64	78	84	91	97
Pressure (kPa)	42	100.2	0.4	99.1	99.9	100.2	100.6	101.1
Average Wind Vector: 238° ~ SW								

* considered an outlier (instrument malfunction)

Table 2. Daily meteorological summary covering the filter sampling period 11 July 2011 to 25August 2011 from Halifax International Airport.

- 11 Jul Cloudy with mid day and afternoon sunshine. Wind S to SW 3 became SW 6–8 14:00. High 25.
- 12 Jul Overnight fog then rain or showers to 18:00. Wind S 6–7 then light in eve. High 17.
- 13 Jul Fog to 11:00 then mostly cloudy. Wind N at 6–8. High 23.
- 14 Jul Clear to start then cloudy before sunrise with rain by 21.00. Wind N 6–8 and High 13
- **15 Jul** Rain ended at sunrise then cloudy then rain from 23:59. Wind **N 6–11**. High 19.
- 16 Jul Mostly cloudy with wind **NW 8** then dropped off by 23:00. High 20.
- 17 Jul Mostly clear to 12:00 then mostly cloudy. Wind SW 6. High 30
- 18 Jul Mostly cloudy with a shower a noon. Clearing in evening. Wind SW 4–6. High 25.
- 19 Jul Fog overnight then mostly cloudy with scattered shower at 16:00. Wind SW 3. High 26.
- 20 Jul Mainly clear to 21:00 then cloudy. Wind W 3 except SW 8 at 21:00 then SW 6–7. High 27.
- **21 Jul** Cloudy then Rain Fog and a Thundershower in late evening. Wind SW 6–8 **except 12** late evening. High 28.
- 22 Jul Fog to 14:00 then mostly cloudy. Wind W 3 then light then SE 6 then N 4. High 28.
- 23 Jul Fog to 14:00 then mostly cloudy, 20:00 shower then Fog. Wind light N then S 4–6
- 24 Jul Clear early morning then mostly cloudy then clear in evening. Wind NW-N 4–6 then light in the evening. High 23.
- 25 Jul Clear. Wind light. Then S 4 from mid afternoon. High 24.
- 26 Jul Clear at first then mostly cloudy to cloudy with fog in the evening. Wind SE 4–6 light in the eve.
- **27 Jul** Fog to mid day then cloud with suppertime showers. Wind SE 3. High 19.
- 28 Jul Fog early then mostly cloudy. Wind NW-N 4. High 20.
- 29 Jul Clear then mostly cloudy after 09:00. Wind light then SW 6–7 after midday. High 23.
- **30 Jul** Fog to morning then mostly rain through day drizzle in the evening. Wind S-SE 4–6 became N 7 late eve. High 18.
- 31 Jul Mostly cloudy except clear midday and then in evening. Wind NW 4-6. High 25.

Data Meteorological Data Summary Key: Dates in **bold italics** indicate a date with significant sunshine (\geq 6 h). Dates in **bold** indicate a date with precipitation > 0.2 mm. **Descriptive text in bold** highlights a significant meteorological feature. Wind speed (ms⁻¹). Temperature (°C). Time in UTC.

Table 2. Continued.

1 Aug 2 Aug

3 Aug

4 Aua

5 Aug 6 Aug

7 Aug

8 Aug 9 Aug

10 Aug

11 Aua

12 Aug

13 Auq

14 Aug 15 Aug

16 Aua

17 Aug

18 Aug

19 Aug

20 Aug

21 Aug

22 Aug

23 Aua

24 Aug

25 Aug

High 16

afternoon.

High 25.

Hiah 26.

High 24.

Jul. 2 Aug and 8 Aug.

22.

Discussion Pa	AC 13, 4491–	PD 4533, 2013						
per Discussio	Identifying sources driving observed PM _{2.5} variability M. D. Gibson et al.							
on Paper	Title Abstract	Title Page Abstract Introduction						
Discuss	Conclusions Tables	References Figures						
sion Paper		►I ►						
Discu	Back Full Scr	Close een / Esc						
ussion Paper	Printer-frie Interactive	ndly Version Discussion						

BY

Clear to sunrise then mostly cloudy to sundown. Wind light then SE 4 after noontime. High 24.

Thunderstorms and rain until 07:00 then cloudy, showers in the morning. Wind ESE 6-8. High 17.

Fog then cloudy. Thunderstorms from mid afternoon through evening. Wind SE 6-8. High 22.

Fog, Drizzle and showers then rain by midday ended in the evening. Wind S-SE 4-6. High 19.

Fog and Drizzle to midmorning then cloudy. Showers in the evening. Wind SE 6 occasionally 8.

Rain and drizzle. Clear to supper. Then Cloudy with late drizzle. Wind SE 6 then to 8 in the

Fog patches to sunrise then cloudy but Clear by noon. Wind SW 3-4 then S 6 from mid afternoon.

Fog patches overnight then mostly cloudy with sunny periods. Clear late eve. Wind SW-S 4-7.

Fog overnight. Then clear in the am then mostly cloudy. Wind S-SW 10 becoming 6–7 at 16:00.

Cloudy with overnight fog. Rain showers from mid afternoon onward. Wind S 6-8 with G 11. High

Clear then mostly cloudy from 15:00 onwards. Wind W 3 but SSW 6-8 in afternoon and evening.

Few sunrise fog patches. Otherwise Clear to early afternoon then cloudy. Wind S 3-4 then SSW

8-11 dropping to SSW 6 in evening. High 25. Remnants of TS. Irene forecast for Sunday the 28th.

Precipitation Summary: 17 days with more than 0.2 mm. Heavy precipitation days > 20 mm: 20

Fog overnight then cloudy with evening drizzle. Wind N 6-8 then light in evening. High 20.

Fog overnight then mainly clear after 12:00. Wind NW 3 then light in evening. High 24.

Fog then morning drizzle then cloudy with some late day sun. Wind SE 4–6. High 19.

Some early morning fog otherwise clear. Wind W 1–3 then SE 4 later afternoon. High 24.

Cloudy to late morning then some sun. Rain late evening. Wind S-SE 3. High 25.

Cloudy, showers to midday, Wind NE 4-6, High 18,

Mostly cloudy to late evening. Wind N 4-7. High 19.

Clear. Light except NW 4 midday hours. High 25.

Clear. Wind light SW then S-SW 6-8. High 25.

Clear then mostly cloudy in the afternoon. Wind SW 4-6. High 26.

Mainly clear. Wind NW 4–6 becoming W 3–4 late in the day. High 23.

Fog then mostly cloudy with eve showers and rain. Wind SE 3-4. High 23.

Showers and drizzle end overnight. Then clear by 13:00. Wind NW 6. High 24.

Table 3. Descriptive statistics of $PM_{2.5}$ mass (μgm^{-3}) and species mass (μgm^{-3}) used in the PMF analysis.

									Data	
									Completeness	
	n	Mean	Std	Min	25th Pctl	Median	75th Pctl	Max	%	LOD
Total	45	4.5	3.4	0.08	2.1	3.9	5.6	13.7	100	0.04
PM _{2.5}										
Black	45	0.41	0.21	0.12	0.26	0.39	0.52	1.03	100	0.01
Carbon										
Organic	45	1.05	0.72	0.18	0.48	0.77	1.50	2.77	85	0.10
Matter										
AI	45	0.020	0.016	0.0091	0.0091	0.011	0.028	0.086	100	0.0070
As	45	0.0010	0.00076	0.00015	0.00054	0.00087	0.00114	0.0040	100	0.00010
Ba	45	0.0063	0.0020	0.0031	0.0056	0.0056	0.0063	0.0163	100	0.0026
Br	45	0.0015	0.00079	0.00095	0.0010	0.0013	0.0017	0.0047	100	0.00086
Ca	45	0.017	0.019	0.0021	0.0089	0.014	0.016	0.13	100	0.0015
CI	45	0.046	0.070	0.0019	0.0042	0.011	0.045	0.32	100	0.0015
Cr	45	0.0022	0.00079	0.00035	0.0017	0.0020	0.0027	0.0040	100	0.00030
Cu	45	0.0013	0.00050	0.00062	0.00095	0.0013	0.0015	0.0028	100	0.00060
Fe	45	0.0240	0.0200	0.00110	0.0110	0.0180	0.0280	0.0970	100	0.00065
ĸ	45	0.023	0.019	0.0017	0.011	0.018	0.027	0.11	100	0.0010
Mg	45	0.017	0.018	0.0039	0.0060	0.014	0.020	0.11	100	0.0035
Mn	45	0.00031	0.00029	0.00010	0.00010	0.00025	0.00036	0.0017	100	0.00005
Na	45	0.11	0.12	0.0089	0.037	0.090	0.13	0.73	100	0.00081
NH_4	45	0.23	0.27	0.0030	0.066	0.15	0.27	1.45	100	0.0010
Ni	45	0.0011	0.00078	0.00044	0.00046	0.00070	0.0015	0.0037	100	0.00016
NO ₃	45	0.093	0.10	0.0074	0.042	0.067	0.10	0.64	100	0.0030
Р	45	0.0020	0.0017	0.000040	0.00079	0.0015	0.0023	0.0081	100	0.000010
Pb	45	0.00037	0.00035	0.000060	0.00014	0.00027	0.00050	0.0017	100	0.000032
S	45	0.39	0.34	0.0022	0.18	0.29	0.42	1.81	100	0.0009
Se	45	0.00019	0.00027	0.000080	0.000080	0.000080	0.000080	0.0015	100	0.00008
Si	45	0.042	0.048	0.0044	0.014	0.030	0.056	0.29	100	0.0036
SO4	45	0.78	0.97	0.14	0.26	0.47	0.70	5.59	100	0.070
Sr	45	0.00055	0.00034	0.000010	0.00041	0.00049	0.00060	0.0021	100	0.000010
V	45	0.0033	0.0027	0.0016	0.0016	0.0026	0.0038	0.017	100	0.00092
Zn	45	0.0023	0.0017	0.00070	0.0012	0.0019	0.0030	0.0089	100	0.00051

ACPD 13, 4491-4533, 2013 **Identifying sources** driving observed **PM_{2.5} variability** M. D. Gibson et al. Title Page Abstract Introduction Conclusions References Tables Figures 4 Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Fig. 1. Location of the DGS used during BORTAS-B (source of maps: free within ArcGIS v10).

4523

Fig. 2. Map of ensemble HYSPLIT 2-day air mass back trajectories between 11 July 2011 and 25 August 2011. Trajectories were initialized 08:00 UTC with an arrival height of 500 m. Colours denote upwind source region (cyan = Marine, red = SW, green = WNW and blue = N).

Fig. 3. HYSPLIT 2-day air mass back trajectory vertical profiles.

Fig. 4. Time series of total $PM_{2.5}$ mass and major species concentration.

Fig. 5. Time series of total $PM_{2.5}$ mass and macro species concentration.

Fig. 6. Time series of total $PM_{2.5}$ mass and micro species concentration.

Fig. 7. Time series of total $PM_{2.5}$ mass and trace species concentration.

Fig. 8. Time series of PM_{2.5} source apportionment based upon PMF output.

Fig. 9. Source Contribution Rose.

Fig. 10. Back trajectories associated with the highest values of each PMF cluster.

Fig. 11. Average mass concentration $(\mu g m^{-3})$ of attributed sources and percentage source contributions over the 45 days of sampling.

