Skip to main content

Advertisement

Log in

Influence of Fe2O3 on the structure and near-infrared emissivity of aluminosilicate glass coatings

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present paper reports on the development of a vitreous material with high near-infrared (NIR) emissivity. Silica-based glasses (SiO2, Na2O, Al2O3, K2O) with different Fe2O3 (hematite) contents are deposited on ceramic tiles as coatings and annealed at 1250 °C. Using the indirect radiometric measurement method, the emissivity of the materials was determined at room temperature, where the spectral directional reflectance of the coatings was measured. The samples possessing high emissivity values of 0.78–0.80 in the near-infrared are those with the highest Fe2O3 contents. Colorimetric test (L*a*b*), has revealed that the glass coating goes darker red by adding more amount of Fe2O3. XRD analysis has shown the magnetite, hematite, and nepheline crystallization phases in the glasses with Fe2O3 contents above 30 wt%. Readable aspects of FTIR absorbance spectra were found, which gave information about the structure variations of these glasses as a function of Fe2O3 content, also, SEM photographs displayed morphology of the prepared glass coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Asmatulu, Nanocoatings for corrosion protection of aerospace alloys, in Corrosion Protection and Control Using Nanomaterials, ed. by V.S. Saji, R. Cook (Woodhead Publishing, Cambridge, 2012), pp. 357–374. https://doi.org/10.1533/9780857095800.2.357

    Chapter  Google Scholar 

  2. O. De Sanctis, L. Gómez, N. Pellegri, C. Parodi, A. Marajofsky, A. Durán, Protective glass coatings on metallic substrates. J. Non-Cryst. Solids. 121, 338–343 (1990). https://doi.org/10.1016/0022-3093(90)90155-F

    Article  ADS  Google Scholar 

  3. S. Sarkar, S. Datta, S. Das, D. Basu, Oxidation protection of gamma-titanium aluminide using glass–ceramic coatings. Surf. Coat. Technol. 203, 1797–1805 (2009). https://doi.org/10.1016/j.surfcoat.2008.12.029

    Article  Google Scholar 

  4. B. Rousseau, M. Chabin, P. Echegut, A. Sin, F. Weiss, P. Odier, High emissivity of a rough Pr2NiO4 coating. Appl. Phys. Lett. 79, 3633–3635 (2001). https://doi.org/10.1063/1.1420780

    Article  ADS  Google Scholar 

  5. X. He, Y. Li, L. Wang, Y. Sun, S. Zhang, High emissivity coatings for high temperature application: progress and prospect. Thin Solid Films 517, 5120–5129 (2009). https://doi.org/10.1016/j.tsf.2009.03.175

    Article  ADS  Google Scholar 

  6. G.E. Guazzoni, High-temperature spectral emittance of oxides of erbium, samarium, neodymium and ytterbium. Appl. Spectrosc. 26, 60–65 (1972). https://doi.org/10.1366/000370272774352597

    Article  ADS  Google Scholar 

  7. J. Yi, X. He, Y. Sun, Y. Li, Electron beam-physical vapor deposition of SiC/SiO2 high emissivity thin film. Appl. Surf. Sci. 253, 4361–4366 (2007). https://doi.org/10.1016/j.apsusc.2006.09.063

    Article  ADS  Google Scholar 

  8. X. Zhao, X.D. He, Y. Sun, L.D. Wang, Carbon nanotubes doped SiO2/SiO2–PbO double layer high emissivity coating. Mater. Lett. 65, 2592–2594 (2011). https://doi.org/10.1016/j.matlet.2011.06.030

    Article  Google Scholar 

  9. Y.M. Wang, H. Tian, X.E. Shen, L. Wen, J.H. Ouyang, Y. Zhou, D.C. Jia, L.X. Guo, An elevated temperature infrared emissivity ceramic coating formed on aluminium alloy by microarc oxidation. Ceram. Int. 39, 2869–2875 (2013). https://doi.org/10.1016/j.ceramint.2012.09.060

    Article  Google Scholar 

  10. E. Brodu, M. Balat-Pichelin, J.L. Sans, M.D. Freeman, J.C. Kasper, Efficiency and behavior of textured high emissivity metallic coatings at high temperature. Mater. Des. 83, 85–94 (2015). https://doi.org/10.1016/j.matdes.2015.05.073

    Article  Google Scholar 

  11. L. del Campo, R.B. Pérez-Sáez, L. González-Fernández, X. Esquisabel, I. Fernández, P. González-Martín, M.J. Tello, Emissivity measurements on aeronautical alloys. J. Alloys Compd. 489, 482–487 (2010). https://doi.org/10.1016/j.jallcom.2009.09.091

    Article  Google Scholar 

  12. G. Neuer, G. Jaroma-Weiland, Spectral and total emissivity of high-temperature materials. Int. J. Thermophys. 19, 917–929 (1998). https://doi.org/10.1023/A:1022607426413

    Article  Google Scholar 

  13. C.P. Cagran, L.M. Hanssen, M. Noorma, A.V. Gura, S.N. Mekhontsev, Temperature-resolved infrared spectral emissivity of SiC and Pt–10Rh for temperatures up to 900°C. Int. J. Thermophys. 28, 581–597 (2007). https://doi.org/10.1007/s10765-007-0183-1

    Article  ADS  Google Scholar 

  14. G. Shao, Y. Lu, D.A.H. Hanaor, S. Cui, J. Jiao, X. Shen, Improved oxidation resistance of high emissivity coatings on fibrous ceramic for reusable space systems. Corros. Sci. 146, 233–246 (2019). https://doi.org/10.1016/j.corsci.2018.11.006

    Article  Google Scholar 

  15. S.V. Muley, N.M. Ravindra, Emissivity of electronic materials, coatings, and structures. Jom. 66, 616–636 (2014). https://doi.org/10.1007/s11837-014-0940-0

    Article  Google Scholar 

  16. S. Abedrabbo, J.C. Hensel, A.T. Fiory, B. Sopori, W. Chen, N.M. Ravindra, Perspectives on emissivity measurements and modeling in silicon. Mater. Sci. Semicond. Process. 1, 187–193 (1998). https://doi.org/10.1016/S1369-8001(98)00028-6

    Article  Google Scholar 

  17. N.M. Ravindra, B. Sopori, O.H. Gokce, S.X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, Y. Zhang, Emissivity measurements and modeling of silicon-related materials: an overview. Int. J. Thermophys. 22, 1593–1611 (2001). https://doi.org/10.1023/A:1012869710173

    Article  Google Scholar 

  18. T. Walach, Emissivity measurements on electronic microcircuits. Measurement 41, 503–515 (2008). https://doi.org/10.1016/j.measurement.2007.07.001

    Article  Google Scholar 

  19. C.E.H. Jr, L.R. Chapman, High emissivity coating, US5668072A, (1997)

  20. G.J. Heynderickx, M. Nozawa, High-emissivity coatings on reactor tubes and furnace walls in steam cracking furnaces. Chem. Eng. Sci. 59, 5657–5662 (2004). https://doi.org/10.1016/j.ces.2004.07.075

    Article  Google Scholar 

  21. G. Shao, X. Wu, Y. Kong, X. Shen, S. Cui, X. Guan, C. Jiao, J. Jiao, Microstructure, radiative property and thermal shock behavior of TaSi2–SiO2-borosilicate glass coating for fibrous ZrO2 ceramic insulation. J. Alloys Compd. 663, 360–370 (2016). https://doi.org/10.1016/j.jallcom.2015.10.003

    Article  Google Scholar 

  22. G. Shao, X. Wu, S. Cui, X. Shen, Y. Lu, Q. Zhang, Y. Kong, High emissivity MoSi2–TaSi2–borosilicate glass porous coating for fibrous ZrO2 ceramic by a rapid sintering method. J. Alloys Compd. 690, 63–71 (2017). https://doi.org/10.1016/j.jallcom.2016.08.073

    Article  Google Scholar 

  23. G. Shao, X. Wu, S. Cui, X. Shen, Y. Kong, Y. Lu, C. Jiao, J. Jiao, High emissivity MoSi2–ZrO2–borosilicate glass multiphase coating with SiB6 addition for fibrous ZrO2 ceramic. Ceram. Int. 42, 8140–8150 (2016). https://doi.org/10.1016/j.ceramint.2016.02.020

    Article  Google Scholar 

  24. G. Shao, X. Wu, Y. Kong, S. Cui, X. Shen, C. Jiao, J. Jiao, Thermal shock behavior and infrared radiation property of integrative insulations consisting of MoSi2/borosilicate glass coating and fibrous ZrO2 ceramic substrate. Surf. Coat. Technol. 270, 154–163 (2015). https://doi.org/10.1016/j.surfcoat.2015.03.008

    Article  Google Scholar 

  25. J.M. Jones, P.E. Mason, A. Williams, A compilation of data on the radiant emissivity of some materials at high temperatures. J. Energy Inst. 92, 523–534 (2019). https://doi.org/10.1016/j.joei.2018.04.006

    Article  Google Scholar 

  26. K. Zhang, K. Yu, Y. Liu, Y. Zhao, Effect of surface oxidation on emissivity properties of pure aluminum in the near infrared region. Mater. Res. Express. 4, 086501 (2017). https://doi.org/10.1088/2053-1591/aa7fc9

    Article  ADS  Google Scholar 

  27. A. Otsuka, K. Hosono, R. Tanaka, K. Kitagawa, N. Arai, A survey of hemispherical total emissivity of the refractory metals in practical use. Energy. 30, 535–543 (2005). https://doi.org/10.1016/j.energy.2004.04.019

    Article  Google Scholar 

  28. M. Kobayashi, M. Otsuki, H. Sakate, F. Sakuma, A. Ono, System for measuring the spectral distribution of normal emissivity of metals with direct current heating. Int. J. Thermophys. 20, 289–298 (1999). https://doi.org/10.1023/A:1021415305603

    Article  Google Scholar 

  29. H. Watanabe, M. Susa, H. Fukuyama, K. Nagata, Phase (liquid/solid) dependence of the normal spectral emissivity for iron, cobalt, and nickel at melting points. Int. J. Thermophys. 24, 473–488 (2003). https://doi.org/10.1023/A:1022924105951

    Article  Google Scholar 

  30. Z.W. Wang, Y.M. Wang, Y. Liu, J.L. Xu, L.X. Guo, Y. Zhou, J.H. Ouyang, J.M. Dai, Microstructure and infrared emissivity property of coating containing TiO2 formed on titanium alloy by microarc oxidation. Curr. Appl. Phys. 11, 1405–1409 (2011). https://doi.org/10.1016/j.cap.2011.04.011

    Article  ADS  Google Scholar 

  31. S. Roy et al., High emissivity coating on C-263 substrate for high temperature applications. Surf. Eng. 32, 1–7 (2016). https://doi.org/10.1179/1743294415Y.0000000057

    Article  Google Scholar 

  32. D.B. Mahadik, S. Gujjar, G.M. Gouda, H.C. Barshilia, Double layer SiO2/Al2O3 high emissivity coatings on stainless steel substrates using simple spray deposition system. Appl. Surf. Sci. 299, 6–11 (2014). https://doi.org/10.1016/j.apsusc.2014.01.159

    Article  ADS  Google Scholar 

  33. N.O. Dantas, W.E.F. Ayta, A.C.A. Silva, N.F. Cano, S.W. Silva, P.C. Morais, Effect of Fe2O3 concentration on the structure of the SiO2–Na2O–Al2O3–B2O3 glass system. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 81, 140–143 (2011). https://doi.org/10.1016/j.saa.2011.05.074

    Article  ADS  Google Scholar 

  34. S. Atalay, H.I. Adiguzel, F. Atalay, Infrared absorption study of Fe2O3–CaO–SiO2 glass ceramics. Mater. Sci. Eng. A. 304, 796–799 (2001). https://doi.org/10.1016/S0921-5093(00)01572-0

    Article  Google Scholar 

  35. A.A. Akatov, B.S. Nikonov, B.I. Omel’yanenko, S.V. Stefanovsky, J.C. Marra, Structure of borosilicate glassy materials with high concentrations of sodium, iron, and aluminum oxides. Glass Phys. Chem. 35, 245–259 (2009). https://doi.org/10.1134/S1087659609030031

    Article  Google Scholar 

  36. W. Mozgawa, M. Sitarz, M. Rokita, Spectroscopic studies of different aluminosilicate structures. J. Mol. Struct. 511, 251–257 (1999). https://doi.org/10.1016/S0022-2860(99)00165-9

    Article  ADS  Google Scholar 

  37. M.P. Alonso, F. Capel, F.J. Valle Fuentes, A. De Pablos, I. Ortega, B. Gómez, M.A. Respaldiza, Caracterización de un vidrio rojo medieval procedente de las vidrieras del Monasterio de las Huelgas de Burgos. Bol. Soc. Esp. Ceram. 48, 179–186 (2009)

    Google Scholar 

  38. M. Sitarz, The structure of simple silicate glasses in the light of Middle Infrared spectroscopy studies. J. Non-Cryst. Solids. 357, 1603–1608 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.01.007

    Article  ADS  Google Scholar 

  39. M. Handke, W. Mozgawa, M. Nocuń, Specific features of the IR spectra of silicate glasses. J. Mol. Struct. 325, 129–136 (1994). https://doi.org/10.1016/0022-2860(94)80028-6

    Article  ADS  Google Scholar 

  40. R.M.M. Morsi, S. Ibrahim, M.M. Morsi, Characterization of sodium lead silicate glasses containing low and high levels of Fe2O3 and effect of its replacement for Na2O. J. Mater. Sci. Mater. Electron. 28, 9566–9574 (2017). https://doi.org/10.1007/s10854-017-6704-1

    Article  Google Scholar 

  41. J.L. Rendon, C.J. Serna, IR spectra of powder hematite: effects of particle size and shape. Clay Miner. 16, 375–382 (1981). https://doi.org/10.1180/claymin.1981.016.4.06

    Article  ADS  Google Scholar 

  42. J.R. Howell, M.P. Menguc, R. Siegel, Thermal Radiation Heat Transfer, 5th edn. (CRC Press, New York, 2010), p. 61

    Book  Google Scholar 

  43. M. Švantner, P. Vacíková, M. Honner, Non-contact charge temperature measurement on industrial continuous furnaces and steel charge emissivity analysis. Infrared Phys. Technol. 61, 20–26 (2013). https://doi.org/10.1016/j.infrared.2013.07.005

    Article  ADS  Google Scholar 

  44. Y.-H. Wang, Z.-G. Liu, J.-H. Ouyang, Y.-M. Wang, Y.-J. Wang, Dependence of the infrared emissivity on SiC content and microstructure of microarc oxidation ceramic coatings formed in Na2SiO3 electrolyte. Appl. Surf. Sci. 431, 17–23 (2018). https://doi.org/10.1016/j.apsusc.2017.06.166

    Article  ADS  Google Scholar 

  45. A. Boubault, C.K. Ho, A. Hall, T.N. Lambert, A. Ambrosini, Durability of solar absorber coatings and their cost-effectiveness. Sol. Energy Mater. Sol. Cells. 166, 176–184 (2017). https://doi.org/10.1016/j.solmat.2017.03.010

    Article  Google Scholar 

  46. C. Stålhandske, T. Bring, B. Jonson, Gold ruby glasses: influence of iron and selenium on their colour. Glass Technol. 47, 112–120 (2006).

    Google Scholar 

  47. C.R. Bamford, Colour Generation and Control in Glass (Elsevier Scientific Publishing Co., Amsterdam and New York, 1978), pp. 156–156

    Google Scholar 

  48. W.A. Weyl, Coloured glasses, Soc. Glass. Technol. (Sheffield, UK, 1951).

  49. L. Andrić, Z. Aćimović-Pavlović, M. Trumić, A. Prstić, Z. Tanasković, Specific characteristics of coating glazes based on basalt. Mater. Des. 39, 9–13 (2012). https://doi.org/10.1016/j.matdes.2012.02.022

    Article  Google Scholar 

  50. H. Jo, J.L. King, K. Blomstrand, K. Sridharan, Spectral emissivity of oxidized and roughened metal surfaces. Int. J. Heat Mass Transf. 115, 1065–1071 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.103

    Article  Google Scholar 

  51. P. Hervé, Mesure de l’émissivité thermique, Tech. Ing. Mes. Contrô. R 2737 (2005).

  52. C.S. Kumar, A.K. Sharma, K.N. Mahendra, S.M. Mayanna, Studies on anodic oxide coating with low absorptance and high emittance on aluminum alloy 2024. Sol. Energy Mater. 60, 51–57 (2000). https://doi.org/10.1016/S0927-0248(99)00062-8

    Article  Google Scholar 

  53. PLAChr van der Meer, L.J. Giling, S.G. Kroon, The emission coefficient of silicon coated with Si3 N4 or SiO2 layers. J. Appl. Phys. 47, 652–655 (1976). https://doi.org/10.1063/1.322628

    Article  ADS  Google Scholar 

  54. M. Falz, G. Leonhardt, PVD coatings with high IR emissivity for high temperature applications of Co-based alloys. Surf. Coat. Technol. 61, 97–100 (1993). https://doi.org/10.1016/0257-8972(93)90209-7

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by the Algerian Ministry of Higher Education and Scientific Research (Algerian program P.N.E 2019–2020 scholarship fund) and by project MAT2016-78700-R financed by Spanish Research Agency and European Regional Development Fund (AEI/FEDER, UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaziz Gahmousse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gahmousse, A., Ferria, K., Rubio, J. et al. Influence of Fe2O3 on the structure and near-infrared emissivity of aluminosilicate glass coatings. Appl. Phys. A 126, 732 (2020). https://doi.org/10.1007/s00339-020-03921-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03921-8

Keywords

Navigation