Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T16:40:15.171Z Has data issue: false hasContentIssue false

Reflectance Spectroscopy of Organic Matter in Sedimentary Rocks at Mid-Infrared Wavelengths

Published online by Cambridge University Press:  01 January 2024

H. H. Kaplan*
Affiliation:
Department of Earth, Environmental, and Planetary Sciences, Brown University, 324 Brook St., Box 1846, Providence, RI, USA 02912
R. E. Milliken
Affiliation:
Department of Earth, Environmental, and Planetary Sciences, Brown University, 324 Brook St., Box 1846, Providence, RI, USA 02912
*
*E-mail address of corresponding author: Hannah_Kaplan@brown.edu

Abstract

Reflectance spectroscopy is a rapid, non-destructive technique capable of characterizing mineral and organic components within geologic materials at spatial scales that range from μm to km. The degree to which reflectance spectra can be used to provide quantitative information about organic compounds remains poorly understood, particularly for rocks with low organic content that are common in the Earth’s ancient rock record and that may be present on other planetary bodies, such as Mars. In the present study, reflectance spectra (0.35–25 μm) were acquired for a suite of Proterozoic shales and the kerogen was isolated to assess how spectral properties of aliphatic and aromatic C-H absorption bands can be used to predict organic matter abundance (total organic content, TOC, and H/C ratio). A number of spectral parameters were evaluated for organic absorption bands observed in the 3–4 μm wavelength region for comparison with independently measured TOC and H/C values. Ratios of the strengths of aliphatic to aromatic absorption bands were directly correlated to H/C values, but the reflectance spectra for pure kerogens with H/C < 0.2 lacked clear evidence for C-H absorption bands in this spectral region. Organic absorption bands are routinely observed for bulk rock powders with >1 wt.% TOC, but the detection limits of reflectance spectra for TOC may be <1 wt.% or as high as 10 wt.%. Organic detection limits for reflectance spectra are, thus, controlled by both TOC and H/C values, but these parameters can be predicted for clay-rich, kerogen-dominated samples for a range of values that are relevant to drill cores, outcrops, meteorites, and planetary surfaces.

Type
Article
Copyright
Copyright © Clay Minerals Society 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, S.T. and Sweet, I.P., 2000 Tectonic control on thirdorder sequences in a siliciclastic ramp-style basin: An example from the Roper Superbasin (Mesoproterozoic), northern Australia Australian Journal of Earth Sciences 47 637657.CrossRefGoogle Scholar
Baskin, D.K., 1997 Atomic H/C ratio of kerogen as an estimate of thermal maturity and organic matter conversion AAPG bulletin 81 14371450.Google Scholar
Bibring, J.-P. Hamm, V. Pilorget, C. Vago, J.L. the MicrOmega Team, 2017 The MicrOmega Investigation Onboard ExoMars Astrobiology 17 621626.CrossRefGoogle Scholar
Breen, C. Clegg, F. Herron, M.M. Hild, G.P. Hillier, S. Hughes, T.L. Jones, T.G.J. Matteson, A. and Yarwood, J., 2008 Bulk mineralogical characterisation of oilfield reservoir rocks and sandstones using diffuse reflectance infrared Fourier transform spectroscopy and partial least squares analysis Journal of Petroleum Science and Engineering 60 117.CrossRefGoogle Scholar
Calderón, F. Haddix, M. Conant, R. Magrini-Bair, K. and Paul, E., 2013 Diffuse-reflectance Fourier-transform midinfrared spectroscopy as a method of characterizing changes in soil organic matter Soil Science Society of America Journal 77 15911600.CrossRefGoogle Scholar
Capaccioni, F. Coradini, A. Filacchione, G. Erard, S. Arnold, G. Drossart, P. De Sanctis, M.C. Bockelee-, M.D. Capria, M.T. Tosi, F. Leyrat, C. Schmitt, B. Quirico, E. Cerroni, P. Mennella, V. Raponi, A. Ciarniello, M. McCord, T. Moroz, L. Palomba, E. Ammannito, E. Barucci, M.A. Bellucci, G. Benkhoff, J. Bibring, J.P. Blanco, A. Blecka, M. Carlson, R. Carsenty, U. Colangeli, L. Combes, M. Combi, M. Crovisier, J. Encrenaz, T. Federico, C. Fink, U. Fonti, S. Ip, W.H. Irwin, P. Jaumann, R. Kuehrt, E. Langevin, Y. Magni, G. Mottola, S. Orofino, V. Palumbo, P. Piccioni, G. Schade, U. Taylor, F. Tiphene, D. Tozzi, G.P. Beck, P. Biver, N. Bonal, L. Combe, J.-P. Despan, D. Flamini, E. Fornasier, S. Frigeri, A. Grassi, D. Gudipati, M. Longobardo, A. Markus, K. Merlin, F. Orosei, R. Rinaldi, G. Stephan, K. Cartacci, M. Cicchetti, A. Giuppi, S. Hello, Y. Henry, F. Jacquinod, S. Noschese, R. Peter, G. Politi, R. Reess, J.M. and Semery, A., 2015 The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by Virtis/ Rosetta Science 347 0628.CrossRefGoogle ScholarPubMed
Chang, C.-W. Laird, D.A. Mausbach, M.J. and Hurburgh, C.R., 2001 Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties Soil Science Society of America Journal 65 480.CrossRefGoogle Scholar
Chen, Y. Furmann, A. Mastalerz, M. and Schimmelmann, A., 2014 Quantitative analysis of shales by KBr-FTIR and micro-FTIR Fuel 116 538549.CrossRefGoogle Scholar
Christy, A.A. Hopland, A.L. Barth, T. and Kvalheim, O.M., 1989 Quantitative determination of thermal maturity in sedimentary organic matter by diffuse reflectance infrared spectroscopy of asphaltenes Organic Geochemistry 14 7781.CrossRefGoogle Scholar
Clark, R.N. and Roush, T.L., 1984 Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications Journal of Geophysical Research 89 63296340.CrossRefGoogle Scholar
Clark, R.N. Curchin, J.M. Hoefen, T.M. and Swayze, G.A., 2009 Reflectance spectroscopy of organic compounds: 1. Alkanes Journal of Geophysical Research 114 E03001.CrossRefGoogle Scholar
Clark, R.N. Curchin, J.M. Barnes, J.W. Jaumann, R. Soderblom, L. Cruikshank, D.P. Brown, R.H. Rodriguez, S. Lunine, J. Stephan, K. Hoefen, T.M. Le Mouélic, S. Sotin, C. Baines, K.H. Buratti, B.J. and Nicholson, P.D., 2010 Detection and mapping of hydrocarbon deposits on Titan Journal of Geophysical Research 115 E10005.CrossRefGoogle Scholar
Cloutis, E. Gaffey, M.J. and Moslow, T.F., 1994 Spectral Reflectance Properties of Carbon-Bearing Materials Icarus 107 276287.CrossRefGoogle Scholar
Coradine, A. Capaccioni, F. Drossart, P. Semery, A. Arnold, G. Schade, U. Angrilli, F. Barucci, M. Bellucci, G. Bianchini, G. Bibring, J. Blanco, A. Blecka, M. Bockelee-Morvan, D. Bonsignori, R. Bouye, M. Bussoletti, E. Capria, M. Carlson, R. Carsenty, U. Cerroni, P. Colangeli, L. Combes, M. Combi, M. Crovisier, J. Dami, M. DeSanctis, M. DiLellis, A. Dotto, E. Encrenaz, T. Epifani, E. Erard, S. Espinasse, S. Fave, A. Federico, C. Fink, U. Fonti, S. Formisano, V. Hello, Y. Hirsch, H. Huntzinger, G. Knoll, R. Kouach, D. Ip, W. Irwin, P. Kachlicki, J. Langevin, Y. Magni, G. McCord, T. Mennella, V. Michaelis, H. Mondello, G. Mottola, S. Neukum, G. Orofino, V. Orosei, R. Palumbo, P. Peter, G. Pforte, B. Piccioni, G. Reess, J. Ress, E. Saggin, B. Schmitt, B. Stefanovitch, Stern, A. Taylor, F. Tiphene, D. and Tozzi, G., 1998 Virtis: An imaging spectrometer for the Rosetta mission Planetary and Space Science 46 12911304.CrossRefGoogle Scholar
Coradini, A. Capaccioni, F. Drossart, P. Arnold, G. Ammannito, E. Angrilli, F. Barucci, A. Bellucci, G. Benkhoff, J. Bianchini, G. Bibring, J.P. Blecka, M. Bockelee-Morvan, D. Capria, M.T. Carlson, R. Carsenty, U. Cerroni, P. Colangeli, L. Combes, M. Combi, M. Crovisier, J. Desanctis, M.C. Encrenaz, E.T. Erard, S. Federico, C. Filacchione, G. Fink, U. Fonti, S. Formisano, V. Ip, W.H. Jaumann, R. Kuehrt, E. Langevin, Y. Magni, G. Mccord, T. Mennella, V. Mottola, S. Neukum, G. Palumbo, P. Piccioni, G. Rauer, H. Saggin, B. Schmitt, B. Tiphene, D. and Tozzi, G., 2007 Virtis: An Imaging Spectrometer for the Rosetta Mission Space Science Reviews 128 529559.CrossRefGoogle Scholar
Craddock, P.R. Prange, M. and Pomerantz, A.E., 2017 Kerogen thermal maturity and content of organic-rich mudrocks determined using stochastic linear regression models applied to diffuse reflectance IR Fourier transform spectroscopy (DRIFTS) Organic Geochemistry 110 122133.CrossRefGoogle Scholar
Cruikshank, D.P. Dalle Ore, C.M. Clark, R.N. and Pendleton, Y.J., 2014 Aromatic and aliphatic organic materials on Iapetus: Analysis of Cassini VIMS data Icarus 233 306315.CrossRefGoogle Scholar
De Sanctis, M.C. Ammannito, E. McSween, H.Y. Raponi, A. Marchi, S. Capaccioni, F. Capria, M.T. Carrozzo, F.G. Ciarniello, M. Fonte, S. Formisano, M. Frigeri, A. Giardino, M. Longobardo, A. Magni, G. McFadden, L.A. Palomba, E. Pieters, C.M. Tosi, F. Zambon, F. Raymond, C.A. and Russell, C.T., 2017 Localized aliphatic organic material on the surface of Ceres Science 355 719722.CrossRefGoogle ScholarPubMed
Dutkiewicz, A. Volk, H. Ridley, J. and George, S., 2003 Biomarkers, brines, and oil in the Mesoproterozoic, Roper Superbasin, Australia Geology 31 981984.CrossRefGoogle Scholar
Ferralis, N. Matys, E.D. Knoll, A.H. Hallmann, C. and Summons, R.E., 2016 Rapid, direct and non-destructive assessment of fossil organic matter via microRaman spectroscopy Carbon 108 440449.CrossRefGoogle Scholar
Ganz, H.H. and Kalkreuth, W., 1991 IR classification of kerogen type, thermal maturation, hydrocarbon potential and lithological characteristics Journal of Southeast Asian Earth Sciences 5 1928.CrossRefGoogle Scholar
Goudge, T.A. Russell, J.M. Mustard, J.F. Head, J.W. and Bijaksana, S., 2017 A 40,000 yr record of clay mineralogy at Lake Towuti, Indonesia: Paleoclimate reconstruction from reflectance spectroscopy and perspectives on paleolakes on Mars Geological Society of America Bulletin 129 806819.CrossRefGoogle Scholar
Greenberger, R.N. Mustard, J.F. Ehlmann, B.L. Blaney, D.L. Cloutis, E.A. Wilson, J.H. Green, R.O. and Fraeman, A.A., 2015 Imaging spectroscopy of geological samples and outcrops: Novel insights from microns to meters GSA Today 25 410.CrossRefGoogle Scholar
Hapke, B., 1993 Theory of Reflectance and Emittance Spectroscopy UK; New York Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Hapke, B., 2008 Bidirectional reflectance spectroscopy Icarus 195 918926.CrossRefGoogle Scholar
Herron, M. Loan, M. Charsky, A. Herron, S.L. Pomerantz, A.E. and Polyakov, M., 2014 Kerogen content and maturity, mineralogy and clay-typeing from DRIFTS analysis of cuttings or core Petrophysics 55 434446.Google Scholar
Hosterman, J.W. Meyer, R.F. Palmer, C.A. Doughten, M.W. and Anders, D.E., 1989.Chemistry and mineralogy of natural bitumens and heavy oils and their reservoir rocks from the United States, Canada, Trinidad and Tobago, and VenezuelaCrossRefGoogle Scholar
Izawa, M.R.M. Applin, D.M. Norman, L. and Cloutis, E.A., 2014 Reflectance spectroscopy (350-2500 nm) of solidstate polycyclic aromatic hydrocarbons (PAHs) Icarus 237 159181.CrossRefGoogle Scholar
Johnston, D.T. Farquhar, J. Summons, R.E. Shen, Y. Kaufman, A.J. Masterson, A.L. and Canfield, D.E., 2008 Sulfur isotope biogeochemistry of the Proterozoic McArthur Basin Geochimica et Cosmochimica Acta 72 42784290.CrossRefGoogle Scholar
Kaplan, H.H. and Milliken, R.E., 2016 Reflectance spectroscopy for organic detection and quantification in claybearing samples: Effects of albedo, clay type, and water content Clays and Clay Minerals 64 167184.CrossRefGoogle Scholar
Keil, R.G. Mayer, L.M., Turekian, K. and Holland, H., 2014 Mineral Matrices and Organic Matter Treatise on Geochemistry, Vol 12, Reference Module in Earth Systems and Environmental Science 337359.CrossRefGoogle Scholar
Leroi, V. Bibring, J.-P. and Berthe, M., 2009 Micromega/IR: Design and status of a near-infrared spectral microscope for in situ analysis of Mars samples Planetary and Space Science 57 10681075.CrossRefGoogle Scholar
Lis, G.P. Mastalerz, M. Schimmelmann, A. Lewan, M.D. and Stankiewicz, B.A., 2005 FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance R0 in type-II kerogens from Devonian black shales Organic Geochemistry 36 15331552.CrossRefGoogle Scholar
Luo, G. Ono, S. Beukes, N.J. Wang, D.T. Xie, S. and Summons, R.E., 2016 Rapid oxygenation of Earths atmosphere 2.33 billion years ago Science Advances 2 e1600134e1600134.CrossRefGoogle ScholarPubMed
McCarty, G.W. Reeves, J.B. Reeves, V.B. Follett, R.F. and Kimble, J.M., 2002 Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement Soil Science Society of America Journal 66 640646.Google Scholar
McCord, T.B. Hansen, G.B. Buratti, B.J. Clark, R.N. Cruikshank, D.P. D’Aversa, E. Griffith, C.A. Baines, E.K.H. Brown, R.H. Dalle Ore, C.M. Filacchione, G. Formisano, V. Hibbitts, C.A. Jaumann, R. Lunine, J.I. Nelson, R.M. and Sotin, C., 2006 Composition of Titan’s surface from Cassini VIMS Planetary and Space Science 54 15241539.CrossRefGoogle Scholar
Mehmani, Y. Burnham, A.K. Vanden Berg, M.D. and Tchelepi, H.A., 2017 Quantification of organic content in shales via near-infrared imaging: Green River Formation Fuel 208 337352.CrossRefGoogle Scholar
Milliken, R. and Mustard, J., 2007 Estimating the water content of hydrated minerals using reflectance spectroscopy: I Effects of darkening agents and low-albedo materials. Icarus 189 550573.Google Scholar
Moroz, L.V. Arnold, G. Korochantsev, A.V. and Wäsch, R., 1998 Natural solid bitumens as possible analogs for cometary and asteroid organics: 1 Reflectance spectroscopy of pure bitumens. Icarus 134 253268.Google Scholar
Mustard, J. and Hays, J., 1997 Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 mm Icarus 125 145163.CrossRefGoogle Scholar
Nash, D.B. and Conel, J.E., 1974 Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite, and ilmenite Journal of Geophysical Research 79 16151621.CrossRefGoogle Scholar
Nocita, M. Stevens, A. Toth, G. Panagos, P. van Wesemael, B. and Montanarella, L., 2014 Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach Soil Biology and Biochemistry 68 337347.CrossRefGoogle Scholar
Orthous-Daunay, F.-R. Quirico, E. Beck, P. Brissaud, O. Dartois, E. Pino, T. and Schmitt, B., 2013 Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites Icarus 223 534543.CrossRefGoogle Scholar
Pilorget, C. and Bibring, J.-P., 2013 NIR reflectance hyperspectral microscopy for planetary science: Application to the MicrOmega instrument Planetary and Space Science 76 4252.CrossRefGoogle Scholar
Quirico, E. Moroz, L.V. Schmitt, B. Arnold, G. Faure, M. Beck, P. Bonal, L. Ciarniello, M. Capaccioni, F. Filacchione, G. Erard, S. Leyrat, C. Bockelé-Morvan, D. Zinzi, A. Palomba, E. Drossart, P. Tosi, F. Capria, M.T. De Sanctis, M.C. Raponi, A. Fonti, S. Mancarella, F. Orofino, V. Barucci, A. Blecka, M.I. Carlson, R. Despan, D. Faure, A. Fornasier, S. Gudipati, M.S. Longobardo, A. Markus, K. Mennella, V. Merlin, F. Piccioni, G. Rousseau, B. and Taylor, F., 2016 Refractory and semi-volatile organics at the surface of comet 67P/ Churyumov-Gerasimenko: Insights from the Virtis/Rosetta imaging spectrometer Icarus 272 3247.CrossRefGoogle Scholar
Reeves, J.B., 2010 Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done? Geoderma 158 314.CrossRefGoogle Scholar
Reuter, D.C. and Simon-Miller, A.A., 2012 The OVIRS Visible/IR Spectrometer on the OSIRIS-Rex Mission. Oral presentation on 10/11/2012 in “Instrumentation for in situ analysis missions (Venus in situ Explorer, Titan, etc.) I.” session. International Workshop on Instrumentation for Planetary Missions (IPM-2012) Maryland, USA Greenbelt.Google Scholar
Reuter, D.C. Simon, A.A. Hair, J. Lunsford, A. Manthripragada, S. Bly, V. Bos, B. Brambora, C. Caldwell, E. Casto, G. Dolch, Z. Finneran, P. Jennings, D. Jhabvala, M. Matson, E. McLelland, M. Roher, W. Sullivan, T. Weigle, E. Wen, Y. Wilson, D. and Lauretta, D.S., 2018 The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral maps of the asteroid Bennu Space Science Reviews 214 54.CrossRefGoogle Scholar
Rivard, B. Lyder, D. Feng, J. Gallie, A. Cloutis, E. Dougan, P. Gonzalez, S. Cox, D. and Lipsett, M.G., 2010 Bitumen content estimation of Athabasca oil sand from broad band infrared reflectance spectra The Canadian Journal of Chemical Engineering 88 830838.CrossRefGoogle Scholar
Rivkin, A.S. and Emery, J.P., 2010 Detection of ice and organics on an asteroidal surface Nature 464 13221323.CrossRefGoogle Scholar
Schopf, J.W., 1983 Earth’s Earliest Biosphere: It’s Origin and Evolution NJ, USA Princeton University Press, Princeton.Google Scholar
Speta, M. Rivard, B. Feng, J. Lipsett, M. and Gingras, M., 2015 Hyperspectral imaging for the determination of bitumen content in Athabasca oil sands core samples AAPG Bulletin 99 12451259.CrossRefGoogle Scholar
Speta, M. Gingras, M.K. and Rivard, B., 2016 Shortwave infrared hyperspectral imaging: A novel method for enhancing the visibility of sedimentary and biogenic features in oil-saturated core Journal of Sedimentary Research 86 830842.CrossRefGoogle Scholar
Sunshine, J.M. and Pieters, C.M., 1993 Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model Journal of Geophysical Research 98 90759087.CrossRefGoogle Scholar
Tosca, N.J. Johnston, D.T. Mushegian, A. Rothman, D.H. Summons, R.E. and Knoll, A.H., 2010 Clay mineralogy, organic carbon burial, and redox evolution in Proterozoic oceans Geochimica et Cosmochimica Acta 74 15791592.CrossRefGoogle Scholar
van der Meijde, M. Knox, N.M. Cundill, S.L. Noomen, M.F. van der Werff, H.M. and Hecker, C., 2013 Detection of hydrocarbons in clay soils: A laboratory experiment using spectroscopy in the mid- and thermal infrared International Journal of Applied Earth Observation and Geoinformation 23 384388.CrossRefGoogle Scholar
Vohland, M. Besold, J. Hill, J. and Fründ, H.-C., 2011 Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy Geoderma 166 198205.CrossRefGoogle Scholar
Washburn, K.E. Birdwell, J.E. Foster, M. and Gutierrez, F., 2015 Detailed description of oil shale organic and mineralogical heterogeneity via Fourier transform infrared microscopy Energy & Fuels 29 42624271.CrossRefGoogle Scholar