Skip to main content
Log in

Discovery of a Highly Selective Sigma-2 Receptor Ligand, 1-(4-(6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one (CM398), with Drug-Like Properties and Antinociceptive Effects In Vivo

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The sigma-2 receptor has been cloned and identified as Tmem97, which is a transmembrane protein involved in intracellular Ca2+ regulation and cholesterol homeostasis. Since its discovery, the sigma-2 receptor has been an extremely controversial target, and many efforts have been made to elucidate the functional role of this receptor during physiological and pathological conditions. Recently, this receptor has been proposed as a potential target to treat neuropathic pain due to the ability of sigma-2 receptor agonists to relieve mechanical hyperalgesia in mice model of chronic pain. In the present work, we developed a highly selective sigma-2 receptor ligand (sigma-1/sigma-2 selectivity ratio > 1000), 1-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-3-methyl-1H- benzo[d]imidazol-2(3H)-one (CM398), with an encouraging in vitro and in vivo pharmacological profile in rodents. In particular, radioligand binding studies demonstrated that CM398 had preferential affinity for sigma-2 receptor compared with sigma-1 receptor and at least four other neurotransmitter receptors sites, including the norepinephrine transporter. Following oral administration, CM398 showed rapid absorption and peak plasma concentration (Cmax) occurred within 10 min of dosing. Moreover, the compound showed adequate, absolute oral bioavailability of 29.0%. Finally, CM398 showed promising anti-inflammatory analgesic effects in the formalin model of inflammatory pain in mice. The results collected in this study provide more evidence that selective sigma-2 receptor ligands can be useful tools in the development of novel pain therapeutics and altogether, these data suggest that CM398 is a suitable lead candidate for further evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, et al. Neuropathic pain. Nat Rev Dis Primers. 2017;3:17002.

    PubMed  PubMed Central  Google Scholar 

  2. Yan YY, Li CY, Zhou L, Ao LY, Fang WR, Li YM. Research progress of mechanisms and drug therapy for neuropathic pain. Life Sci. 2017;190:68–77.

    CAS  PubMed  Google Scholar 

  3. NIH NIoNDaS-. Peripheral Neuropathy Fact Sheet 2018 [July 06, 2018]. Available from: https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Peripheral- Neuropathy-Fact-Sheet.

  4. Cruccu G, Truini A. A review of neuropathic pain: from guidelines to clinical practice. Pain Ther. 2017;6(Suppl 1):35–42.

    PubMed  PubMed Central  Google Scholar 

  5. Calandre EP, Rico-Villademoros F, Slim M. Alpha(2)delta ligands, gabapentin, pregabalin and mirogabalin: a review of their clinical pharmacology and therapeutic use. Expert Rev Neurother. 2016;16(11):1263–77.

    CAS  PubMed  Google Scholar 

  6. Yaksh TL, Wallace MS. Opioids, analgesia, and pain management. In: Goodman and Gilman’s the Pharmacological Basis of Therapeutics. New York: McGraw-Hill Medical; 2011. p. 481–526.

    Google Scholar 

  7. Bouhassira D, Attal N. Emerging therapies for neuropathic pain: new molecules or new indications for old treatments? Pain. 2018;159(3):576–82.

    PubMed  Google Scholar 

  8. Merlos M, Burgueno J, Portillo-Salido E, Plata-Salaman CR, Vela JM. Pharmacological modulation of the sigma 1 receptor and the treatment of pain. Adv Exp Med Biol. 2017;964:85–107.

    CAS  PubMed  Google Scholar 

  9. Kim FJ. Introduction to sigma proteins: evolution of the concept of sigma receptors. Handb Exp Pharmacol. 2017;244:1–11.

    CAS  PubMed  Google Scholar 

  10. Hanner M, Moebius FF, Flandorfer A, Knaus HG, Striessnig J, Kempner E, et al. Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci U S A. 1996;93(15):8072–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmidt HR, Zheng S, Gurpinar E, Koehl A, Manglik A, Kruse AC. Crystal structure of the human sigma1 receptor. Nature. 2016;532(7600):527–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Alon A, Schmidt HR, Wood MD, Sahn JJ, Martin SF, Kruse AC. Identification of the gene that codes for the sigma2 receptor. Proc Natl Acad Sci U S A. 2017;114(27):7160–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Diaz JL, Cuberes R, Berrocal J, Contijoch M, Christmann U, Fernandez A, et al. Synthesis and biological evaluation of the 1-arylpyrazole class of sigma(1) receptor antagonists: identification of 4-{2-[5-methyl-1-(naphthalen-2-yl)-1H-pyrazol-3-yloxy]ethyl}morpholine (S1RA, E-52862). J Med Chem. 2012;55(19):8211–24.

    CAS  PubMed  Google Scholar 

  14. Lan Y, Chen Y, Cao X, Zhang J, Wang J, Xu X, et al. Synthesis and biological evaluation of novel sigma-1 receptor antagonists based on pyrimidine scaffold as agents for treating neuropathic pain. J Med Chem. 2014;57(24):10404–23.

    CAS  PubMed  Google Scholar 

  15. Romeo G, Prezzavento O, Intagliata S, Pittalà V, Modica MN, Marrazzo A, et al. Synthesis, in vitro and in vivo characterization of new benzoxazole and benzothiazole-based sigma receptor ligands. Eur J Med Chem. 2019;174:226–35.

    CAS  PubMed  Google Scholar 

  16. Cirino TJ, Eans SO, Medina JM, Wilson LL, Mottinelli M, Intagliata S, et al. Characterization of sigma 1 receptor antagonist CM-304 and its analog, AZ-66: novel therapeutics against Allodynia and induced pain. Front Pharmacol. 2019;10:678.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Vidal-Torres A, de la Puente B, Rocasalbas M, Tourino C, Bura SA, Fernandez-Pastor B, et al. Sigma-1 receptor antagonism as opioid adjuvant strategy: enhancement of opioid antinociception without increasing adverse effects. Eur J Pharmacol. 2013;711(1–3):63–72.

    CAS  PubMed  Google Scholar 

  18. Abadias M, Escriche M, Vaque A, Sust M, Encina G. Safety, tolerability and pharmacokinetics of single and multiple doses of a novel sigma-1 receptor antagonist in three randomized phase I studies. Br J Clin Pharmacol. 2013;75(1):103–17.

    CAS  PubMed  Google Scholar 

  19. James ML, Shen B, Zavaleta CL, Nielsen CH, Mesangeau C, Vuppala PK, et al. New positron emission tomography (PET) radioligand for imaging sigma-1 receptors in living subjects. J Med Chem. 2012;55(19):8272–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen B, Park JH, Hjornevik T, Cipriano PW, Yoon D, Gulaka PK, et al. Radiosynthesis and first-in-human PET/MRI evaluation with clinical-grade [(18)F]FTC-146. Molecular imaging and biology : MIB : the official publication of the academy of. Mol Imaging. 2017;19(5):779–86.

    CAS  Google Scholar 

  21. Shen B, Behera D, James ML, Reyes ST, Andrews L, Cipriano PW, et al. Visualizing nerve injury in a neuropathic pain model with [(18)F]FTC-146 PET/MRI. Theranostics. 2017;7(11):2794–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hjornevik T, Cipriano PW, Shen B, Park JH, Gulaka P, Holley D, et al. Biodistribution and radiation dosimetry of (18)F-FTC-146 in humans. J Nucl Med Off Publ Soc Nucl Med. 2017;58(12):2004–9.

    Google Scholar 

  23. Zamanillo D, Romero L, Merlos M, Vela JM. Sigma 1 receptor: a new therapeutic target for pain. Eur J Pharmacol. 2013;716(1–3):78–93.

    CAS  PubMed  Google Scholar 

  24. Sahn JJ, Mejia GL, Ray PR, Martin SF, Price TJ. Sigma 2 receptor/Tmem97 agonists produce long lasting antineuropathic pain effects in mice. ACS Chem Neurosci. 2017;8(8):1801–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Intagliata S, Alsharif WF, Mesangeau C, Fazio N, Seminerio MJ, Xu YT, et al. Benzimidazolone-based selective σ2 receptor ligands: synthesis and pharmacological evaluation. Eur J Med Chem. 2019;165:250–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mesangeau C, Narayanan S, Green AM, Shaikh J, Kaushal N, Viard E, et al. Conversion of a highly selective sigma-1 receptor-ligand to sigma-2 receptor preferring ligands with anticocaine activity. J Med Chem. 2008;51(5):1482–6.

    CAS  PubMed  Google Scholar 

  27. Nicholson HE, Alsharif WF, Comeau AB, Mesangeau C, Intagliata S, Mottinelli M, et al. Divergent cytotoxic and metabolically stimulative functions of sigma-2 receptors: structure- activity relationships of 6-acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol- 2(3H)-one (SN79) derivatives. J Pharmacol Exp Ther. 2018;7.

  28. Robson MJ, Turner RC, Naser ZJ, McCurdy CR, O'Callaghan JP, Huber JD, et al. SN79, a sigma receptor antagonist, attenuates methamphetamine-induced astrogliosis through a blockade of OSMR/gp130 signaling and STAT3 phosphorylation. Exp Neurol. 2014;254:180–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Katz JL, Hiranita T, Kopajtic TA, Rice KC, Mesangeau C, Narayanan S, et al. Blockade of cocaine or sigma receptor agonist self administration by subtype-selective sigma receptor antagonists. J Pharmacol Exp Ther. 2016;358(1):109–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Obeng S, Patel A, Burns M, Intagliata S, Mottinelli M, Reeves ME, et al. The sigma1 receptor antagonist CM304 potentiates the antinociceptive but not the discriminative stimulus effects of the cannabinoid receptor agonist THC in rats. FASEB J. 2020;34(S1):1.

    Google Scholar 

  31. Patel A, Obeng S, Burns M, Intagliata S, Mottinelli M, Reeves ME, et al. The sigma1 receptor antagonist CM304 enhances the antinociceptive effects of the cannabinoid receptor agonists, but not Mu-opioid receptor full agonists in mice. FASEB J. 2020;34(S1):1.

    Google Scholar 

  32. Matsumoto RR, McCracken KA, Pouw B, Zhang Y, Bowen WD. Involvement of sigma receptors in the behavioral effects of cocaine: evidence from novel ligands and antisense oligodeoxynucleotides. Neuropharmacology. 2002;42(8):1043–55.

    CAS  PubMed  Google Scholar 

  33. Peters SA. Physiologically-based pharmacokinetic (PBPK) modeling and simulations: principles, methods, and applications in the pharmaceutical industry: John Wiley & Sons; 2012.

  34. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.

    CAS  PubMed  Google Scholar 

  35. Khojasteh SC, Wong H, Hop CE. Drug metabolism and pharmacokinetics quick guide: Springer Science & Business Media; 2011.

  36. Hallifax D, Houston JB. Binding of drugs to hepatic microsomes: comment and assessment of current prediction methodology with recommendation for improvement. Drug Metab Dispos. 2006;34(4):724–6.

    CAS  PubMed  Google Scholar 

  37. Lee K-J, Mower R, Hollenbeck T, Castelo J, Johnson N, Gordon P, et al. Modulation of nonspecific binding in ultrafiltration protein binding studies. Pharm Res. 2003;20(7):1015–21.

    CAS  PubMed  Google Scholar 

  38. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412.

    PubMed  PubMed Central  Google Scholar 

  39. McGrath JC, Lilley E. Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol. 2015;172(13):3189–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wheeler-Aceto H, Porreca F, Cowan A. The rat paw formalin test: comparison of noxious agents. Pain. 1990;40(2):229–38.

    CAS  PubMed  Google Scholar 

  41. Gong N, Huang Q, Chen Y, Xu M, Ma S, Wang Y-X. Pain assessment using the rat and mouse formalin tests. Bio-protocol. 2014;4(21):e1288.

    Google Scholar 

  42. Cheng HY, Pitcher GM, Laviolette SR, Whishaw IQ, Tong KI, Kockeritz LK, et al. DREAM is a critical transcriptional repressor for pain modulation. Cell. 2002;108(1):31–43.

    CAS  PubMed  Google Scholar 

  43. Curtis MJ, Bond RA, Spina D, Ahluwalia A, Alexander SP, Giembycz MA, et al. Experimental design and analysis and their reporting: new guidance for publication in BJP. Br J Pharmacol. 2015;172(14):3461–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Intagliata S, Modica MN, Pittala V, Salerno L, Siracusa MA, Cagnotto A, et al. New N- and O-arylpiperazinylalkyl pyrimidines and 2-methylquinazolines derivatives as 5-HT7 and 5-HT1A receptor ligands: synthesis, structure-activity relationships, and molecular modeling studies. Bioorg Med Chem. 2017;25(3):1250–9.

    CAS  PubMed  Google Scholar 

  45. Modica MN, Intagliata S, Pittala V, Salerno L, Siracusa MA, Cagnotto A, et al. Synthesis and binding properties of new long-chain 4-substituted piperazine derivatives as 5-HT(1)a and 5-HT(7) receptor ligands. Bioorg Med Chem Lett. 2015;25(7):1427–30.

    CAS  PubMed  Google Scholar 

  46. Obata H. Analgesic mechanisms of antidepressants for neuropathic pain. Int J Mol Sci. 2017;18(11).

  47. Merlos M, Romero L, Zamanillo D, Plata-Salaman C, Vela JM. Sigma-1 receptor and pain. Handb Exp Pharmacol. 2017;244:131–61.

    CAS  PubMed  Google Scholar 

  48. Alonso G, Phan V, Guillemain I, Saunier M, Legrand A, Anoal M, et al. Immunocytochemical localization of the sigma(1) receptor in the adult rat central nervous system. Neuroscience. 2000;97(1):155–70.

    CAS  PubMed  Google Scholar 

  49. Bangaru ML, Weihrauch D, Tang QB, Zoga V, Hogan Q, Wu HE. Sigma-1 receptor expression in sensory neurons and the effect of painful peripheral nerve injury. Mol Pain. 2013;9:47.

    PubMed  PubMed Central  Google Scholar 

  50. Romero L, Zamanillo D, Nadal X, Sanchez-Arroyos R, Rivera-Arconada I, Dordal A, et al. Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization. Br J Pharmacol. 2012;166(8):2289–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Entrena JM, Cobos EJ, Nieto FR, Cendan CM, Gris G, Del Pozo E, et al. Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: studies with selective sigma-1 ligands and sigma-1 knockout mice. Pain. 2009;143(3):252–61.

    CAS  PubMed  Google Scholar 

  52. Cendan CM, Pujalte JM, Portillo-Salido E, Montoliu L, Baeyens JM. Formalin-induced pain is reduced in sigma(1) receptor knockout mice. Eur J Pharmacol. 2005;511(1):73–4.

    CAS  PubMed  Google Scholar 

  53. de la Puente B, Nadal X, Portillo-Salido E, Sanchez-Arroyos R, Ovalle S, Palacios G, et al. Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain. 2009;145(3):294–303.

    PubMed  Google Scholar 

  54. Nastasi G, Miceli C, Pittalà V, Modica MN, Prezzavento O, Romeo G, et al. S2RSLDB: a comprehensive manually curated, internet-accessible database of the sigma-2 receptor selective ligands. J Cheminformatics. 2017;9:3.

    Google Scholar 

  55. Dharmshaktu P, Tayal V, Kalra BS. Efficacy of antidepressants as analgesics: a review. J Clin Pharmacol. 2012;52(1):6–17.

    CAS  PubMed  Google Scholar 

  56. Taylor BK, Joshi C, Uppal H. Stimulation of dopamine D2 receptors in the nucleus accumbens inhibits inflammatory pain. Brain Res. 2003;987(2):135–43.

    CAS  PubMed  Google Scholar 

  57. Pedersen LH, Nielsen AN, Blackburn-Munro G. Anti-nociception is selectively enhanced by parallel inhibition of multiple subtypes of monoamine transporters in rat models of persistent and neuropathic pain. Psychopharmacology. 2005;182(4):551–61.

    CAS  PubMed  Google Scholar 

  58. Kohno T, Kimura M, Sasaki M, Obata H, Amaya F, Saito S. Milnacipran inhibits glutamatergic N-methyl-D-aspartate receptor activity in spinal dorsal horn neurons. Mol Pain. 2012;8:45.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Modica MN, Lacivita E, Intagliata S, Salerno L, Romeo G, Pittala V, et al. Structure-activity relationships and therapeutic potentials of 5-HT7 receptor ligands: an update. J Med Chem. 2018;61(19):8475–503.

    CAS  PubMed  Google Scholar 

  60. Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain. 1992;51(1):5–17.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by grants from the National Institutes of Health NIDA R01 DA023205 (CRM, RRM); NIMH P20 GM104932 (CRM, BAA); and from the Department of Defense CMRMP PR161310/P1 (CRM, JPM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. McCurdy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Intagliata, S., Sharma, A., King, T.I. et al. Discovery of a Highly Selective Sigma-2 Receptor Ligand, 1-(4-(6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one (CM398), with Drug-Like Properties and Antinociceptive Effects In Vivo. AAPS J 22, 94 (2020). https://doi.org/10.1208/s12248-020-00472-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-020-00472-x

KEY WORDS

Navigation