Skip to main content
Log in

Justification of a nonlinear Schrödinger model for laser beams in photopolymers

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A nonstationary model that relies on the spatial nonlinear Schrödinger (NLS) equation with the time-dependent refractive index describes laser beams in photopolymers. We consider a toy problem, when the rate of change of refractive index is proportional to the squared amplitude of the electric field and the spatial domain is a plane. After formal derivation of the NLS approximation from a two-dimensional quasilinear wave equation, we establish local well-posedness of the original and reduced models and perform rigorous justification analysis to control smallness of the approximation error for appropriately small times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A., Fournier J.F.F.: Sobolev Spaces. Academic, New York (2003)

    MATH  Google Scholar 

  2. Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D euler equations. Commun. Math. Phys. 94, 61–66 (1982)

    Article  MathSciNet  Google Scholar 

  3. Donnat P., Rauch J.: Global solvability of the Maxwell–Bloch equations from nonlinear optics. Arch. Ration. Mech. Anal. 136, 291–303 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Donnat P., Rauch J.: Dispersive nonlinear geometric optics. J. Math. Phys. 38, 1484–1523 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Joly J.-L., Metivier G., Rauch J.: Diffractive nonlinear geometric optics With Rectification. Indiana U. Math. J. 47, 1167–1241 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Joly J.-L., Metivier G., Rauch J.: Transparent nonlinear geometric optics and Maxwell–Bloch equations. J. Diff. Eqs. 166, 175–250 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Joly J.-L., Metivier G., Rauch J.: Global solutions to Maxwell equations in a ferromagnetic medium. Ann. Henri Poincaré 1, 307–340 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kalyakin L.A.: Asymptotic decay of a one-dimensional wave packet in a nonlinear dispersive medium. Math. USSR - Sb. 60, 457–483 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kasala, K., Saravanamuttu, K.: An experimental study of the interactions of self-trapped white laser beams in a photopolymer. Appl. Phys. Lett. 93, 051111 (2008)

    Google Scholar 

  10. Kato T.: The Cauchy problem for quasilinear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205 (1975)

    Article  MATH  Google Scholar 

  11. Kirrmann P., Schneider G., Mielke A.: The validity of modulation equations for extended systems with cubic nonlinearities. Proc. R. Soc. Edinburgh Sect. A 122, 85–91 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lescarret V., Schneider G.: Diffractive optics with harmonic radiation in 2d nonlinear photonic crystal waveguide. Z. Angew. Math. Phys. 63, 401–427 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Majda A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, vol. 53. Springer, New York (1984)

    Book  Google Scholar 

  14. Monro, T.M., Sterke C.M.de, Polladian, L.: Catching light in its own trap. J. Mod. Opt. 48, 191–238 (2001)

    Google Scholar 

  15. Newell A., Moloney J.: Nonlinear Optics. Westview Press, Boulder (2003)

    Google Scholar 

  16. Pelinovsky D.E.: Localization in Periodic Potentials: From Schrödinger Operators to the Gross–Pitaevskii Equation. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  17. Pelinovsky, D., Schneider, G.: Rigorous justification of the short-pulse equation. Nonlinear Differ. Equ. Appl. (2013). doi:10.1007/s00030-012-0208-8

  18. Schneider G., Uecker H.: Existence and stability of modulating pulse solutions in Maxwell’s equations describing nonlinear optics. Z. Angew. Math. Phys. 54, 677–712 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sulem C., Sulem P.-L.: Nonlinear Schrödinger Equations: Self-Focusing and Wave Collapse. Springer, Berlin (1999)

    MATH  Google Scholar 

  20. Taylor M.E.: Partial Differential Equations III: Nonlinear Equations. Springer, New York (1996)

    MATH  Google Scholar 

  21. Villafranca A.B., Saravanamuttu K.: An experimental study of the dynamics and temporal evolution of self-trapped laser beams in a photopolymerizable organosiloxane. J. Phys. Chem. C 112, 17388–17396 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Pelinovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelinovsky, D., Ponomarev, D. Justification of a nonlinear Schrödinger model for laser beams in photopolymers. Z. Angew. Math. Phys. 65, 405–433 (2014). https://doi.org/10.1007/s00033-013-0338-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0338-9

Mathematics Subject Classification

Keywords

Navigation