Skip to main content
Log in

Picoplankton dynamics in a hypertrophic semiarid wetland

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

This study was carried out on a neglected component of wetlands: the picoplankton community. We analyzed the picoplanktonic community patterns and their related environmental factors in a hypertrophic semi-arid wetland located in Central Spain (Las Tablas de Daimiel National Park, TDNP). We determined the bacterial and autotrophic picoplankton (APP) abundance over a three-year period (1996: the end of a long drought period and 1997–1998: after flooding) in five sites of the wetland. The overall range of bacterial abundance was 0.2 × 106 to 10 × 106 cells/ml. The annual mean abundance increased in the wettest 1997. APP was composed mainly by coccoid phycocyanin-containing cyanobacteria, with the greatest abundance up to 25 × 105 cells/ml. The annual mean also increased considerably in wetter 1997–98. Despite the large APP biomass in some sites, its percentage of total phytoplankton biomass was low (the annual average did not exceed 1.5%). We observed spatial heterogeneity in the picoplankton fraction depending on the fluctuating hydrology: bacteria tends to spatial homogeneity after flooding while APP showed only similarity among the output sites. Among the considered predictive variables (temperature, phosphorus, nitrogen, zooplankton, phytoplankton) of the picoplanktonic dynamics, temperature was the most closely correlated to picoplankton, especially to bacterial abundance. Further, in two factorial, coupled-hierarchical laboratory experiments (constant temperature), we searched for control mechanisms of picoplankton. We tested (a) the trophic cascade hypothesis by analyzing the effect of presence/absence of mosquitofish (experiment 1) or directly modifying the zooplanktonic community (experiment 2) and (b) the bottom-up regulation by altering the nutrient conditions (presence/absence of sediment in experiment 1; reducing the nutrient content in experiment 2). Bacterioplankton failed to show any behavior related to trophic cascade direct effects, while nutrients increased its abundance. APP was affected positively by nutrients and negatively by zooplankton grazing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adrian, R. and B. Schneider-Olt. 1999. Top-down effects of crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. Journal of Plankton Research 21:2175–2190.

    Article  Google Scholar 

  • Angeler, D. G., M. Álvarez-Cobelas, C. Rojo, and S. Sánchez-Carrillo. 2000. The significance of water inputs to plankton biomass and trophic relationships in a semiarid freshwater wetland (Central Spain). Journal of Plankton Research 22:2075–2093.

    Article  Google Scholar 

  • APHA. 1989. Standard Methods for the Examination of Water and Wastewaters. American Public Health Association, Washington, DC, USA.

    Google Scholar 

  • Bachmann, R. W. and D. E. Canfield. 1996. use of an alternative method for monitoring total nitrogen concentrations in Florida lakes. Hydrobiologia 323:1–8.

    CAS  Google Scholar 

  • Bird, D. F. and J. Kalff. 1984. Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine waters. Canadian Journal of Fisheries and Aquatic Sciences 41:1015–1023.

    Article  Google Scholar 

  • Burns, C. W. and J. G. Stockner. 1991. Picoplankton in six New Zealand Lakes: Abundance in relation to season and trophic state. Internationale Revue der gesamten Hydrobiologie 76:523–536.

    Article  Google Scholar 

  • Carpenter, S. J., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchner, and X. He. 1987. Regulation of lake primary productivity by food web structure. Ecology 68:1863–1876.

    Article  Google Scholar 

  • Carrick, H. J. and C. L. Schelske. 1997. Have we overlooked the importance of small phytoplankton in productive waters? Limnology and Oceanography 42:1613–1621.

    CAS  Google Scholar 

  • Cole, J. J., S. Findlay, and M. L. Pace. 1988. Bacterial production in fresh and saltwater ecosystems: a cross overview. Marine Ecology Progress Series 43:1–10.

    Article  Google Scholar 

  • Cooper, D. C. 1973. Enhancement of net primary productivity by herbivore grazing in aquatic laboratory microcosms. Limnology and Oceanography 18:31–37.

    Article  Google Scholar 

  • Currie, D. J. 1990. Large-scale variability and interactions among phytoplankton, bacterioplankton, and phosphorus. Limnology and Oceanography 35:1437–1455.

    Article  Google Scholar 

  • Del Giorgio, P. A. and R. H. Peters. 1993. The influence of DOC on bacteria-chlorophyll relationships in lakes. Verhandlungen der Internationalen Vereinigung der Limnologie 25:359–362.

    Google Scholar 

  • Gsell, T. C., W. E. Holben, and R. M. Ventullo. 1997. Characterization of the sediment bacterial community in groundwater discharge zones of an alkaline fen: a seasonal study. Applied and Environmental Microbiology 63:3111–3118.

    CAS  PubMed  Google Scholar 

  • Gurung, T. B. and J. Urabe. 1999. Temporal and vertical difference in factors limiting bacterial growth rate in Lake Biwa. Microbial Ecology 38:136–145.

    Article  PubMed  Google Scholar 

  • Gurung, T. B., M. Nakanishi, and J. Urabe. 2000. Seasonal and vertical difference in negative and positive effects of grazers on heterotrophic bacteria in Lake Biwa. Limnology and Oceanography 45:1689–1696.

    Article  Google Scholar 

  • Hobbie, J. E., R. J. Daley, and S. Jasper. 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology 33:1225–1228.

    CAS  PubMed  Google Scholar 

  • Jeppesen, E., M. Erlandsen, and M. Søndergaard. 1997. Can simple empirical equations describe the seasonal dynamics of bacterioplankton in lakes?: An eight-year study in shallow hypertrophic and biologically dynamic lake Søbygård, Denmark. Microbial Ecology 34:11–26.

    Article  PubMed  Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, E. Mortensen, A. M. Hansen, and T. Jorgensen. 1998. Cascading trophic interactions from fish to bacteria and nutrients after reduced sewage loading: an 18-year study of a shallow hypertrophic lake. Ecosystems 1: 250–267.

    Article  CAS  Google Scholar 

  • Johnson, M. D. and A. K. Ward. 1997. Influence of phagotrophic protistan bacterivory in determining the fate of dissolved organic matter (DOM) in a wetland microbial food web. Microbial Ecology 33:149–162.

    Article  PubMed  Google Scholar 

  • Jürgens, K., H. Arndt, and K. O. Rothhaupt. 1994. Zooplanktonmediated changes of bacterial community. Microbial Ecology 27:27–42.

    Article  Google Scholar 

  • Jürgens, K. and E. Jeppesen. 2000. The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. Journal of Plankton Research 22:1047–1070.

    Article  Google Scholar 

  • Kepner, R. L. Jr. and J. R. Pratt. 1996. Characterization of surface-associated protozoan communities in a Lake Erie Coastal wetland, Journal of Great Lakes Research 22:63–76.

    Article  Google Scholar 

  • Lancaster, H. F. and R. W. Drenner. 1990. Experimental mesocosm study of the separate and interaction effects of phosphorus and mosquitofish (Gambusia affinis) on plankton community structure. Canadian Journal of Fisheries and Aquatic Science 47:471–479.

    Article  Google Scholar 

  • Langenheder, S. and K. Jürgens. 2001. Regulation of bacterial biomass and community structure by metazoan and protozoan predation. Limnology and Oceanography 46:121–134.

    Article  Google Scholar 

  • MacIsaac, E. A. and J. G. Stockner. 1993. Enumeration of phototrophic picoplankton by autofluorescence microscopy. p. 187–197. In P. F. Kemp, B. F. Sherr, E. B. Sherr, and J. J. Cole (eds.) Handbook of Methods in Aquatic Microbial Ecology Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  • Malinsky-Rushanksy, N. and T. Berman. 1991. Picocyanobacteria and bacteria in Lake Kinneret. Internationale Revue der gesamtem Hydrobiologie 76:555–564.

    Article  Google Scholar 

  • OECD (1982). Eutrophication of Waters. Monitoring, Assessment and Control. OECD, Paris, France.

    Google Scholar 

  • Ooms-Wilms, A. L., G. Postema, and R. D. Gulati. 1995. Evaluation of bacterivory of rotifera based on measurement of in situ ingestion of fluorescent particles, including some comparisons with Cladocera. Journal of Plankton Research 17:1057–1077.

    Article  Google Scholar 

  • Ortega-Mayagoitia, E., C. Rojo, and X. Armengol. 2000. Structure and dynamics of zooplankton in a semi-arid wetland, the National Park de Daimiel (Spain). Wetlands 24:629–638.

    Article  Google Scholar 

  • Ortega-Mayagoitia, E., C. Rojo, and M. A. Rodrigo. 2002. Factors masking the trophic cascade in shallow eutrophic wetlands-evidence from a microcosm study. Archives für Hydrobiologie (in press).

  • Pace M. J. and E. Funke. 1991. Regulation of plantonic microbial communities by nutrients and herbivores. Ecology 72:904–914.

    Article  Google Scholar 

  • Pace M. J. and J. J. Cole. 1996. Regulation of bacteria by resources and predation tested in whole-lake experiments. Limnology and Oceanography 41:1448–1460.

    CAS  Google Scholar 

  • Pernie, G. L., D. Scavia, M. L. Pace, and H. J. Carrick. 1990. Micrograzer impact and substrate limitation of bacterioplankton in Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences 47:1836–1841.

    Article  Google Scholar 

  • Pick, F. R. 1991. The abundance and composition of freshwater picocyanobacteria in relation to light penetration. Limnology and Oceanography 36:1457–1462.

    Article  CAS  Google Scholar 

  • Rhew, K., R. Baca, C. A. Ochs, and S. T. Threlkeld. 1999. Interaction effects of fish, nutrients, mixing and sediments on autotrophic picoplankton and algal composition. Freshwater Biology 42: 99–109.

    Article  Google Scholar 

  • Richardson, W. B., S. A. Wickham, and S. T. Threlkeld. 1990. Foodweb response to the experimental manipulation of a benthivore (Cyprinus carpio), zooplanktivore (Menidia beryllina) and benthic insects. Archiv für Hydrobiologie 119:143–165.

    Google Scholar 

  • Rojo, C., E. Ortega-Mayagoitia, M. A. Rodrigo, and M. Álvarez. 2000. Phytoplankton structure and dynamics in a semiarid wetland, the National park “Tablas de Daimiel” (Spain). Archiv für Hydrobiologie 148:397–419.

    CAS  Google Scholar 

  • Sánchez-Carrillo, S. and M. Álvarez-Cobelas. 2001. Nutrient dynamics and eutrophication patterns in a semiarid wetland: the effects of fluctuating hydrology. Water, Air and Soil Pollution 127:12–27.

    Google Scholar 

  • Sánchez-Carrillo, S. 2000. Hidrología y sedimentación actual de las Tablas de Daimiel. Ph.D. Thesis. Universidad Autónoma de Madrid, Madrid, Spain.

    Google Scholar 

  • Šimek, K., M. Macek, J. Pernthaler, V. Straskrabova, and R. Psenner. 1996. Can freshwater planktonic ciliates survive on a diet of picoplankton? Journal of Plankton Research 18:597–613.

    Article  Google Scholar 

  • Šimek, K., P. Hartman, J. Nedoma, J. Pernthaler, D. Springmann, J. Vrba, and R. Psenner. 1997. Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquatic Microbial Ecology 12:49–63.

    Article  Google Scholar 

  • Sokal, R. R., and F. J. Rohlf. 1995. Biometry. Freeman. San Francisco, CA, USA.

    Google Scholar 

  • Sommaruga, R. and R. Psenner. 1995. Permanent presence of grazing resistant bacteria in a hypertrophic lake. Applied and Environmental Microbiology 61:3457–3459.

    CAS  PubMed  Google Scholar 

  • Sommaruga, R. and R. D. Robarts. 1997. The significance of autotrophic and heterotrophic picoplankton in hypertrophic ecosystems. FEMS Microbial Ecology 24:187–200.

    Article  CAS  Google Scholar 

  • Underwood, A. J. 1997. Experiments in ecology: their ecological design and interpretation using analysis of variance. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Vörös, L., P. Gulyas, and J. Nemeth. 1991. Occurrence, dynamics and production of picoplankton in Hungarian shallow lakes. Internationale Revue der Gesamten Hydrobiologie 76:617–629.

    Article  Google Scholar 

  • Vörös, L., C. Callieri, K. V. Balogh, and R. Bertoni. 1998. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369/370:117–125.

    Article  Google Scholar 

  • von Ende, C. N. 1993. Repeated measures analysis: growth and other time-dependent measures. p. 113–137. In S. M. Scheider and J. Gurevitch (eds.) Design and Analysis of Ecological Experiments. Chapman and Hall, New York, NY, USA.

    Google Scholar 

  • Weinbauer, M. G. and M. G. Höfle. 1998. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Applied and Environmental Microbiology 64:431–438.

    CAS  PubMed  Google Scholar 

  • Weisse, T. and A. Schweizer. 1991. Seasonal and interannual variation of autotrophic picoplankton in a large prealpine lake (Lake Constance). Verhandlungen der Internationalen Vereinigung der Limnologie 24:821–825.

    Google Scholar 

  • Weisse, T. 1993. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. Advances in Microbial Ecology 13: 327–370.

    Google Scholar 

  • Wetzel, R. G. 1990. Land-water interfaces: Metabolic and Limnological regulators. Verhandlungen der Internationalen Vereinigung der Limnologie 24:6–24.

    Google Scholar 

  • Wickham, S. A. 1995. Cyclops predation on ciliates: Species-specific differences and functional responses. Journal of Plankton Research 17:1633–1646.

    Article  Google Scholar 

  • Wickham, S. A. 1998. The direct and indirect impact of Daphnia and Cyclops on a freshwater microbial food web. Journal of Plankton Research 20:739–755.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Ortega-Mayagoitia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega-Mayagoitia, E., Rodrigo, M.A., Rojo, C. et al. Picoplankton dynamics in a hypertrophic semiarid wetland. Wetlands 22, 575–587 (2002). https://doi.org/10.1672/0277-5212(2002)022[0575:PDIAHS]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2002)022[0575:PDIAHS]2.0.CO;2

Key Words

Navigation