Skip to main content
Log in

Dominance of Hydrogenotrophic Methanogens at the Peak of Biogas Production in Thalassic Digesters

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Marine biomasses used in biogasification system are usually treated as terrestrial feedstock after salt removal. However, biogas production of sea wrack biomass run under thalassic (marine) conditions, and seeded with different inocula [cow manure (CM), marine sediment (MS) and sea wrack-associated (SWA) microflora] showed the potential for cheaper alternative to freshwater utilization (terrestrial conditions). To understand how methane yield is affected by the different inoculants under thalassic conditions, methanogenic communities in these digesters (CM, MS, SWA) were quantified using double-labeled oligonucleotide probes to a modified fluorescence in situ hybridization at the peak of biogas production. Total targeted methanogens were highest in SWA (1.51 ± 0.53 × 107 cells ml−1) while lowest in CM (1.79 ± 0.20 × 106 cells ml−1). Among all types of targeted methanogens, hydrogenotrophs (Methanobacteriales and Methanomicrobiales) dominated in all digesters (CM 73.2 ± 7 %, MS 58.4 ± 8.0 %, SWA 61.2 ± 5.4 %). Moreover, MS showed mixotrophic Methanosarcinaceae (30.2 ± 8.1 %) co-dominance, suggesting that their population could have influenced the higher methane yield in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Rademacher, A., Zakrzewski, M., Schlüter, A., Schönberg, M., Szczepanowski, R., Goesmann, A., Pühler, A., Klocke, M.: Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing. FEMS Microbiol. Ecol. 79, 785–799 (2012)

    Article  Google Scholar 

  2. Sakai, S., Imachi, H., Hanada, S., Ohashi, A., Harada, H., Kamagata, Y.: Methanocella paludicola gen. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int. J. Syst. Evol. Microbiol. 58, 929–936 (2008)

    Article  Google Scholar 

  3. Raskin, L., Stromley, J.M., Rittmann, B.E., Stahl, D.A.: Group-specific 16S ribosomal-RNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol. 60, 1232–1240 (1994)

    Google Scholar 

  4. Karakashev, D., Batstone, D.J., Trably, E., Angelidaki, I.: Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl. Environ. Microbiol. 72, 5138–5141 (2006)

    Article  Google Scholar 

  5. Nettmann, E., Bergmann, I., Pramschufer, S., Mundt, K., Plogsties, V., Herrmann, C., Klocke, M.: Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plant. Appl. Environ. Microbiol. 76, 2540–2548 (2010)

    Article  Google Scholar 

  6. Santegoeds, C.M., Damgaard, L.R., Hesselink, G., Zopfi, J., Lens, P., Muyzer, G., de Beer, D.: Distribution of sulfate-reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analyses. Appl. Environ. Microbiol. 65, 4618–4629 (1999)

    Google Scholar 

  7. Vavilin, V.A., Qu, X., Mazeas, L.: Methanosarcina as the dominant aceticlastic methanogens during mesophilic anaerobic digestion of putrescible waste. Antonie Van Leeuwenhoek 94, 593–605 (2008)

    Article  Google Scholar 

  8. Pope, P.B., Vivekanand, V., Eijsink, V.G.H., Horn, S.J.: Microbial community structure in a biogas digester utilizing the marine energy crop, Saccharina latissima. 3 Biotech (2012). doi:10.1007/s13205-012-0097-x

  9. Marquez, G.P.B., Reichardt, W.T., Azanza, R.V., Klocke, M., Montaño, M.N.E.: Thalassic biogas production from sea wrack biomass using different microbial seeds: cow manure, marine sediment and sea wrack-associated microflora. Bioresour. Technol. 133, 612–617 (2013)

    Article  Google Scholar 

  10. Daims, H., Stoecker, K., Wagner, M.: Fluorescence in situ hybridization for the detection of prokaryotes. In: Osborn, A.M., Smith, C.J. (eds.) Advanced methods in molecular microbial ecology, pp. 213–239. Bios-Garland, Abingdon (2005)

    Google Scholar 

  11. Stahl, D.A., Amann, R.: Development and application of nucleic acid probes. In: Stackebrandt, E., Goodfellow, M. (eds.) Nucleic acid techniques in bacterial systematics, pp. 205–248. John Wiley & Sons Ltd., Chichester (1991)

    Google Scholar 

  12. Crocetti, G., Murto, M., Bjornsson, L.: An update and optimization of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridization (FISH). J. Microbiol. Methods 65, 194–201 (2006)

    Article  Google Scholar 

  13. Loy, A., Horn, M., Wagner, M.: ProbeBase: an online resource for rRNA-targeted oligonucleotides probes. Nucleic Acids Res. 31, 514–516 (2003)

    Article  Google Scholar 

  14. Marquez, G.P.B., Santiañez, W.J.E., Trono Jr, G.C., Montaño, M.N.E., Araki, H., Takeuchi, H., Hasegawa, T.: Seaweed biomass of the Philippines: sustainable feedstock for biogas production. Renew. Sustain. Energy Rev. 38, 1056–1068 (2014)

    Article  Google Scholar 

  15. Shah, F.A., Mahmood, Q., Shah, M.M., Pervez, A., Asad, S.A.: Microbial ecology of anaerobic digesters: the key players of anaerobiosis. Sci. World J. (2014). doi:10.1155/2014/183752

  16. Kumar, S., Dagar, S.S., Mohanty, A.K., Sirohi, S.K., Puniya, M., Kuhad, R.C., Sangu, K.P., Griffith, G.W., Puniya, A.K.: Enumeration of methanogens with a focus on fluorescence in situ hybridization. Naturwissenschaften 98, 457–472 (2011)

    Article  Google Scholar 

  17. Lowe, S.E., Jain, M.K., Zeikus, J.G.: Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol. Rev. 57, 451–509 (1993)

    Google Scholar 

  18. Zinder, S.H.: Physiological ecology of methanogens. In: Ferry, J.G. (ed.) Methanogens: ecology, physiology, biochemistry and genetics, pp. 128–206. Springer, USA (1993)

    Chapter  Google Scholar 

  19. Traversi, D., Villa, S., Acri, M., Pietrangeli, B., Degan, R., Gilli, G.: The role of different methanogen groups evaluated by real-time qPCR as high-efficiency bioindicators of wet anaerobic co-digestion of organic waste. AMB Express (2011). doi:10.1186/2191-0855-1-28

  20. Imachi, H., Aoi, K., Tasumi, E., Saito, Y., Yamanaka, Y., Saito, Y., Yamaguchi, T., Tomaru, H., Takeuchi, R., Morono, Y., Inagaki, F., Takai, K.: Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. ISME J. 5, 1913–1925 (2011)

    Article  Google Scholar 

  21. Mackie, R.I., Bryant, M.P.: Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and CO2 to methanogenesis in cattle waste at 40 and 60°C. Appl. Environ. Microbiol. 41, 1363–1373 (1981)

    Google Scholar 

  22. Kadam, P.C., Godbole, S.H., Ranade, D.R.: Isolation of methanogens from Arabian sea sediments and their salt tolerance. FEMS Microbiol. Lett. 62, 343–347 (1989)

    Article  Google Scholar 

  23. Pflüger, K., Baumann, S., Gottschalk, G., Lin, W., Santos, H., Müller, V.: Lysine-2,3-aminomutase and β-lysine acetyltransferase genes of methanogenic archaea are salt induced and are essential for the biosynthesis of Nε-acetyl-β-lysine and growth at high salinity. Appl. Environ. Microbiol. 69, 6047–6055 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Marine Science Institute, the DOST-PCAMRD Scholarship, the DA-Biotech through Fucoidan Project and SPEX Project, and the DOST-PCAMRD through the PhilHABS project. The corresponding author would also like to acknowledge the unwavering support of Engr. Joselito P. Marquez, Alper James Alcaraz, Dang Marviluz Espita, Joyce Nieva, Deanna Luciano, Wilfred John Santiañez, and the rest of the Seaweed Chemistry and HAB Laboratory staff; and the critical discussion, technical support and probes provision of Dr. Michael Klocke and Dr. Ingo Bergmann of the Leibnitz Institut für Agrartechnik, Potsdam, Germany. This is the Marine Science Institute (University of the Philippines) contribution no. 434.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Powell B. Marquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marquez, G.P.B., Reichardt, W.T., Azanza, R.V. et al. Dominance of Hydrogenotrophic Methanogens at the Peak of Biogas Production in Thalassic Digesters. Waste Biomass Valor 6, 201–207 (2015). https://doi.org/10.1007/s12649-014-9325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-014-9325-4

Keywords

Navigation