Skip to main content

Advertisement

Log in

Sludge Valorization from Biofloc-Based Aquaculture Systems for Bioremediation of Crude Oil-Contaminated Sediment

  • Brief report
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This paper describes the potential valorization of sludge waste generated from aquaculture using biofloc system for bioremediation purpose. Three sets of mesocosms were artificially contaminated by 5 % of crude oil (v/v) representing a control, inoculated mesocosm with a commercial hydrocarbonoclastic consortia and a treatment that correspond to the use of sludge from floc-forming consortia. Samples of each mesocosms were taken at 0, 2, 4, 7, 14, 21, 42 and 56 days as well as sediment background to assess abiotic losses due to hydrodynamic force and possible contamination of sediment by the three set of experiments. The results showed significant differences of hydrocarbons removal among the treatments when it was confronted with the different consortia communities exposed through the time and coursetimes. In terms of hydrocarbons removal all treatment reached removal ca. 60 % (w/w) of pollutants at the end of experimentation but the removal performance was different during the first 14 days. The significant results of this study were to support the hypothesis that indigenous bacteria can be used as bioremediation agent but needed more adaptation time compared to the mesocosms that have been inoculated by exogenous bacteria. Both hydrocarbonoclastic and sludge waste from aquaculture were shown to be readily active as starter for biodegradation. Such condition will be beneficial to the mitigation of future oil spills in the study area which are located in the narrow strait where maritime transportation is frequent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. National Geographic Indonesia. Terbaru: Panjang garis pantai Indonesia capai 99,000 kilometer. http://nationalgeographic.co.id/berita/2013/10/terbaru-panjang-garis-pantai-indonesia-capai-99000-kilometer. Accessed 04 April 2015

  2. Zhu, X., Venosa, A.D., Suidan, M.T., Lee, K.: Guidelines for the Bioremediation of Marine Shorelines and Freshwater Wetlands. U.S. Environmental Protection Agency, Cincinnati, OH (2001)

    Google Scholar 

  3. Avnimelech, Y.: Bio-filters: the need for an new comprehensive approach. Aquac. Eng. 34, 172–178 (2006)

    Article  Google Scholar 

  4. Avnimelech, Y.: Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture 264, 140–147 (2007)

    Article  Google Scholar 

  5. Syakti, A.D., Yani, M., Hidayati, N.V., Siregar, A.S., Doumenq, P., Sudiana, I.M.: Bioremediation potential of hydrocarbonoclastic bacteria isolated from a mangrove contaminated by petroleum hydrocarbons on the Cilacap coast, Indonesia. Bioremediat. J. 17, 11–20 (2013)

    Article  Google Scholar 

  6. Hidayati, N.V., Hilmi, E., Haris, A., Effendi, H., Guiliano, M., Doumenq, P., Syakti, A.D.: Fluorene removal by biosurfactant producing Bacillus megaterium. Waste Biomass Valoriz. 2, 415–422 (2011)

    Article  Google Scholar 

  7. Thavasi, R., Jayalakshmi, S., Balasubramania, T., Banat, I.M.: Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J. Microbiol. Biotechnol. 24, 917–925 (2008)

    Article  Google Scholar 

  8. Hassanshahian, M., Emtiazi, G., Caruso, G., Cappelo, S.: Bioremediation (bioaugmentation/biostimulation) trials of oil polluted seawater: a mesocosm simulation study. Mar. Environ. Res. 95, 28–38 (2014)

    Article  Google Scholar 

  9. Koster, M., Meyer-Reil, M.A.: Characterization of carbon and microbial biomass pools in shallow water coastal sediments of the southern Baltic Sea (Nordrügensche Bodden). Mar. Ecol. Progress. Ser. 214, 25–41 (2001)

    Article  Google Scholar 

  10. Standard Methods for the Examination of Water and Wastewater, 18th edn. AWWA, APHA, WPCF; Water Pollution Control Federation, Washington, DC (1992)

  11. Mazzella, N., Molinet, J., Syakti, A.D., Bertrand, J.C., Doumenq, P.: Assessment of the effects of hydrocarbon contamination on the sedimentary bacterial communities and determination of the polar lipid fraction purity: relevance of intact phospholipid analysis. Mar. Chem. 103(3–4), 304–317 (2007)

    Article  Google Scholar 

  12. Bitton, G., Gerba, C.P. (eds.): Groundwater Pollution Microbiology. Wiley Interscience/Wiley, New York (1984)

    Google Scholar 

  13. Sims, J.T., Maguire, R.O., Leytem, A.B., Gartley, K.L., Pautler, M.C.: Evaluation of Mehlich 3 as an agri-environmental soil phosphorus test for the Mid-Atlantic United States of America. Soil Sci. Soc. Am. J. 66, 2016–2032 (2002)

    Article  Google Scholar 

  14. Xu, R., Obbard, J.: Effect of nutrient amendments on indigenous hydrocarbon biodegradation in oil contaminated beach sediments. J. Environ. Qual. 32, 1234–1243 (2003)

    Article  Google Scholar 

  15. Bakar, N.S.A., Nasir, N.M., Lananan, F., Hamid, S.H.A., Lam, S.S., Jusoh, A.: Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish, (Clarias gariepinus) utilizing Bioflocs Technology. Int. Biodeterior. Biodegrad. 102, 100–106 (2015)

    Article  Google Scholar 

  16. Syakti, A.D., Mazzella, N., Torre, F., Acquaviva, M., Gilewizc, M., Guiliano, M., Bertrand, J.C., Doumenq, P.: Influence of growth phase on phospholipidic fatty acid composition of two marine bacteria strains in pure and mixes cultures. Res. Microbiol. 157, 479–486 (2006)

    Article  Google Scholar 

  17. Bonin, P., Rontani, J.-F., Bordenave, L.: Metabolic differences between attached and free-living marine bacteria: inadequacy of liquid cultures for describing in situ bacterial activity. FEMS Microbiol. Lett. 194, 111–119 (2001)

    Article  Google Scholar 

  18. Syakti, A.D., Hidayati, N.V., Hilmi, E., Piram, A., Doumenq, P.: Source apportionment of sedimentary hydrocarbons in the Segara Anakan Nature Reserve, Indonesia. Mar. Pollut. Bull. 74(1), 141–148 (2013)

    Article  Google Scholar 

  19. Christie, W.W., Han, X.: Lipid Analysis—Isolation, Separation, Identification and Lipidomic Analysis, 4th edn. Oily Press, Bridgwater (2010)

    Google Scholar 

  20. Rafii, Z.A., Dodd, R.S., Fromard, F.: Biogeographic variation in foliar waxes of mangrove species. Biochem. Syst. Ecol. 24, 341–345 (1996)

    Article  Google Scholar 

  21. Oyo-Ita, O.E., Ekpo, B.O., Oros, D.R., Simoneit, B.R.T.: Distributions and sources of aliphatic hydrocarbons and ketones in surface sediments from the Cross River estuary, S.E. Niger Delta, Nigeria. J. Appl. Sci. Environ. Sanit. 5, 1–11 (2010)

    Google Scholar 

  22. Sikes, E.L., Uhle, M.E., Nodder, S.D., Howard, M.E.: Sources of organic matter in a coastal marine environment: evidence from n-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand. Mar. Chem. 113, 149–163 (2009)

    Article  Google Scholar 

  23. Burford, M.A., Thompson, P.J., McIntosh, R.P., Bauman, R.H., Pearson, D.C.: Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture 219, 393–411 (2003)

    Article  Google Scholar 

  24. Hargreaves, J.A.: Photosynthetic suspended-growth systems in aquaculture. Aquac. Eng. 34, 344–363 (2006)

    Article  Google Scholar 

  25. Ray, A.J., Dillon, K.S., Lotz, J.M.: Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquac. Eng. 45, 127–136 (2011)

    Article  Google Scholar 

  26. Kent, M., Browdy, C.L., Leffler, J.W.: Consumption and digestion of suspended microbes by juvenile Pacific white shrimp Litopenaeus vannamei. Aquaculture 319, 363–368 (2010)

    Article  Google Scholar 

  27. Gutierrez-Wing, M.T., Malone, R.F.: Biological filters in aquaculture: trends and research directions for freshwater and marine applications. Aquac. Eng. 34, 163–171 (2006)

    Article  Google Scholar 

  28. Yang, X.P., Wang, S.M., Zhang, D.W., Zhou, L.X.: Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Bacillus subtilis A1. Bioresour. Technol. 102, 854–862 (2011)

    Article  Google Scholar 

  29. Zhang, Q.L., Liu, Y., Ai, G.M., Miao, L.L., Zheng, H.Y., Liu, Z.P.: The characteristics of a novel heterotrophic nitrification–aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresour. Technol. 108, 35–44 (2012)

    Article  Google Scholar 

  30. Oursel, B., Garnier, C., Pairaud, I., Omanovic, D., Durrieau, G., Syakti, A.D., Le Poupona, C., Thouvenin, B., Lucas, Y.: Behaviour and fate of urban particles in coastal waters: settling rate, size distribution and metals contamination characterization. Estuar. Coast. Shelf Sci. 138, 14–26 (2014)

    Article  Google Scholar 

  31. Kanaly, R.A., Harayama, S.: Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182, 2059–2067 (2000)

    Article  Google Scholar 

  32. Sutton, E.B., Grotenhuis, T., Rijnaarts, H.H.M.: Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil. Chemosphere 97, 64–70 (2014)

    Article  Google Scholar 

  33. Barakat, A.O., Qion, Y., Kim, M., Kennicutt, M.C.: Chemical characterization of naturally weathered oil residue in arid terrestrial environmental in Al-Alamein, Egypt. Environ. Sci. Technol. 27, 291–310 (2001)

    Google Scholar 

  34. Wang, Z., Yang, C., Fingas, M., Hollebone, B., Yim, U.H., Oh, J.R.: 3-Petroleum biomarker fingerprinting for oil spill characterization and source identification. In: Wang, Z., Stout, S.A. (eds.) Oil Spill Environmental Forensics: Fingerprinting and Source Identification, pp. 74–146. Academic Press, Amsterdam (2007)

    Google Scholar 

  35. Syakti, A.D., Hidayati, N.V., Hilmi, E., Piram, A., Doumenq, P.: Source apportionment of sedimentary hydrocarbons in the Segara Anakan Nature Reserve, Indonesia. Mar. Pollut. Bull. 74(1), 141–148 (2013)

    Article  Google Scholar 

  36. Gearing, P.J., Gearing, J.N., Lytle, T.F., Lytle, J.S.: Hydrocarbons in 60 northeast Gulf of Mexico shelf sediments: a preliminary survey. Geochim. Cosmochim. Ac. 40, 1005–1017 (1976)

    Article  Google Scholar 

  37. Mille, G., Asia, L., Guiliano, M., Malleret, L., Doumenq, P.: Hydrocarbons in coastal sediments from the Mediterranean sea (Gulf of Fos area, France). Mar. Pollut. Bull. 54(5), 566–575 (2007)

    Article  Google Scholar 

  38. Bourbonniere, R.A., Meyers, P.A.: Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol. Oceanogr. 41, 352–359 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the DIKTIS Grantee (Indonesian Ministry of Religious Affair). The authors wish to thank Miss. Ilma Ridho as a research assistance of Dr. Syakti, A.D in this projet. We also thank the anonymous reviewers for their time to provide us their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agung Dhamar Syakti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syakti, A.D., Arofah, N., Purnomowati, R. et al. Sludge Valorization from Biofloc-Based Aquaculture Systems for Bioremediation of Crude Oil-Contaminated Sediment. Waste Biomass Valor 8, 561–572 (2017). https://doi.org/10.1007/s12649-016-9649-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9649-3

Keywords

Navigation