Skip to main content
Log in

Electroosmotic Coupling in Porous Media, a New Model Based on a Fractal Upscaling Procedure

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Electrokinetic and electroosmotic couplings can play important roles in water and ions transport in charged porous media. Electroosmosis is the phenomena explaining the water movement in a porous medium subjected to an electrical field. In this work, a new model is obtained through a new up-scaling procedure, considering the porous medium as a bundle of tortuous capillaries of fractal nature. From the model, the expressions for the electroosmosis pressure coefficient, the relative electroosmosis pressure coefficient, the maximum back pressure, the maximum flow rate, the flow rate-applied back pressure relation and the product of the permeability and formation factor of porous media are also obtained. The sensitivity of the relative electroosmosis pressure coefficient is then analyzed and explained. The model predictions are then successfully compared with published datasets. Additionally, we deduce an expression for the relative streaming potential coefficient and then compare it with a previously published model and experimental data from a dolomite rock sample. We find a good agreement between those models and experimental data, opening up new perspectives to model electroosmotic phenomena in porous media saturated with various fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bandopadhyay, A., DasGupta, D., Mitra, S.K., Chakraborty, S.: Electro-osmotic flows through topographically complicated porous media: role of electropermeability tensor. Phys. Rev. E 87, 033006 (2013)

    Google Scholar 

  • Bernabe, Y., Revil, A.: Pore-scale heterogeneity, energy dissipation and the transport properties of rocks. Geophys. Res. Lett. 22, 1529–1532 (1995)

    Google Scholar 

  • Bertolini, L., Coppola, L., Gastaldi, M., Redaelli, E.: Electroosmotic transport in porous construction materials and dehumidification of masonry. Constr. Build. Mater. 23, 254–263 (2009)

    Google Scholar 

  • Bolève, A., Crespy, A., Revil, A., Janod, F., Mattiuzzo, J.L.: Streaming potentials of granular media: influence of the dukhin and reynolds numbers. J. Geophys. Res. 112, B08204 (2007)

    Google Scholar 

  • Bruell, C.J., Segall, B.A., Walsh, M.T.: Electroosomotic removal of gasoline hydrocarbons and TCE from clay. J. Environ. Eng. 118, 68–83 (1992)

    Google Scholar 

  • Bruus, H.: Theoretical Microfluidics, 1st edn. Oxford University Press, Oxford (2008)

    Google Scholar 

  • Cai, J.C., Hu, X.Y., Standnes, D.C., You, L.J.: An analytical model for spontaneous imbibition in fractal porous media including gravity. Colloids Surf. A Physicocem. Eng. Asp. 414, 228–233 (2012a)

    Google Scholar 

  • Cai, J.C., You, L.J., Hu, X.Y., Wang, J., Peng, R.H.: Prediction of effective permeability in porous media based on spontaneous imbibition effect. Int. J. Mod. Phys. C (2012b). https://doi.org/10.1142/S0129183112500544

    Article  Google Scholar 

  • Casagrande, L.: Stabilization of soils by means of electroosmotic state-of-art. J. Boston Soc. Civ. Eng. ASCE 69, 255–302 (1983)

    Google Scholar 

  • Cherubini, A., Garcia, B., Cerepi, A., Revil, A.: Streaming potential coupling coefficient and transport properties of unsaturated carbonate rocks. Vadose Zone J. 17, 180030 (2018)

    Google Scholar 

  • Davis, J., James, R., Leckie, J.: Surface ionization and complexation at the oxide/water interface. I. computation of electrical double layer properties in simple electrolytes. J. Colloid Interface Sci. 63, 480–499 (1978)

    Google Scholar 

  • Feder, J., Aharony, A.: Fractals in Physics. North Holland, Amsterdam (1989)

    Google Scholar 

  • Friedman, S.P.: Soil properties influencing apparent electrical conductivity: a review. Comput. Electron. Agric. 46, 45–70 (2005)

    Google Scholar 

  • Ghanbarian, B., Hunt, A., Ewing, R.P., Sahimi, M.: Tortuosity in porous media: a critical review. Soil Sci. Soc. Am. J. 77, 1461–1477 (2013)

    Google Scholar 

  • Gierst, L.: Double layer and electrode kinetics. J. Am. Chem. Soc. 88, 4768–4768 (1966)

    Google Scholar 

  • Glover, P., Zadjali, I.I., Frew, K.A.: Permeability prediction from MICP and NMR data using an electrokinetic approach. Geophysics 71, F49–F60 (2006)

    Google Scholar 

  • Glover, P.W.J., Déry, N.: Streaming potential coupling coefficient of quartz glass bead packs: dependence on grain diameter, pore size, and pore throat radius. Geophysics 75, F225–F241 (2010)

    Google Scholar 

  • Glover, P.W.J., Walker, E.: Grain-size to effective pore-size transformation derived from electrokinetic theory. Geophysics 74(1), E17–E29 (2009)

    Google Scholar 

  • Good, B.T., Bowman, C.N., Davis, R.H.: An effervescent reaction micropump for portable microfluidic systems. Lab Chip 6, 659–666 (2006)

    Google Scholar 

  • Guarracino, L., Jougnot, D.: A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media. J. Geophys. Res. Solid Earth 123, 52–65 (2018)

    Google Scholar 

  • Han, S.-J., Kim, S.-S., Kim, B.-I.: Electroosmosis and pore pressure development characteristics in lead contaminated soil during electrokinetic remediation. Geosci. J. 8, 85 (2004)

    Google Scholar 

  • Hu, G., Li, D.: Multiscale phenomena in microfluidics and nanofluidics. Chem. Eng. Sci. 62, 3443–3454 (2007)

    Google Scholar 

  • Hu, X., Hu, S., Jin, F., Huang, S.: Physics of Petroleum Reservoirs. Springer, Berlin (2017)

    Google Scholar 

  • Hunter, R.J.: Zeta Potential in Colloid Science. Academic, New York (1981)

    Google Scholar 

  • Israelachvili, J.: Intermolecular and Surface Forces. Academic Press, New York (1992)

    Google Scholar 

  • Jaafar, M.Z., Vinogradov, J., Jackson, M.D.: Measurement of streaming potential coupling coefficient in sandstones saturated with high salinity NACL brine. Geophys. Res. Lett. (2009). https://doi.org/10.1029/2009GL040549

    Article  Google Scholar 

  • Jacob, H.M., Subirm, B.: Electrokinetic and Colloid Transport Phenomena. Wiley, New York (2006)

    Google Scholar 

  • Jardani, A., Revil, A., Boleve, A., Crespy, A., Dupont, J.-P., Barrash, W., Malama, B.: Tomography of the Darcy velocity from self-potential measurements. Geophys. Res. Lett. 34, L24403 (2007)

    Google Scholar 

  • Jougnot, D., Linde, N., Revil, A., Doussan, C.: Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils. Vadose Zone J. 11, 272–286 (2012)

    Google Scholar 

  • Jougnot, D., Mendieta, A., Leroy, P., Maineult, A.: Exploring the effect of the pore size distribution on the streaming potential generation in saturated porous media, insight from pore network simulations. J. Geophys. Res. Solid Earth 124, 5315–5335 (2019)

    Google Scholar 

  • Jurin, J.: Ii. an account of some experiments shown before the royal society; with an enquiry into the cause of the ascent and suspension of water in capillary tubes. Philos. Trans. R. Soc. Lond. 30, 739–747 (1719)

    Google Scholar 

  • Katz, A.J., Thompson, A.H.: Fractal sandstone pores: implications for conductivity and pore formation. Phys. Rev. Lett. 54, 1325–1328 (1985)

    Google Scholar 

  • Kirby, B.: Micro and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  • Larue, O., Wakeman, R., Tarleton, E., Vorobiev, E.: Pressure electroosmotic dewatering with continuous removal of electrolysis products. Chem. Eng. Sci. 61, 4732–4740 (2006)

    Google Scholar 

  • Leroy, P., Maineult, A.: Exploring the electrical potential inside cylinders beyond the Debye–Hückel approximation: a computer code to solve the Poisson–Boltzmann equation for multivalent electrolytes. Geophys. J. Int. 214, 58–69 (2018)

    Google Scholar 

  • Leroy, P., Revil, A.: A triple-layer model of the surface electrochemical properties of clay minerals. J. Colloid Interface Sci. 270, 371–380 (2004)

    Google Scholar 

  • Levine, S., Marriott, J., Neale, G., Epstein, N.: Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. J. Colloid Interface Sci. 52, 136–149 (1975)

    Google Scholar 

  • Li, S.X., Pengra, D.B., Wong, P.Z.: Onsager’s reciprocal relation and the hydraulic permeability of porous media. Phys. Rev. E 51, 5748–5751 (1995)

    Google Scholar 

  • Liang, M., Yang, S., Miao, T., Yu, B.: Analysis of electroosmotic characters in fractal porous media. Chem. Eng. Sci. 127, 202–209 (2015)

    Google Scholar 

  • Liang, M., Yang, S., Yu, B.: A fractal streaming current model for charged microscale porous media. J. Electrostat. 72, 441–446 (2014)

    Google Scholar 

  • Jiang, Linan, Mikkelsen, J., Koo, J.-M., Huber, D., Yao, Shuhuai, Zhang, Lian, Zhou, Peng, Maveety, J.G., Prasher, R., Santiago, J.G., Kenny, T.W., Goodson, K.E.: Closed-loop electroosmotic microchannel cooling system for VLSI circuits. IEEE Trans. Compon. Packag. Technol. 25, 347–355 (2002)

    Google Scholar 

  • Linde, N., Binley, A., Tryggvason, A., Pedersen, L.B., Revil, A.: Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data. Water Resour. Res. 42, W04410 (2006)

    Google Scholar 

  • Lockhart, N., Hart, G.: Electro-osmotic dewatering of fine suspensions: the efficacy of current interruptions. Dry. Technol. 6, 415–423 (1988)

    Google Scholar 

  • Luong, D.T., Sprik, R.: Streaming potential and electroosmosis measurements to characterize porous materials. ISRN Geophys. 496352, 1–8 (2013)

    Google Scholar 

  • Lyklema, J.: Fundamentals of Interface and Colloid Science. Academic Press, New York (1995)

    Google Scholar 

  • Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman, New York (1982)

    Google Scholar 

  • Mohiuddin Mala, G., Li, D.-D., Werner, C., Jacobasch, H.-J., Ning, Y.: Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects. Int. J. Heat Fluid Flow 18, 489–496 (1997)

    Google Scholar 

  • Nourbehecht, B.: Irreversible thermodynamic effects in inhomogeneous media and their applications in certain geoelectric problems. PhD thesis, MIT Press, Cambridge, MA, USA (1963)

  • Ohshima, H., Kondo, T.: Electrokinetic flow between two parallel plates with surface charge layers: electro-osmosis and streaming potential. J. Colloid Interface Sci. 135, 443–448 (1990)

    Google Scholar 

  • Olivares, W., Croxton, T.L., McQuarrie, D.A.: Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 84, 867–869 (1980)

    Google Scholar 

  • Ottosen, L., Rörig-Dalgaard, I.: Drying brick masonry by electro-osmosis. In: Proceedings of the Seventh International Masonry Conference. British Masonry Society (2006)

  • Paillat, T., Moreau, E., Grimaud, P.O., Touchard, G.: Electrokinetic phenomena in porous media applied to soil decontamination. IEEE Trans. Dielectr. Electr. Insul. 7, 693–704 (2000)

    Google Scholar 

  • Pascal, J., Oyanader, M., Arce, P.: Effect of capillary geometry on predicting electroosmotic volumetric flowrates in porous or fibrous media. J. Colloid Interface Sci. 378, 241–250 (2012)

    Google Scholar 

  • Pengra, D., Li, S.X., Wong, P.: Determination of rock properties by low frequency ac electrokinetics. J. Geophys. Res. 104, 29485–29508 (1999)

    Google Scholar 

  • Pride, S.: Governing equations for the coupled electromagnetics and acoustics of porous media. Phys. Rev. B 50, 15678–15696 (1994)

    Google Scholar 

  • Pride, S.R., Morgan, F.D.: Electrokinetic dissipation induced by seismic waves. Geophysics 56, 914–925 (1991)

    Google Scholar 

  • Quincke, G.: Ueber die fortführung materieller theilchen durch strömende elektricität. Ann. Phys. 189, 513–598 (1861)

    Google Scholar 

  • Reddy, K.R., Parupudi, U.S., Devulapalli, S.N., Xu, C.Y.: Effects of soil composition on the removal of chromium by electrokinetics. J. Hazard. Mater. 55, 135–158 (1997)

    Google Scholar 

  • Reuss, F.: Sur un nouvel effet de l’électricité galvanique. Mémoires de la Societé Imperiale de Naturalistes de Moscou 2, 327–336 (1809)

    Google Scholar 

  • Revil, A., Cathles III, L.M., Manhardt, P.D.: Permeability of shaly sands. Water Resour. Res. 3, 651–662 (1999)

    Google Scholar 

  • Revil, A., Leroy, P.: Constitutive equations for ionic transport in porous shales. J. Geophys. Res. Solid Earth 109, B03208 (2004)

    Google Scholar 

  • Revil, A., Linde, N.: Chemico-electromechanical coupling in microporous media. J. Colloid Interface Sci. 302, 682–694 (2006)

    Google Scholar 

  • Revil, A., Linde, N., Cerepi, A., Jougnot, D., Matthäi, S., Finsterle, S.: Electrokinetic coupling in unsaturated porous media. J. Colloid Interface Sci. 313, 315–327 (2007)

    Google Scholar 

  • Rice, C., Whitehead, R.: Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 69, 4017–4024 (1965)

    Google Scholar 

  • Sen, P.N., Goode, P.A.: Influence of temperature on electrical conductivity on shaly sands. Geophysics 57, 89–96 (1992)

    Google Scholar 

  • Singhal, V., Garimella, S.V., Raman, A.: Microscale pumping technologies for microchannel cooling systems. Birck NCN Publ. 57, 191–221 (2004)

    Google Scholar 

  • Smoluchowski, M.: Contribution à la théorie de l’endosmose électrique et de quelques phénomènes corrélatifs. Bulletin de l’Académie des Sciences de Cracovie 8, 182–200 (1902)

    Google Scholar 

  • Soldi, M., Guarracino, L., Jougnot, D.: An analytical effective excess charge density model to predict the streaming potential generated by unsaturated flow. Geophys. J. Int. 216, 380–394 (2019)

    Google Scholar 

  • Thanh, L., Jougnot, D., Do, P., Ca, N., Hien, N.: A physically based model for the streaming potential coupling coefficient in partially saturated porous media. Water 12, 1588 (2020)

    Google Scholar 

  • Thanh, L., Sprik, R.: Zeta potential measurement using streaming potential in porous media. VNU J. Sci. Math. Phys. 31, 56–65 (2015)

    Google Scholar 

  • Thanh, L.D., Jougnot, D., Van Do, P., Van Nghia, A.: A physically based model for the electrical conductivity of water-saturated porous media. Geophys. J. Int. 219, 866–876 (2019)

    Google Scholar 

  • Thanh, L.D., Van Do, P., Van Nghia, N., Ca, N.X.: A fractal model for streaming potential coefficient in porous media. Geophys. Prospect. 66, 753–766 (2018)

    Google Scholar 

  • Tsai, N.-C., Sue, C.-Y.: Review of mems-based drug delivery and dosing systems. Sens. Actuators A 134, 555–564 (2007)

    Google Scholar 

  • Vennela, N., Bhattacharjee, S., De, S.: Sherwood number in porous microtube due to combined pressure and electroosmotically driven flow. Chem. Eng. Sci. 66, 6515–6524 (2011)

    Google Scholar 

  • Vinogradov, J., Jaafar, M.Z., Jackson, M.D.: Measurement of streaming potential coupling coefficient in sandstones saturated with natural and artificial brines at high salinity. J. Geophys. Res. 115 (2010)

  • Wang, J., Hu, H., Guan, W.: The evaluation of rock permeability with streaming current measurements. Geophys. J. Int. 206, 1563–1573 (2016)

    Google Scholar 

  • Wang, J., Hu, H., Guan, W., Li, H.: Electrokinetic experimental study on saturated rock samples: zeta potential and surface conductance. Geophys. J. Int. 201, 869–877 (2015)

    Google Scholar 

  • Wang, X., Cheng, C., Wang, S., Liu, S.: Electroosmotic pumps and their applications in microfluidic systems. Microfluid. Nanofluid. 6, 145–162 (2009)

    Google Scholar 

  • Wise, D.L., Trantolo, D.J.: Remediation of Hazardous Waste Contaminated Soils. CRC Press, Boca Raton (1994)

    Google Scholar 

  • Wu, R.C., Papadopoulos, K.D.: Electroosmotic flow through porous media: cylindrical and annular models. Colloids Surf. A 161, 469–476 (2000)

    Google Scholar 

  • Wyllie, M.R.J., Rose, W.: Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log data. Society of Petroleum Engineers (1950)

  • Yao, S., Santiago, J.G.: Porous glass electroosmotic pumps: theory. J. Colloid Interface Sci. 268, 133–142 (2003)

    Google Scholar 

  • Yu, B., Cheng, P.: A fractal permeability model for bi-dispersed porous media. Int. J. Heat Mass Transf. 45, 2983–2993 (2002)

    Google Scholar 

  • Yu, B., Lee, L.J., Cao, H.: Fractal characters of pore microstructures of textile fabrics. Fractals 09, 155–163 (2001)

    Google Scholar 

  • Zeng, S., Chen, C.H., Mikkelsen, J.C., Santiago, J.G.: Fabrication and characterization of electroosmotic micropumps. Sens. Actuators B 79, 107–114 (2001)

    Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.99-2019.316. Additionally, D. Jougnot and A. Mendieta strongly thank the financial support of ANR EXCITING (Grant ANR-17-CE06-0012) for the PhD thesis funding of A. Mendieta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thi Hien.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanh, L.D., Jougnot, D., Van Do, P. et al. Electroosmotic Coupling in Porous Media, a New Model Based on a Fractal Upscaling Procedure. Transp Porous Med 134, 249–274 (2020). https://doi.org/10.1007/s11242-020-01444-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01444-7

Keywords

Navigation