Skip to main content
Log in

On the accuracy of high-order discretizations for underresolved turbulence simulations

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the accuracy of a high-order discontinuous Galerkin discretization for the coarse resolution simulation of turbulent flow. We show that a low-order approximation exhibits unacceptable numerical discretization errors, whereas a naive application of high-order discretizations in those situations is often unstable due to aliasing. Thus, for high-order simulations of underresolved turbulence, proper stabilization is necessary for a successful computation. Two different mechanisms are chosen, and their impact on the accuracy of underresolved high-order computations of turbulent flows is investigated. Results of these approximations for the Taylor–Green Vortex problem are compared to direct numerical simulation results from literature. Our findings show that the superior discretization properties of high-order approximations are retained even for these coarsely resolved computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altmann, C., Beck, A., Hindenlang, F., Staudenmaier, M., Gassner, G.: An efficient high performance parallelization of a discontinuous galerkin spectral element method (in preparation)

  2. Bassi F., Rebay S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bassi F., Rebay S., Mariotti G., Pedinotti S., Savini M.: A high-order accurate discontinuous finite element method fir inviscid an viscous turbomachinery flows. In: Decuypere, R., Dibelius, G. (eds) Proceedings of 2nd European Conference on Turbomachinery, Fluid and Thermodynamics, pp. 99–108. Technologisch Instituut, Antwerpen (1997)

    Google Scholar 

  4. Berland J., Bogey C., Marsden O., Bailly C.: High-order, low dispersive and low dissipative explicit schemes for multi-scale and boundary problems. J. Comput. Phys. 224, 637–662 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Black K.: A conservative spectral element method for the approximation of compressible fluid flow. KYBERNETIKA 35(1), 133–146 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Black K.: Spectral element approximation of convection-diffusion type problems. Appl. Numer. Math. 33(1–4), 373–379 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brachet M.: Direct simulation of three-dimensional turbulence in the taylor–green vortex. Fluid Dyn Res 8(1–4), 1–8 (1991)

    Article  Google Scholar 

  8. Brachet M.E., Meiron D.I., Orszag S.A., Nickel B.G., Morf R.H., Frisch U.: Small-scale structure of the Taylor–Green vortex. J. Fluid Mech. 130, 411–452 (1983). doi:10.1017/S0022112083001159

    Article  MATH  Google Scholar 

  9. Castel N., Cohen G., Durufle M.: Application of discontinuous Galerkin spectral method on hexahedral elements for aeroacoustic. J. Comput. Acoust. 17(2), 175–196 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Choi H., Moin P., Kim J.: Direct numerical simulation of flow over riblets. J. Fluid Mech. 255, 503–539 (1994)

    Article  Google Scholar 

  11. Deng S.: Numerical simulation of optical coupling and light propagation in coupled optical resonators with size disorder. Appl. Numer. Math. 57(5–7), 475–485 (2007). doi:10.1016/j.apnum.2006.07.001

    Article  MathSciNet  MATH  Google Scholar 

  12. Deng S., Cai W., Astratov V.: Numerical study of light propagation via whispering gallery modes in microcylinder coupled resonator optical waveguides. Opt. Express 12(26), 6468–6480 (2004)

    Article  Google Scholar 

  13. Fagherazzi S., Furbish D., Rasetarinera P., Hussaini M.Y.: Application of the discontinuous spectral Galerkin method to groundwater flow. Adv. Water Resour. 27, 129–140 (2004)

    Article  Google Scholar 

  14. Fagherazzi S., Rasetarinera P., Hussaini M.Y., Furbish D.J.: Numerical solution of the dam-break problem with a discontinuous Galerkin method. J. Hydraul. Eng. 130(6), 532–539 (2004)

    Article  Google Scholar 

  15. Fauconnier, D.: Development of a dynamic finite difference method for large-eddy simulation. Dissertation, Ghent University, Ghent, Belgium (2008)

  16. Fauconnier, D., Bogey, C., Dick, E., Bailly, C.: Assessment of large-eddy simulation based on relaxation filtering: application to the Taylor–Green vortex. In: Proceedings of the Seventh International Symposium on Turbulence and Shear Flow Phenomena, Ottawa, Canada (2011)

  17. Gassner, G., Kopriva, D.: A comparison of the dispersion and dissipation errors of gauss and Gauss–Lobatto discontinuous galerkin spectral element methods. SIAM J. Sci. Comput. 33, 2560–2579

  18. Giraldo F., Hesthaven J., Warburton T.: Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations. J. Comput. Phys. 181(2), 499–525 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Giraldo F., Restelli M.: A study of spectral element and discontinuous Galerkin methods for the navier–stokes equations in nonhydrostatic mesoscale atmospheric modeling: equation sets and test cases. J. Compt. Phys 227, 3849–3877 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hesthaven J., Warburton T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, New York (2008)

    MATH  Google Scholar 

  21. Hickel, S.: Implicit turbulence modeling for large-eddy simulation. Dissertation, Technische Universität München, Munich, Germany (2008)

  22. Hickel S., Adams N.A., Domaradzki J.A.: An adaptive local deconvolution method for implicit les. J. Comput. Phys. 213(1), 413–436 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous Galerkin methods for unsteady problems (submitted to computers and fluids)

  24. Jeong J., Hussain F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kirby R.M., Karniadakis G.E.: De-aliasing on non-uniform grids: algorithms and applications. J. Comput. Phys. 191(1), 249–264 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kopriva, D.: Metric identities and the discontinuous spectral element method on curvilinear meshes. J. Sci. Comput. 26(3), 301–327 (2006). doi:10.1007/s10915-005-9070-8

    Google Scholar 

  27. Kopriva D., Gassner G.: On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44(2), 136–155 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kopriva D., Woodruff S., Hussaini M.: Discontinuous spectral element approximation of Maxwell’s equations. In: Cockburn, B., Karniadakis, G., Shu, C.W. (eds) Proceedings of the International Symposium on Discontinuous Galerkin Methods, Springer, New York (2000)

    Google Scholar 

  29. Kopriva D., Woodruff S., Hussaini M.: Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method. Int. J. Numer. Methods Eng 53, 105–122 (2002)

    Article  MATH  Google Scholar 

  30. Kopriva D.A.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers 1st edn. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  31. Mathew J., Foysi H., Friedrich R.: A new approach to les based on explicit filtering. Int. J. Heat Fluid Flow 27, 594–602 (2006)

    Article  Google Scholar 

  32. Pasquetti R.: High-order les modeling of turbulent incompressible flows. C.R. Acad. Sci. Paris 333, 39–49 (2005)

    MATH  Google Scholar 

  33. Rasetarinera P., Hussaini M.: An efficient implicit discontinuous spectral Galerkin method. J. Comput. Phys. 172, 718–738 (2001)

    Article  MATH  Google Scholar 

  34. Rasetarinera P., Kopriva D., Hussaini M.: Discontinuous spectral element solution of acoustic radiation from thin airfoils. AIAA J. 39(11), 2070–2075 (2001)

    Article  Google Scholar 

  35. Restelli M., Giraldo F.: A conservative discontinuous Galerkin semi-implicit formulation for the Navier–Stokes equations in nonhydrostatic mesoscale modeling. SIAM J. Sci. Comp. 31(3), 2231–2257 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stanescu, D., Farassat, F., Hussaini, M.: Aircraft engine noise scattering—parallel discontinuous Galerkin spectral element method. Paper 2002–0800, AIAA (2002)

  37. Stanescu D., Xu J., Farassat F., Hussaini M.: Computation of engine noise propagation and scattering off an aircraft. Aeroacoustics 1(4), 403–420 (2002)

    Article  Google Scholar 

  38. Tadmor E.: Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26, 30–44 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vreman B., Geurts B., Kuerten H.: Comparison of numerical schemes in large eddy simulation of the temporal mixing layer. Int. J. Numer. Methods Fluids 22, 297–311 (1996)

    Article  MATH  Google Scholar 

  40. Yee H.C., Vinokur M., Djomehri M.J.: Entropy splitting and numerical dissipation. J. Comput. Phys. 162(1), 33–81 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor J. Gassner.

Additional information

Communicated by Klein.

The research presented in this paper was supported in parts by Deutsche Forschungsgemeinschaft (DFG) within the Schwerpunktprogramm 1276: MetStroem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gassner, G.J., Beck, A.D. On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid Dyn. 27, 221–237 (2013). https://doi.org/10.1007/s00162-011-0253-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-011-0253-7

Keywords

Navigation