Skip to main content
Log in

CRaTER: The Cosmic Ray Telescope for the Effects of Radiation Experiment on the Lunar Reconnaissance Orbiter Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) characterizes the radiation environment to be experienced by humans during future lunar missions. CRaTER measures the effects of ionizing energy loss in matter due to penetrating solar energetic protons (SEP) and galactic cosmic rays (GCR), specifically in silicon solid-state detectors and after interactions with tissue-equivalent plastic (TEP), a synthetic analog of human tissue. The CRaTER investigation quantifies the linear energy transfer (LET) spectrum in these materials through direct measurements with the lunar space radiation environment, particularly the interactions of ions with energies above 10 MeV, which penetrate and are detected by CRaTER. Combined with models of radiation transport through materials, CRaTER LET measurements constrain models of the biological effects of ionizing radiation in the lunar environment as well as provide valuable information on radiation effects on electronic systems in deep space. In addition to these human exploration goals, CRaTER measurements also provide new insights on the spatial and temporal variability of the SEP and GCR populations and their interactions with the lunar surface. We present here an overview of the CRaTER science goals and investigation, including: an instrument description; observation strategies; instrument testing, characterization, and calibration; and data analysis, interpretation, and modeling plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.H. Adams, M. Bhattacharya, Z.W. Lin, G. Pendleton, J.W. Watts, The ionizing radiation environment on the moon. Adv. Space Res. 40, 338–341 (2007)

    Article  ADS  Google Scholar 

  • G.D. Badhwar, M.J. Golightly, A. Konradi et al., In-flight radiation measurements on STS-60. Radiat. Meas. 26(1), 17–34 (1996)

    Article  Google Scholar 

  • J.B. Blake, J.F. Fennell, L.M. Friesen, B.M. Johnson, W.A. Kolasinski, D.J. Mabry, J.V. Osborn, S.H. Penzin, E.R. Schnauss, H.E. Spence, D.N. Baker, R. Belian, T.A. Fritz, W. Ford, B. Laubscher, R. Stiglich, R.A. Baraze, M.F. Hilsenrath, W.L. Imhof, J.R. Kilner, J. Mobilia, H.D. Voss, A. Korth, M. Güll, K. Fischer, M. Grande, D. Hall, CEPPAD: comprehensive energetic particle and pitch angle distribution experiment on POLAR. Space Sci. Rev. 71, 531 (1995)

    Article  ADS  Google Scholar 

  • H.V. Cane, D. Lario, An introduction to CMEs and energetic particles. Space Sci. Rev. 123, 45–56 (2006)

    Article  ADS  Google Scholar 

  • A.W. Case, H.E. Spence, M.J. Owens, P. Riley, D. Odstrcil, Ambient solar wind’s effect on ICME transit times. Geophys. Res. Lett. 35, L15105 (2008). doi:10.1029/2008GL034493

    Article  ADS  Google Scholar 

  • E.W. Cascio, J.M. Sisterson, J.B. Flanz, M.S. Wagner, The proton irradiation program at the Northeast Proton Therapy Center, in NSREC Proceedings (2003)

  • E.W. Cascio, J.M. Sisterson, B. Gottschalk, S. Sarkar, Measurements of the energy spectrum of degraded proton beams at NPTC, in NSREC Proceedings (2004)

  • Y.M. Charara, Characterization of the cosmic ray telescope for the effects of radiation (CRaTER) detector. PhD Dissertation, The University of Tennessee, Knoxville, Tennessee, December 2008

  • D. Clack, J.C. Kasper, A.J. Lazarus, J.T. Steinberg, W.M. Farrell, Wind observations of extreme ion temperature anisotropies in the lunar wake. Geophys. Res. Lett. 31, 6 (2004)

    Article  Google Scholar 

  • J.E. Colwell, S. Batiste, M. Horányi, S. Robertson, S. Sture, Lunar surface: dust dynamics and regolith mechanics. Rev. Geophys. 45, RG2006 (2007). doi:10.1029/2005RG000184

    Article  ADS  Google Scholar 

  • M.J. Golightly, K. Hardy, W. Quam, Radiation-dosimetry measurements during US space-shuttle missions with the RME-III. Radiat. Meas. 23(1), 25–42 (1994)

    Article  Google Scholar 

  • J.S. Halekas, G.T. Delory, D.A. Brain, R.P. Lin, M.O. Fillingim, C.O. Lee, R.A. Mewaldt, T.J. Stubbs, W.M. Farrell, M.K. Hudson, Extreme lunar surface charging during solar energetic particle events. Geophys. Res. Lett. 34, L02111 (2007). doi:10.1029/2006GL028517

    Article  Google Scholar 

  • C.-L. Huang, H.E. Spence, B.T. Kress, Assessing access of galactic cosmic rays at Moon’s orbit. Geophys. Res. Lett. 36, L09109 (2009). doi:10.1029/2009GL037916

    Article  Google Scholar 

  • A.J. Jordan, H.E. Spence, J.B. Blake, T. Mulligan, D. Shaul, M. Galametz, Multipoint, high time resolution galactic cosmic ray observations associated with two interplanetary coronal mass ejections. J. Geophys. Res. 114, A07107 (2009). doi:10.1029/2008JA013891

    Article  Google Scholar 

  • Y. Kim, J.W. Wilson, S.A. Thibeault, J.E. Nealy, F.F. Badavi, R.L. Kiefer, Performance study of galactic cosmic ray shield materials, NASA Technical Paper 3473, November 1994

  • J.G. Luhmann et al., STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Rev. 136, 117–184 (2007)

    Article  ADS  Google Scholar 

  • J.E. Mazur, G.M. Mason, J.R. Dwyer, J. Giacalone, J.R. Jokipii, E.C. Stone, Interplanetary magnetic field line mixing deduced from impulsive solar flare particles. Astrophys. J. 532, L79 (2000)

    Article  ADS  Google Scholar 

  • R.A. Mewaldt, Solar energetic particle composition, energy spectra, and space weather. Space Sci. Rev. 124, 303–316 (2006)

    Article  ADS  Google Scholar 

  • I.G. Mitrofanov et al., Lunar exploration neutron detector for NASA’S lunar reconnaissance orbiter project. Space Sci. Rev. (2009). doi:10.1007/s11214-009-9608-4

    Google Scholar 

  • T. Mulligan, J.B. Blake, D. Shaul, J.J. Quenby, R.A. Leske, R.A. Mewaldt, M. Galametz, Short-period variability in the galactic cosmic ray intensity: high statistical resolution observations and interpretation around the time of a Forbush decrease in August 2006. J. Geophys. Res. 114, A07105 (2009). doi:10.1029/2008JA013783

    Article  Google Scholar 

  • A.J. Owens, J.R. Jokipii, Interplanetary scintillations of cosmic rays, 502. Astrophys. J. 181, L147–L150 (1973)

    Article  ADS  Google Scholar 

  • J.J. Quenby, T. Mulligan, J.B. Blake, J.E. Mazur, D. Shaul, Local and nonlocal geometry of interplanetary coronal mass ejections: Galactic cosmic ray (GCR) short-period variations and magnetic field modeling. J. Geophys. Res. 113, A10102 (2008). doi:10.1029/2007JA012849

    Article  ADS  Google Scholar 

  • R. Saunders, R. Arvidson, G. Badhwar et al., Mars Odyssey mission summary. Space Sci. Rev. 110, 1–36 (2004)

    Article  ADS  Google Scholar 

  • H.E. Spence, M.G. Kivelson, The variation of the plasma sheet polytropic index along the midnight meridian in a finite width tail. Geophys. Res. Lett. 17(5), 591–594 (1990)

    Article  ADS  Google Scholar 

  • E.C. Stone, C.M.S. Cohen, W.R. Cook, A.C. Cummings, B. Gauld et al., The cosmic-ray isotope spectrometer for the advanced composition explorer. Space Sci. Rev. 86, 285–356 (1998)

    Article  ADS  Google Scholar 

  • T.J. Stubbs, R.R. Vondrak, W.M. Farrell, A dynamic fountain model for lunar dust. Adv. Space Res. 37(1), 59–66 (2006)

    Article  ADS  Google Scholar 

  • T.J. Stubbs, R.R. Vondrak, W.M. Farrell, Impact of dust on lunar exploration, in Proceedings of Dust in Planetary Systems 2005, ed. by H. Kruger, A. Graps (Eur. Space Agency Spec. Publ., 2007)

  • L.W. Townsend, T.M. Miller, T.A. Gabriel, HETC radiation transport code development for cosmic ray shielding applications in space. Radiat. Protect. Dosimetry 116(1–4), 135–139 (2005)

    Article  Google Scholar 

  • W.R. Webber, J.A. Lezniak, The comparative spectra of cosmic-ray protons and helium nuclei. Astrophys. Space Sci. 30, 361–380 (1974)

    Article  ADS  Google Scholar 

  • J.W. Wilson, F.F. Badavi, F.A. Cucinotta, J.L. Shinn, G.D. Badhwar, R. Silberberg, C.H. Tsao, L.W. Townsend, R.K. Tripathi, HZETRN: Description of a free-space ion and nucleon transport and shielding computer program. NASA Technical Paper 3495, US Government Printing Office, Washington, DC, 1995

  • R.M. Winglee, E.M. Harnett, Radiation mitigation at the moon by the terrestrial magnetosphere, Geophys. Res. Lett. 34 (2007). doi:10.1029/2007GL030507

  • W.-M. Yao et al., Review of particle physics. J. Phys. G: Nucl. Part. Phys. 33, 1–1232 (2006). doi:10.1088/0954-3899/33/1/001

    Article  ADS  Google Scholar 

  • J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids, vol. 1 (Pergamon Press, New York, 1984)

    Google Scholar 

  • H.A. Zook, J.E. McCoy, Large scale lunar horizon glow and a high altitude lunar dust exosphere. Geophys. Res. Lett. 18(11), 2117–2120 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. E. Spence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spence, H.E., Case, A.W., Golightly, M.J. et al. CRaTER: The Cosmic Ray Telescope for the Effects of Radiation Experiment on the Lunar Reconnaissance Orbiter Mission. Space Sci Rev 150, 243–284 (2010). https://doi.org/10.1007/s11214-009-9584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-009-9584-8

Navigation