Skip to main content
Log in

The Marsquake Service: Securing Daily Analysis of SEIS Data and Building the Martian Seismicity Catalogue for InSight

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The InSight mission expects to operate a geophysical observatory on Mars for at least two Earth years from late 2018. InSight includes a seismometer package, SEIS. The Marsquake Service (MQS) is created to provide a first manual review of the seismic data returned from Mars. The MQS will detect, locate, quantify and classify seismic events, whether tectonic or impact in origin. A suite of new and adapted methodologies have been developed to allow location and quantification of seismic events at the global scale using a single station, and a software framework has been developed that supports these methods. This paper describes the expected signals that will be recorded by SEIS, the methods used for their identification and interpretation, and reviews the planned MQS operational procedures. For each seismic event, the MQS will locate events using all available body and surface phases, using the best estimates of the Martian structure, which will become more accurate as more Martian marsquakes are identified and located. The MQS will curate the Mars seismicity catalogue, with all events being relocated to use revised suites of structure models as they are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • M. Afanasiev, C. Boehm, M. van Driel, L. Krischer, M. Rietmann, D.A. May, M.G. Knepley, A. Fichtner, Modular and flexible spectral-element waveform modeling in two and three dimensions. Geophys. J. Int. (2018). https://doi.org/10.1093/gji/ggy469/5174970

    Article  Google Scholar 

  • K. Aki, Characterization of barriers on an earthquake fault. J. Geophys. Res. 84, 6140–6148 (1979)

    Article  ADS  Google Scholar 

  • D.L. Anderson, W.F. Miller, G.V. Latham, Y. Nakamura, M.N. Toksöz, A.M. Dainty, F.K. Duennebier, A.R. Lazarewickz, R.L. Kovach, T.C.D. Knight, Seismology on Mars. J. Geophys. Res. 82(28), 4524–4546 (1977)

    Article  ADS  Google Scholar 

  • R.C. Anderson, J.M. Dohm, M.P. Golombek, A.F. Haldemann, B.J. Franklin, K.L. Tanaka, J. Lias, B. Peer, Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. J. Geophys. Res., Planets 106(E9), 20563–20585 (2001)

    Article  ADS  Google Scholar 

  • R.C. Anderson, J.M. Dohm, A.F.C. Haldemann, E. Pounders, M. Golombek, A. Castano, Centers of tectonic activity in the eastern hemisphere of Mars. Icarus 195, 537–546 (2008). https://doi.org/10.1016/j.icarus.2007.12.027

    Article  ADS  Google Scholar 

  • W.B. Banerdt, M.P. Golombek, K.L. Tanaka, Stress and tectonics on Mars, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 249–297. Chap. 8

    Google Scholar 

  • W.B. Banerdt, S. Smrekar, P. Lognonné, T. Spohn, S.W. Asmar, D. Banfield, L. Boschi, U. Christensen, V. Dehant, W. Folkner, D. Giardini, W. Goetze, M. Golombek, M. Grott, T. Hudson, C. Johnson, G. Kargl, N. Kobayashi, J. Maki, D. Mimoun, A. Mocquet, P. Morgan, M. Panning, W.T. Pike, J. Tromp, T. van Zoest, R. Weber, M.A. Wieczorek, R. Garcia, K. Hurst, InSight: a Discovery Mission to explore the interior of Mars, in Lunar and Planetary Science Conference (2013). Lunar and Planetary Inst. Technical Report, 44,1915

    Google Scholar 

  • D. Banfield, J.A. Rodriguez-Manfredi, C.T. Russell, K.M. Rowe, D. Leneman, H.R. Lai, P.R. Cruce, J.D. Means, C.L. Johnson, S.P. Joy, P.J. Chi, I.G. Mikellides, S. Carpenter, S. Navarro, E. Sebastian, J. Gomez-Elvira, J. Torres, L. Mora, V. Peinado, A. Lepinette, K. Hurst, P. Lognonné, S.E. Smrekar, W.B. Banerdt, InSight Auxiliary Payload Sensor Suite (APSS). Space Sci. Rev. (2018, this issue). https://doi.org/10.1007/s11214-018-0570-x.

    Article  Google Scholar 

  • D. Baratoux, H. Samuel, C. Michaut, M.J. Toplis, M. Monnereau, M. Wieczorek, R. Garcia, K. Kurita, Petrological constraints on the density of the Martian crust. J. Geophys. Res., Planets 119, 1707–1727 (2014). https://doi.org/10.1002/2014JE004642

    Article  ADS  Google Scholar 

  • A. Barka, K. Kadinsky-Cade, Strike-slip fault geometry in Turkey. Tectonics 7, 663–684 (1988). https://doi.org/10.1029/TC007i003p00663

    Article  ADS  Google Scholar 

  • G.P. Biasi, S.G. Wesnousky, Bends and ends of surface ruptures. Bull. Seismol. Soc. Am. 107(6), 2543–2560 (2017). https://doi.org/10.1785/0120160292

    Article  Google Scholar 

  • F. Bissig, A. Khan, M. van Driel, S. Stahler, D. Giardini, M. Panning, M. Drilleau, P. Lognonné, T.V. Gudkova, V.N. Zharkov, W.B. Banerdt, On the detectability and use of normal modes for determining interior structure of Mars. Space Sci. Rev. (2018). https://doi.org/10.1007/s11214-018-0547-9

    Article  Google Scholar 

  • E. Bozdağ, Y. Ruan, N. Metthez, A. Khan, K. Leng, M. van Driel, M. Wieczorek, A. Rivoldini, C.S. Larmat, D. Giardini, J. Tromp, P. Lognonné, B.W. Banerdt, Simulations of seismic wave propagation on Mars. Space Sci. Rev. (2017). https://doi.org/10.1007/s11214-017-0350-z

    Article  Google Scholar 

  • M. Böse, J. Clinton, S. Ceylan, F. Euchner, M. van Driel, A. Khan, D. Giardini, P. Lognonné, W.B. Banerdt, A probabilistic framework for single-station location of seismicity on Earth and Mars. Phys. Earth Planet. Inter. 262, 48–65 (2017). https://doi.org/10.1016/j.pepi.2016.11.003

    Article  ADS  Google Scholar 

  • M. Böse, D. Giardini, S. Stähler, S. Ceylan, J. Clinton, M. van Driel, A. Khan, F. Euchner, P. Lognonné, B. Banerdt, Magnitude scales for marsquakes. Bull. Seismol. Soc. Am. (2018). https://doi.org/10.1785/0120180037

    Article  Google Scholar 

  • R.C. Bulow, C.L. Johnson, B.G. Bills, P.M. Shearer, Temporal and spatial properties of some deep moonquake clusters. J. Geophys. Res. 112, E09003 (2007). https://doi.org/10.1029/2006JE002847

    Article  ADS  Google Scholar 

  • D.M. Burr, J.A. Grier, A.S. McEwen, L.P. Keszthelyi, Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars. Icarus 159, 53–73 (2002). https://doi.org/10.1006/icar.2002.6921

    Article  ADS  Google Scholar 

  • S. Ceylan, M. van Driel, F. Euchner, A. Khan, J. Clinton, L. Krischer, M. Böse, S. Stähler, D. Giardini, From initial models of seismicity, structure and noise to synthetic seismograms for Mars. Space Sci. Rev. 211, 595 (2017). https://doi.org/10.1007/s11214-017-0378-0

    Article  ADS  Google Scholar 

  • E. Chael, An automated Rayleigh-wave detection algorithm. Bull. Seismol. Soc. Am. 87, 157–163 (1997)

    Google Scholar 

  • J. Clinton, D. Giardini, P. Lognonné, B. Banerdt, M. van Driel, M. Drilleau, N. Murdoch, M. Panning, R. Garcia, D. Mimoun, M. Golombek, J. Tromp, R. Weber, M. Böse, S. Ceylan, I. Daubar, B. Kenda, A. Khan, L. Perrin, A. Spiga, Preparing for InSight: an invitation to participate in a blind test for Martian seismicity. Seismol. Res. Lett. 88, 1290–1302 (2017). https://doi.org/10.1785/0220170094

    Article  Google Scholar 

  • M.R. Cooper, R.L. Kovach, Energy, frequency, and distance of moonquakes at the Apollo 17 site, in Proc. 6th. Lunar Conf. (1975), pp. 2863–2879

    Google Scholar 

  • H.P. Crotwell, T.J. Owens, J. Ritsema, The TauP toolkit: flexible seismic travel-time and ray-path utilities. Seismol. Res. Lett. 70, 154–160 (1999)

    Article  Google Scholar 

  • I.J. Daubar, A.S. McEwen, S. Byrne, M.R. Kennedy, B. Ivanov, The current Martian cratering rate. Icarus 225, 506–516 (2013). https://doi.org/10.1016/j.icarus.2013.04.009

    Article  ADS  Google Scholar 

  • I.J. Daubar, M.P. Golombek, A.S. McEwen, S. Byrne, M.A. Kreslavsky, N.C. Schmerr, M.E. Banks, Measurement of the current Martian cratering size frequency distribution, predictions for and expected improvements from InSight, in Lunar and Planetary Science Conference, vol. 46 (2015). Abstract 2468

    Google Scholar 

  • I.J. Daubar, M.E. Banks, N.C. Schmerr, M.P. Golombek, W.K. Hartmann, E.C.S. Joseph, K. Miljković, O.P. Popova, N.A. Teanby, Crater clusters on Mars: implications for atmospheric fragmentation, impactor properties, and seismic detectability, in Lunar and Planetary Science Conference, vol. 48 (2017). Abstract 2544

    Google Scholar 

  • I.J. Daubar et al., Impact-seismic investigations of the InSight mission. Space Sci. Rev. (2018). https://doi.org/10.1007/s11214-018-0562-x

    Article  Google Scholar 

  • J.-L. Dimech, B. Knapmeyer-Endrun, D. Phillips, R.C. Weber, Preliminary analysis of newly recovered Apollo 17 seismic data. Results Phys. 7, 4457–4458 (2017)

    Article  ADS  Google Scholar 

  • G. Dreibus, H. Wänke, Accretion of the Earth and the inner planets, in Proc. 27th International Geol. Conf., vol. 11 (1984), pp. 1–20

    Google Scholar 

  • F. Duennebier, G.H. Sutton, Thermal moonquakes. J. Geophys. Res. 79(29), 4351–4363 (1974)

    Article  ADS  Google Scholar 

  • A.M. Dziewonski, T.-A. Chou, J.H. Woodhouse, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. 86, 2825–2852 (1981). https://doi.org/10.1029/JB086iB04p02825

    Article  ADS  Google Scholar 

  • G. Ekström, M. Nettles, A.M. Dziewonski, The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200–201, 1–9 (2012). https://doi.org/10.1016/j.pepi.2012.04.002

    Article  ADS  Google Scholar 

  • R.F. Garcia, L. Schardong, S. Chevrot, A nonlinear method to estimate source parameters, amplitude, and travel times of teleseismic body waves. Bull. Seismol. Soc. Am. (2013). https://doi.org/10.1785/0120120160

    Article  Google Scholar 

  • C. Godano, F. Pingue, Is the seismic moment-frequency relation universal? Geophys. J. Int. 142, 193–198 (2000)

    Article  ADS  Google Scholar 

  • N.R. Goins, A.R. Lazarewicz, Martian seismicity. Geophys. Res. Lett. 6, 368–370 (1979). https://doi.org/10.1029/GL006i005p00368

    Article  ADS  Google Scholar 

  • N.R. Goins, A.M. Dainty, M.N. Toksöz, Seismic energy release of the Moon. J. Geophys. Res. 86, 378–388 (1981)

    Article  ADS  Google Scholar 

  • M.P. Golombek, W.B. Banerdt, K.L. Tanaka, D.M. Tralli, A prediction of Mars seismicity from surface faulting. Science 258(5084), 979–981 (1992). https://doi.org/10.1126/science.258.5084.979

    Article  ADS  Google Scholar 

  • M.P. Golombek, Constraints on the largest marsquake, in Lunar Planet. Sci. Conf., vol. XXV (1994), pp. 441–442

    Google Scholar 

  • M.P. Golombek, A revision of Mars seismicity from surface faulting, in Lunar Planet. Sci. Conf., vol. XXXIII (2002). Abstract 1244

    Google Scholar 

  • M.P. Golombek, R.J. Phillips, Mars tectonics, in Planetary Tectonics, ed. by T.R. Watters, R.A. Schultz (Cambridge University Press, Cambridge, 2010), pp. 183–232

    Google Scholar 

  • M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R.L. Kirk, R. Beyer, A. Huertas, S. Piqueux, N.E. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N. Wigton, T. Hare, C. Schwartz, H. Gengl, L. Redmond, M. Trautman, J. Sweeney, C. Grima, I.B. Smith, E. Sklyanskiy, M. Lisano, J. Benardini, S. Smrekar, P. Lognonné, W.B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. 211, 5–95 (2017). https://doi.org/10.1007/s11214-016-0321-9

    Article  ADS  Google Scholar 

  • M. Golombek, M. Grott, G. Kargl, J. Andrade, J. Marshall, N. Warner, N.A. Teanby, V. Ansan, E. Hauber, J. Voigt, R. Lichtenheldt, B. Knapmeyer-Endrun, I.J. Daubar, D. Kipp, N. Müller, P. Lognonné, C. Schmelzbach, D. Banfield, A. Trebi-Ollennu, J. Maki, S. Kedar, D. Mimoun, N. Murdoch, S. Piqueux, P. Delage, W.T. Pike, C. Charalambous, R. Lorenz, L. Fayon, A. Lucas, S. Rodriguez, P. Morgan, A. Spiga, M. Panning, T. Spohn, S. Smrekar, T. Gudkova, R. Garcia, D. Giardini, U. Christensen, T. Nicollier, D. Sollberger, J. Robertsson, K. Ali, B. Kenda, W.B. Banerdt, Geology and physical properties investigations by the InSight lander. Space Sci. Rev. (2018). https://doi.org/10.1007/s11214-018-0512-7

    Article  Google Scholar 

  • T.V. Gudkova, A.V. Batov, V.N. Zharkov, Model estimates of non-hydrostatic stresses in the Martian crust and mantle: 1. Two-level model. Sol. Syst. Res. 51(6), 457–478 (2017)

    Article  ADS  Google Scholar 

  • W.K. Hartmann, Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174, 294–320 (2005). https://doi.org/10.1016/j.icarus.2004.11.023

    Article  ADS  Google Scholar 

  • W.K. Hartmann, M. Malin, A. McEwen, M. Carr, L. Soderblom, P. Thomas, E. Danielson, P. James, J. Veverka, Evidence for recent volcanism on Mars from crater counts. Nature 397, 586–589 (1999)

    Article  ADS  Google Scholar 

  • J.W. Head III., M.A. Kreslavsky, S. Pratt, Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian period. J. Geophys. Res. 107(E1), 5003 (2002). https://doi.org/10.1029/2000JE001445

    Article  Google Scholar 

  • C. Hibert, G. Ekström, C.P. Stark, Dynamics of the Bingham Canyon Mine landslides from seismic signal analysis. Geophys. Res. Lett. 41, 4535–4541 (2014). https://doi.org/10.1002/2014GL060592

    Article  ADS  Google Scholar 

  • W.L. Jaeger, L.P. Keszthelyi, A.S. McEwen, C.M. Dundas, P.S. Russell, Athabasca Valles, Mars: a lava-draped channel system. Science 317, 1709–1711 (2007). https://doi.org/10.1126/science.1143315

    Article  ADS  Google Scholar 

  • Y.Y. Kagan, Seismic moment-frequency relation for shallow earthquakes: regional comparison. J. Geophys. Res. 102(B2), 2835–2852 (1997)

    Article  ADS  Google Scholar 

  • Y.Y. Kagan, Seismic moment distribution revisited: I. Statistical results. Geophys. J. Int. 148, 520–541 (2002)

    Article  ADS  Google Scholar 

  • S. Kedar, J. Andrade, B. Banerdt, P. Delage, M. Golombek, M. Grott, T. Hudson, A. Kiely, M. Knapmeyer, B. Knapmeyer-Endrun, C. Krause, T. Kawamura, P. Lognonné, T. Pike, T. Spohn, N. Teanby, J. Tromp, J. Wookey, Analysis of regolith properties using seismic signals generated by InSight’s HP3 penetrator. Space Sci. Rev. 211, 315–337 (2017). https://doi.org/10.1007/s11214-017-0391-3

    Article  ADS  Google Scholar 

  • B. Kenda, P. Lognonné, A. Spiga, T. Kawamura, S. Kedar, W.B. Banerdt, R. Lorenz, D. Banfield, M. Golombek, Modeling of ground deformation and shallow surface waves generated by Martian dust devils and perspectives for near-surface structure inversion. Space Sci. Rev. 211.1–4, 501–524 (2017). https://doi.org/10.1007/s11214-017-0378-0

    Article  Google Scholar 

  • A. Khan, J.A.D. Connolly, S.R. Taylor, Inversion of seismic and geodetic data for the major element chemistry and temperature of the Earth’s mantle. J. Geophys. Res. 113, B09308 (2008). https://doi.org/10.1029/2007JB005239

    Article  ADS  Google Scholar 

  • A. Khan, M. van Driel, M. Böse, D. Giardini, S. Ceylan, J. Yan, J. Clinton, F. Euchner, P. Lognonné, N. Murdoch, D. Mimoun, M. Panning, M. Knapmeyer, W.B. Banerdt, Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Phys. Earth Planet. Inter. 258, 28–42 (2016). https://doi.org/10.1016/j.pepi.2016.05.017

    Article  ADS  Google Scholar 

  • A. Khan, C. Liebske, A. Rozel, A. Rivoldini, J.A.D. Connolly, A.-C. Plesa, D. Giardini, A geophysical perspective on the bulk composition of Mars. J. Geophys. Res. (2018). https://doi.org/10.1002/2017JE005371

    Article  Google Scholar 

  • M. Knapmeyer, J. Oberst, E. Hauber, M. Wählisch, C. Deuchler, R. Wagner, Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res. 111, E11006 (2006). https://doi.org/10.1029/2006JE002708

    Article  ADS  Google Scholar 

  • B. Knapmeyer-Endrun, M.P. Golombek, M. Ohrnberger, Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed inSight Landing Site in Elysium Planitia, Mars. Space Sci. Rev. 211(1–4), 339–382 (2017). https://doi.org/10.1007/s11214-016-0300-1

    Article  ADS  Google Scholar 

  • B. Knapmeyer-Endrun, C. Hammer, Identification of new events in the Apollo 16 lunar seismic data by hidden Markov model-based event detection and classification. J. Geophys. Res. 120, 1620–1645 (2015). https://doi.org/10.1002/2015JE004862

    Article  Google Scholar 

  • E. Larose, A. Khan, Y. Nakamura, M. Campillo, Lunar subsurface investigated from correlation of seismic noise. Geophys. Res. Lett. 32, L16201 (2005). https://doi.org/10.1029/2005GL023518

    Article  ADS  Google Scholar 

  • K. Lodders, B. Fegley, An oxygen isotope model for the composition of Mars. Icarus 126, 373–394 (1997)

    Article  ADS  Google Scholar 

  • P. Lognonné, W.B. Banerdt, D. Giardini, W.T. Pike, U. Christensen, P. Laudet, S. de Raucourt, P. Zweifel, S. Calcutt, M. Bierwirth, K.J. Hurst, F.I. Jpelaan, J.W. Umland, R. Llorca-Cejudo, S. Larson, R. Garcia, S. Kedar, B. Knapmeyer-Endrun, D. Mimoun, A. Mocquet, M.P. Panning, R.C. Weber, A. Sylvestre-Baron, G. Pont, N. Verdier, L. Kerjean, L.J. Facto, V. Gharakanian, J.E. Feldman, T.L. Hoffman, D.B. Klein, K. Klein, N.P. Onufer, J. Paredes-Garcia, M.P. Petkov, J.R. Willis, S.E. Smrekar, M. Drilleau, T. Gabsi, T. Nebut, O. Robert, S. Tillier, C. Moreau, M. Parise, G. Aveni, S. Ben Charef, Y. Bennour, T. Camus, P.A. Dandonneau, C. Desfoux, B. Lecomte, O. Pot, P. Revuz, D. Mance, J. ten Pierick, N.E. Bowles, C. Charalambous, A.K. Delahunty, J. Hurley, R. Irshad, H. Liu, A.G. Mukerherjee, I.M. Standley, A.E. Stott, J. Temple, T. Warren, M. Eberhardt, A. Kramer, W. Kühne, E.-P. Miettinen, M. Monecke, C. Aicardi, M. André, J. Baroukh, A. Borrien, A. Bouisset, P. Boutte, K. Brethomé, C. Brysbaert, T. Carlier, M. Deleuze, J.M. Desmarres, D. Dilhan, C. Doucet, D. Faye, N. Faye-Refalo, R. Gonzalez, C. Imbert, C. Larigauderie, E. Locatelli, L. Luno, J-R. Meyer, F. Mialhe, J.M. Mouret, M. Nonon, Y. Pahn, A. Paillet, P. Pasquier, G. Perez, R. Perez, L. Perrin, B. Pouilloux, A. Rosak, I. Savin de Larclause, J. Sicre, M. Sodki, N. Toulemont, B. Vella, C. Yana, F. Alibay, O. Avalos, M. Balzer, P. Bhandari, E. Blanco, B.D. Bone, J. Bousman, P. Bruneau, F. Calef, R.J. Calvet, S. D’Agostino, G. de los Santos, R. Deen, B. Denise, J. Ervin, N. Ferraro, H.E. Gengl, F. Grinblat, D. Hernandez, M. Hetzel, M. Johnson, L. Khachikyan, J. Lin, S. Madzunkov, S. Marshall, L. Mikellides, E.A. Miller, W. Raff, J. Singer, C. Sunday, J. Villalvazo, M.C. Wallace, D. Banfield, J.A. Rodriguez-Manfredi, C.T. Russell, A. Trebi-Ollennu, J.N. Maki, E. Beucler, M. Böse, C. Bonjour, J.L. Berenguer, S. Ceylan, J. Clinton, V. Conajero, I. Daubar, V. Dehant, P. Delage, F. Euchner, I. Estève, L. Fayon, L. Ferraioli, C. Johnson, J. Gagnepain-Beyneix, M. Golombek, A. Khan, T. Kawamura, B. Kenda, P. Labrot, N. Murdoch, C. Pardo, C. Perrin, L. Pou, A. Sauron, D. Savoie, S. Stähler, E. Stutzman, N.A. Teanby, J. Tromp, M. van Driel, M. Wieczorek, R. Widmer-Schnidrig, J. Wookey SEIS (eds.), The seismic experiment for internal structure of InSight. Space Sci. Rev. (2018, this issue)

  • R.D. Lorenz, S. Kedar, N. Murdoch, P. Lognonné, T. Kawamura, D. Mimoun, W.B. Banerdt, Seismometer detection of dust devil vortices by ground tilt. Bull. Seismol. Soc. 105(6), 3015–3023 (2015). https://doi.org/10.1785/0120150133

    Article  Google Scholar 

  • M.C. Malin, K.S. Edgett, L.V. Posiolova, S.M. McColley, E.Z.N. Dobrea, Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 1573–1577 (2006). https://doi.org/10.1126/science.1135156

    Article  ADS  Google Scholar 

  • N. Mangold, P. Allemand, P.G. Thomas, G. Vidal, Chronology of compressional deformation on Mars: evidence for a single and global origin. Planet. Space Sci. 48, 1201–1211 (2000)

    Article  ADS  Google Scholar 

  • I. Manighetti, M. Campillo, S. Bouley, F. Cotton, Earthquake scaling, fault segmentation, and structural maturity. Earth Planet. Sci. Lett. 253, 429–438 (2007). https://doi.org/10.1016/j.epsl.2006.11.004

    Article  ADS  Google Scholar 

  • I. Manighetti, C. Caulet, D. De Barros, C. Perrin, F. Cappa, Y. Gaudemer, Generic along-strike segmentation of Afar normal faults, East Africa: implications on fault growth and stress heterogeneity on seismogenic fault planes. Geochem. Geophys. Geosyst. 16, 443–467 (2015). https://doi.org/10.1002/2014GC005691

    Article  ADS  Google Scholar 

  • N. Mark, G.H. Sutton, Lunar shear velocity structure at Apollo Sites 12, 14, and 15. J. Geophys. Res. 80(35), 4932–4938 (1975). https://doi.org/10.1029/JB080i035p04932

    Article  ADS  Google Scholar 

  • S.M. Metzger, J.R. Carr, J.R. Johnson, T.J. Parker, M.T. Lemmon, Dust devil vortices seen by the Mars Pathfinder camera. Geophys. Res. Lett. 26(18), 2781–2784 (1999). https://doi.org/10.1029/1999GL008341

    Article  ADS  Google Scholar 

  • D. Mimoun, N. Murdoch, P. Lognonné, K. Hurst, W.T. Pike, J. Hurley, T. Nébut, W.B. Banerdt, The noise model of the SEIS seismometer of the InSight mission to Mars. Space Sci. Rev. 211(1–4), 383–428 (2017). https://doi.org/10.1007/s11214-017-0409-x

    Article  ADS  Google Scholar 

  • A. Mocquet, A search for the minimum number of stations needed for seismic networking on Mars. Planet. Space Sci. 47, 397–409 (1999)

    Article  ADS  Google Scholar 

  • A. Mocquet, P. Vacher, O. Grasset, C. Sotin, Theoretical seismic models of Mars: the importance of the iron content of the mantle. Planet. Space Sci. 44, 1251–1268 (1996)

    Article  ADS  Google Scholar 

  • J.W. Morgan, E. Anders, Chemical composition of Earth, Venus, and Mercury. Proc. Natl. Acad. Sci. USA 77(12), 6973–6977 (1980)

    Article  ADS  Google Scholar 

  • N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Estimations of the seismic pressure noise on Mars determined from Large Eddy Simulations and demonstration of pressure decorrelation techniques for the InSight mission. Space Sci. Rev. (2017a). https://doi.org/10.1007/s11214-017-0343-y

    Article  Google Scholar 

  • N. Murdoch, D. Mimoun, R.F. Garcia, W. Rapin, T. Kawamura, P. Lognonné, D. Banfield, W.B. Banerdt, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. (2017b). https://doi.org/10.1007/s11214-016-0311-y

    Article  Google Scholar 

  • Y. Nakamura, Shallow moonquakes: how they compare with earthquakes, in Proc. Lunar Planet. Sci. Conf., vol. 11 (1980), pp. 1847–1853

    Google Scholar 

  • Y. Nakamura, J. Dorman, F. Duennebier, D. Lammlein, G. Latham, Shallow lunar structure determined from the passive seismic experiment. Earth Moon Planets 13, 57 (1975). https://doi.org/10.1007/BF00567507

    Article  Google Scholar 

  • Y. Nakamura, G. Latham, H. Dorman, A.B. Ibrahim, J. Koyama, P. Horvarth, Shallow moonquakes—depth, distribution and implications as to the present state of the lunar interior, in Proc. Lunar Planet. Sci. Conf., vol. 10 (1979), pp. 2299–2309

    Google Scholar 

  • Y. Nakamura, G.V. Latham, H.J. Dorman, J.E. Harris, Passive seismic experiment, long-period event catalog. Final version, Tech. Rep. 18, Inst for Geophys. Univ. of Texas, Galveston (1981)

  • G. Neukum, R. Jaumann, H. Hoffmann, E. Hauber, J.W. Head, A.T. Basilevsky, B.A. Ivanov, S.C. Werner, S. van Gasselt, J.B. Murray, T. McCord, Recent and episodic volcanic and glacial activity on Mars revealed by the high resolution stereo camera. Nature 432, 971–979 (2004). https://doi.org/10.1038/nature03231

    Article  ADS  Google Scholar 

  • G.A. Neumann, M.T. Zuber, M.A. Wieczorek, P.J. McGovern, F.G. Lemoine, D.E. Smith, Crustal structure of Mars from gravity and topography. J. Geophys. Res. 109, E08002 (2004). https://doi.org/10.1029/2004JE002262

    Article  ADS  Google Scholar 

  • T. Nissen-Meyer, M. van Driel, S.C. Stähler, K. Hosseini, S. Hempel, L. Auer, A. Colombi, A. Fournier, AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth 5, 425–445 (2014). https://doi.org/10.5194/se-5-425-2014

    Article  ADS  Google Scholar 

  • G. Nolet, A Breviary of Seismic Tomography (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  • J. Oberst, Unusually high stress drops associated with shallow moonquakes. J. Geophys. Res. 92, 1397–1405 (1987)

    Article  ADS  Google Scholar 

  • J. Oberst, Y. Nakamura, A search for clustering among the meteoroid impacts detected by the Apollo lunar seismic network. Icarus 91, 315–325 (1991)

    Article  ADS  Google Scholar 

  • M.P. Panning, E. Beucler, M. Drilleau, A. Mocquet, P. Lognonné, W.B. Banerdt, Verifying single-station seismic approaches using Earth-based data: preparation for data return from the InSight mission to Mars. Icarus 248, 230–242 (2015). https://doi.org/10.1016/j.icarus.2014.10.035

    Article  ADS  Google Scholar 

  • M.P. Panning, P. Lognonné, W.B. Banerdt, R. Garcia, M. Golombek, S. Kedar, B. Knapmeyer-Endrun, A. Mocquet, N.A. Teanby, J. Tromp, R. Weber, E. Beucler, J.-F. Blanchette-Guertin, M. Drilleau, T. Gudkova, S. Hempel, A. Khan, V. Lekic, A.-C. Plesa, A. Rivoldini, N. Schmerr, Y. Ruan, O. Verhoeven, C. Gao, U. Christensen, J. Clinton, V. Dehant, D. Giardini, D. Mimoun, W.T. Pike, S. Smrekar, M. Wieczorek, M. Knapmeyer, J. Wookey, Planned products of the Mars structure service for the InSight mission to Mars. Space Sci. Rev. (2017). https://doi.org/10.1007/s11214-016-0317-5

    Article  Google Scholar 

  • J. Peterson, Observations and modeling of seismic background noise. USGS Open File Report 93-322, available online: https://pubs.usgs.gov/of/1993/0322/report.pdf, 94 pages (1993)

  • R.J. Phillips, Expected rates of Marsquakes, in Scientific Rationale and Requirements for a Global Seismic Network on Mars. LPI Tech. Rep. 91-02 LPI/TR-91-02, pp. 35–38, Lunar and Planet. Inst., Houston, TX (1991)

  • J.B. Plescia, Recent flood lavas in the Elysium region of Mars. Icarus 88, 465–490 (1990)

    Article  ADS  Google Scholar 

  • A.-C. Plesa, N. Tosi, M. Grott, D. Breuer, Thermal evolution and Urey ratio of Mars. J. Geophys. Res., Planets 120, 995–1010 (2015). https://doi.org/10.1002/2014JE004748

    Article  ADS  Google Scholar 

  • A.C. Plesa, M. Grot, N. Tosi, D. Breuer, T. Spohn, M. Wieczorek, How large are present-day heat flux variations across the surface of Mars? J. Geophys. Res. (2016). https://doi.org/10.1002/2016JE005126

    Article  Google Scholar 

  • A.-C. Plesa, M. Knapmeyer, M. Golombek, D. Breuer, M.Grott.N. Tosi, Present- day Mars’ seismicity predicted from 3-D thermal evolution models of interior dynamics (expanded abstract), in 48th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2017). Abstract #1906

    Google Scholar 

  • A.-C. Plesa, M. Knapmeyer, M.P. Golombek, D. Breuer, M. Grott, P. Lognonne, N. Tosi, R.C. Weber, Present-day Mars’ seismicity predicted from 3D thermal evolution models of interior dynamics. Geophys. Res. Lett. 45, 2580–2589 (2018). https://doi.org/10.1002/2017GL076124

    Article  ADS  Google Scholar 

  • A.T. Polit, R.A. Schultz, R. Soliva, Geometry, displacement–length scaling, and extensional strain of normal faults on Mars with inferences on mechanical stratigraphy of the Martian crust. J. Struct. Geol. 31, 662–673 (2009). https://doi.org/10.1016/j.jsg.2009.03.016

    Article  ADS  Google Scholar 

  • C.F. Richter, An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am. 25(1), 1–32 (1935)

    Google Scholar 

  • A.T. Ringler, C.R. Hutt, Self-noise models of seismic instruments. Seismol. Res. Lett. 81(6), 972–983 (2010)

    Article  Google Scholar 

  • A. Rivoldini, T. van Hoolst, O. Verhoeven, A. Mocquet, V. Dehant, Geodesy constraints on the interior structure and composition of Mars. Icarus 213, 451–472 (2011). https://doi.org/10.1016/j.icarus.2011.03.024

    Article  ADS  Google Scholar 

  • G.P. Roberts, B. Matthews, C. Bristow, L. Guerrieri, J. Vetterlein, Possible evidence of paleo-marsquakes from fallen boulder populations, Cerberus Fossae, Mars. J. Geophys. Res. 117(E2), 003816 (2012)

    Google Scholar 

  • C. Sanloup, A. Jambon, P. Gillet, A simple chondritic model of Mars. Phys. Earth Planet. Inter. 112(1–2), 43–54 (1999). https://doi.org/10.1016/S0031-9201(98)00175-7

    Article  ADS  Google Scholar 

  • N.C. Schmerr, M.E. Banks, I.J. Daubar, The seismic signatures of impact events on Mars: implications for the InSight lander, in Lunar and Planetary Science Conference, vol. 47 (2016). Abstract 1320

    Google Scholar 

  • G. Schubert, T. Spohn, Thermal history of Mars and the sulfur content of its core. J. Geophys. Res. 95, 14095–14104 (1990)

    Article  ADS  Google Scholar 

  • G. Schubert, S.C. Solomon, D.L. Turcotte, M.J. Drake, N.H. Sleep, Origin and thermal evolution of Mars, in Mars, ed. by H. Kieffer, B. Jakosky, C. Snyder, M. Matthews (University of Arizona Press, Tucson, 1993), pp. 147–183

    Google Scholar 

  • R.A. Schultz, Fault-population statistics at the Valles Marineris Extensional Province, Mars: implications for segment linkage, crustal strains, and its geodynamical development. Tectonophysics 316(1), 169–193 (2000)

    Article  ADS  Google Scholar 

  • B.E. Shaw, Initiation propagation and termination of elastodynamic ruptures associated with segmentation of faults and shaking hazard. J. Geophys. Res. 111, B08302 (2006). https://doi.org/10.1029/2005JB004093

    Article  ADS  Google Scholar 

  • K.J. Smart, D.A. Ferrill, S.L. Colton, En echelon segmentation of wrinkle ridges in Solis Planum, Mars, and implications for counter-clockwise rotation of shortening direction, in Lunar Planet. Sci. Conf., vol. 37 (2006), pp. 1–2

    Google Scholar 

  • D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally et al., Mars Orbiter laser altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23,689–23,722 (2001). https://doi.org/10.1029/2000JE001364

    Article  ADS  Google Scholar 

  • F. Sohl, T. Spohn, The interior structure of Mars: implications from SNC meteorites. J. Geophys. Res. 102, 1613–1636 (1997). https://doi.org/10.1029/96JE03419

    Article  ADS  Google Scholar 

  • S.C. Solomon, D.L. Anderson, W.B. Banerdt, R.G. Butler, P.M. Davis, F.K. Duennebier, Y. Nakamura, E. Okal, R.J. Phillips, Scientific rationale and requirements for a global seismic network on Mars, LPI Tech. Rep. No. 91-02. Lunar and Planetary Institute, Houston, TX (1991)

  • T. Spohn, M. Grott, S.E. Smerkar, C. Krause, T. Hudson (The HP3 Instrument Team) Measuring the Martian Heat Flow Using the Heat Flow and Physical Properties Package (HP3), in 45th Lunar and Planetary Science Conference, The Woodlands, TX, USA (2014)

    Google Scholar 

  • T. Spohn, M. Grott, S.E. Smrekar, J. Knollenberg, T.L. Hudson, C. Krause, N. Müller, J. Jänchen, A. Börner, T. Wippermann, O. Krömer, R. Lichtenheldt, L. Wisniewski, J. Grygorczuk, M. Fittock, S. Reershemius, T. Spröwitz, E. Kopp, I. Walter, A.-C. Plesa, D. Breuer, P. Morgan, W.B. Banerdt, The Heat Flow and Physical Properties Package (HP3) for the InSight Mission. Space Sci. Rev. 214(5), 1–33 (2018). https://doi.org/10.1007/s11214-018-0531-4

    Article  Google Scholar 

  • S.C. Stähler, K. Sigloch, Fully probabilistic seismic source inversion—Part 1: Efficient parameterisation. Solid Earth 5(2), 1055–1069 (2014). https://doi.org/10.5194/se-5-1055-2014

    Article  ADS  Google Scholar 

  • S.C. Stähler, K. Sigloch, Fully probabilistic seismic source inversion—Part 2: Modelling errors and station covariances. Solid Earth 7(6), 1521–1536 (2016). https://doi.org/10.5194/se-7-1521-2016

    Article  ADS  Google Scholar 

  • Standard for the Exchange of Earthquake Data (SEED) Manual (FDSN Publications, 2012) http://www.fdsn.org/media/_s/publications/SEEDManual_V2.4.pdf. Last accessed 15 Nov 2018

  • M.W. Stirling, S.G. Wesnousky, K. Shimazaki, Fault trace complexity, cumulative slip, and the shape of the magnitude-frequency distribution for strike-slip faults: a global survey. Geophys. J. Int. 124, 833–868 (1996). https://doi.org/10.1111/j.1365-246X.1996.tb05641.x

    Article  ADS  Google Scholar 

  • G.J. Taylor, The bulk composition of Mars. Geochemistry 73, 401–420 (2013)

    Google Scholar 

  • G.J. Taylor, W. Boynton, J. Brückner, H. Wänke, G. Dreibus, K. Kerry, J. Keller, R. Reedy, L. Evans, R. Starr, S. Squyres, S. Karunatillake, O. Gasnault, S. Maurice, C. d’Uston, P. Englert, J. Dohm, V. Baker, D. Hamara, D. Janes, A. Sprague, K. Kim, D. Drake, Bulk composition and early differentiation of Mars. J. Geophys. Res. 111, E03S10 (2006). https://doi.org/10.1029/2005JE002645

    Article  Google Scholar 

  • J. Taylor, N.A. Teanby, J. Wookey, Estimates of seismic activity in the Cerberus Fossae region of Mars. J. Geophys. Res. E 118, 2570–2581 (2013)

    Article  ADS  Google Scholar 

  • N.A. Teanby, Predicted detection rates of regional-scale meteorite impacts on Mars with the InSight short-period seismometer. Icarus 256, 49–62 (2015). https://doi.org/10.1016/j.icarus.2015.04.012

    Article  ADS  Google Scholar 

  • N.A. Teanby, J. Wookey, Seismic detection of meteorite impacts on Mars. Phys. Earth Planet. Inter. 186, 70–80 (2011). https://doi.org/10.1016/j.pepi.2011.03.004

    Article  ADS  Google Scholar 

  • C. Tong, B.L.N. Kennett, Towards the identification of later seismic phases. Geophys. J. Int. 123, 948–958 (1995)

    Article  ADS  Google Scholar 

  • M. van Driel, L. Krischer, S.C. Stähler, K. Hosseini, T. Nissen-Meyer, Instaseis: instant global seismograms based on a broadband waveform database. Solid Earth 6, 701–717 (2015). https://doi.org/10.5194/se-6-701-2015

    Article  ADS  Google Scholar 

  • J. Vaucher, D. Baratoux, N. Mangold, P. Pinet, K. Kurita, M. Grégoire, The volcanic history of central Elysium Planitia: implications for Martian magmatism. Icarus 204, 418–442 (2009)

    Article  ADS  Google Scholar 

  • O. Verhoeven, A. Rivoldini, P. Vacher, A. Mocquet, G. Choblet, M. Menvielle, V. Dehant, T. Van Hoolst, J. Sleewaegen, J.P. Barriot, P. Lognonné, Interior structure of terrestrial planets: modeling Mars’ mantle and its electromagnetic, geodetic, and seismic properties. J. Geophys. Res. 110, E04009 (2005). https://doi.org/10.1029/2004JE002271

    Article  ADS  Google Scholar 

  • J. Vetterlein, G.P. Roberts, Structural evolution of the Northern Cerberus Fossae graben system, Elysium Planitia, Mars. J. Struct. Geol. 32, 394–406 (2010). https://doi.org/10.1016/j.jsg.2009.11.004

    Article  ADS  Google Scholar 

  • R.C. Weber, B.G. Bills, C.L. Johnson, A simple physical model for deep moonquake occurrence times. Phys. Earth Planet. Inter. 182, 152–160 (2010). https://doi.org/10.1016/j.pepi.2010.07.009

    Article  ADS  Google Scholar 

  • M.A. Wieczorek, M.T. Zuber, The thickness of the Martian crust: improved constraints from geoid-to-topography ratios. J. Geophys. Res. 109(E1), E01009 (2004). https://doi.org/10.1029/2003JE002153

    Article  ADS  Google Scholar 

  • P. Withers, G.A. Neumann, Enigmatic northern plains of Mars. Nature 410, 651 (2001)

    Article  ADS  Google Scholar 

  • M. Yamada, H. Kumagai, Y. Matsushi, T. Matsuzawa, Dynamic landslide processes revealed by broadband seismic records. Geophys. Res. Lett. 40, 2998–3002 (2013). https://doi.org/10.1002/grl.50437

    Article  ADS  Google Scholar 

  • V.N. Zharkov, T.V. Gudkova, Construction of Martian interior model. Sol. Syst. Res. 39, 343 (2005). https://doi.org/10.1007/s11208-005-0049-7

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and two reviewers who provided careful and critical reviews that substantially improved the manuscript. This work was jointly funded by (1) Swiss National Science Foundation and French Agence Nationale de la Recherche (SNF-ANR project 157133 “Seismology on Mars”) and (2) Swiss State Secretariat for Education, Research and Innovation (SEFRI project “MarsQuake Service—Preparatory Phase”). Additional support came from the Swiss National Supercomputing Centre (CSCS) under project ID s682. Some of the research described in this article was supported by the InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We also thank A.-C. Plesa and V. Tsai for discussions on Mars seismicity and comments on an earlier draft. This article is InSight Contribution Number 57.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Clinton.

Additional information

The InSight Mission to Mars II

Edited by William B. Banerdt and Christopher T. Russell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clinton, J., Giardini, D., Böse, M. et al. The Marsquake Service: Securing Daily Analysis of SEIS Data and Building the Martian Seismicity Catalogue for InSight. Space Sci Rev 214, 133 (2018). https://doi.org/10.1007/s11214-018-0567-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-018-0567-5

Keywords

Navigation