Skip to main content
Log in

Astrophysics with the Spatially and Spectrally Resolved Sunyaev-Zeldovich Effects

A Millimetre/Submillimetre Probe of the Warm and Hot Universe

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

In recent years, observations of the Sunyaev-Zeldovich (SZ) effect have had significant cosmological implications and have begun to serve as a powerful and independent probe of the warm and hot gas that pervades the Universe. As a few pioneering studies have already shown, SZ observations both complement X-ray observations—the traditional tool for studying the intra-cluster medium—and bring unique capabilities for probing astrophysical processes at high redshifts and out to the low-density regions in the outskirts of galaxy clusters. Advances in SZ observations have largely been driven by developments in centimetre-, millimetre-, and submillimetre-wave instrumentation on ground-based facilities, with notable exceptions including results from the Planck satellite. Here we review the utility of the thermal, kinematic, relativistic, non-thermal, and polarised SZ effects for studies of galaxy clusters and other large scale structures, incorporating the many advances over the past two decades that have impacted SZ theory, simulations, and observations. We also discuss observational results, techniques, and challenges, and aim to give an overview and perspective on emerging opportunities, with the goal of highlighting some of the exciting new directions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. For now we shall ignore the presence of primordial CMB temperature anisotropies, which will become relevant when considering polarisation effects (Sect. 2.5). We will also neglect multiple-scattering effects, only briefly discussing them in Sect. 2.6.

  2. In the rest-frame of the moving electron, the scattering event can actually be calculated using the Thomson limit for the differential cross section provided that \(h\nu\ll{m_{\mathrm{e}}}c ^{2}\) in this frame.

  3. Stimulated scattering and recoil terms can be omitted.

  4. An alternative derivation uses that the superposition of blackbodies with slightly different temperatures, as indeed caused by the scattering process, is no longer a blackbody (Zeldovich et al. 1972). In this case, the \(y\)-parameter is related to the temperature dispersion, \(y=\frac{1}{2}\,\langle \frac{\Delta T}{T}\rangle ^{2}\), induced by Doppler-shifts.

  5. The CMB intensity increases towards higher redshifts and thus the tSZ signal starts off at a higher level at \(z>0\), remaining constant relative to the CMB intensity. Alternatively, this can be understood qualitatively as the scattering events producing a fractional change in the intensity of the CMB that would be constant for an observer at any given epoch.

  6. Derivatives of the blackbody occupation number, \(n_{\mathrm{bb}}=1/({\mathrm{e}^{x}}-1)\), can be given in closed form using Eulerian numbers, \(\bigl\langle \begin{array}{c} k \\ m \end{array} \bigr\rangle\), yielding \(x^{k}\partial^{k}_{x} n_{\mathrm{bb}}=(-x)^{k} {\mathrm{e}^{-x}}/(1-{\mathrm{e}^{-x}})^{k+1}\,\sum_{m=0}^{k-1} \bigl\langle \begin{array}{c} k \\ m \end{array} \bigr\rangle\mathrm{e}^{-mx}\) (Chluba et al. 2012b).

  7. www.chluba.de/SZpack.

  8. With the condition \(\gamma h \nu\ll {m_{\mathrm{e}}}c^{2}\) such that Klein-Nishina corrections are still negligible.

  9. Here we used a property of the scattering kernel that implies \(P(s, p)\equiv P(-s, p)/{\mathrm{e}^{-3s}}\).

  10. The parameter \(\beta\) in this context refers to the ratio of thermal to magnetic pressure, \(p_{\mbox{ mag}}=B^{2}/(2 \mu_{0})\).

  11. The reference radius \(r_{500}\) is a convention adopted simply as a reflection of what contemporary instrumentation circa 2007 could probe, rather than being motivated by cluster physics.

  12. Ideally one would measure mass-weighted temperature, \({T_{\mbox{ mw}}}\equiv \frac{\int{T_{\mathrm{e}}}(\ell) \, {n_{\mathrm{e}}}(\ell) \, {\mathrm{d}}\ell}{\int{n_{\mathrm{e}}}(\ell) \, {\mathrm{d}}\ell} \propto y/\tau_{\mbox{ e}}\), rather than one weighted by Compton-\(y\).

  13. https://people.lam.fr/lagache.guilaine/CONCERTO.html.

  14. http://atlast-telescope.org/.

  15. Recall that 100 hours is 360 ksec, and most SZ observations are only a few to tens of hours.

  16. We note that much of the kSZ and rSZ work reported here relied on Herschel observations for submm source subtraction, and the number of clusters observed by Herschel during its lifetime is quite limited. On the submm observational side, CCAT-prime (Sect. 6.2.5) may be the clearest near-term successor to Herschel, with nearly twice the resolution and a longer expected project lifetime, while e.g. ALMA (Sect. 6.1.1) or AtLAST (Sect. 6.2.8) could constrain the flux densities of compact sources directly in each band of interest.

References

  • K.N. Abazajian, P. Adshead, Z. Ahmed et al., arXiv:1610.02743 (2016)

  • Z. Abdulla, J.E. Carlstrom, A.B. Mantz et al., arXiv:1806.05050 (2018)

  • R. Adam, B. Comis, J.F. Macías-Pérez et al., Astron. Astrophys. 569, A66 (2014)

    Google Scholar 

  • R. Adam, B. Comis, J.-F. Macías-Pérez et al., Astron. Astrophys. 576, A12 (2015)

    Google Scholar 

  • R. Adam, B. Comis, I. Bartalucci et al., Astron. Astrophys. 586, A122 (2016)

    Google Scholar 

  • R. Adam, M. Arnaud, I. Bartalucci et al., Astron. Astrophys. 606, A64 (2017a)

    Google Scholar 

  • R. Adam, I. Bartalucci, G.W. Pratt et al., Astron. Astrophys. 598, A115 (2017b)

    Google Scholar 

  • R. Adam, O. Hahn, F. Ruppin et al., Astron. Astrophys. 614, A118 (2018a)

    Google Scholar 

  • R. Adam, A. Adane, P.A.R. Ade et al., Astron. Astrophys. 609, A115 (2018b)

    Google Scholar 

  • P. Ade, J. Aguirre et al. (The Simons Observatory Collaboration), arXiv:1808.07445 (2018)

  • P.A.R. Ade, N. Aghanim et al. (Planck Collaboration), Astron. Astrophys. 536, A8 (2011)

    Google Scholar 

  • P.A.R. Ade, N. Aghanim et al. (Planck Collaboration), Astron. Astrophys. 550, A131 (2013a)

    Google Scholar 

  • P.A.R. Ade, N. Aghanim et al. (Planck Collaboration), Astron. Astrophys. 554, A140 (2013b)

    Google Scholar 

  • P.A.R. Ade, N. Aghanim et al. (Planck Collaboration), Astron. Astrophys. 554, A140 (2013c)

    Google Scholar 

  • P.A.R. Ade, N. Aghanim et al. (Planck Collaboration), Astron. Astrophys. 557, A52 (2013d)

    Google Scholar 

  • P.A.R. Ade, N. Aghanim et al. (Planck Collaboration), Astron. Astrophys. 571, A29 (2014a)

    Google Scholar 

  • P.A.R. Ade, N. Aghanim et al. (Planck Collaboration), Astron. Astrophys. 561, A97 (2014b)

    Google Scholar 

  • P.A.R. Ade, N. Aghanim et al. (Planck Collaboration), Astron. Astrophys. 594, A24 (2016a)

    Google Scholar 

  • P.A.R. Ade, N. Aghanim et al. (Planck Collaboration), Astron. Astrophys. 594, A25 (2016b)

    Google Scholar 

  • P.A.R. Ade, N. Aghanim et al. (Planck Collaboration), Astron. Astrophys. 594, A27 (2016c)

    Google Scholar 

  • P.A.R. Ade, N. Aghanim et al. (Planck Collaboration), Astron. Astrophys. 596, A101 (2016d)

    Google Scholar 

  • N. Aghanim, M. Arnaud et al. (Planck Collaboration), Astron. Astrophys. 594, A11 (2016a)

    Google Scholar 

  • N. Aghanim, M. Arnaud et al. (Planck Collaboration), Astron. Astrophys. 594, A22 (2016b)

    Google Scholar 

  • N. Aghanim, M. Ashdown et al. (Planck Collaboration), Astron. Astrophys. 596, A109 (2016c)

    Google Scholar 

  • N. Aghanim, Y. Akrami et al. (Planck Collaboration), Astron. Astrophys. 617, A48 (2018)

    Google Scholar 

  • S.W. Allen, R.W. Schmidt, A.C. Fabian, Mon. Not. R. Astron. Soc. 328, L37 (2001)

    ADS  Google Scholar 

  • S. Ameglio, S. Borgani, E. Pierpaoli et al., Mon. Not. R. Astron. Soc. 394, 479 (2009)

    ADS  Google Scholar 

  • P. Arévalo, E. Churazov, I. Zhuravleva, W.R. Forman, C. Jones, Astrophys. J. 818, 14 (2016)

    ADS  Google Scholar 

  • M. Arnaud, G.W. Pratt, R. Piffaretti et al., Astron. Astrophys. 517, A92 (2010)

    Google Scholar 

  • S. Arnouts, D. Schiminovich, O. Ilbert et al., Astrophys. J. Lett. 619, L43 (2005)

    ADS  Google Scholar 

  • F. Atrio-Barandela, J.P. Mücket, Astrophys. J. 845, 71 (2017)

    ADS  Google Scholar 

  • E. Audit, J.F.L. Simmons, Mon. Not. R. Astron. Soc. 305, L27 (1999)

    ADS  Google Scholar 

  • S.A. Balashev, E.E. Kholupenko, J. Chluba, A.V. Ivanchik, D.A. Varshalovich, Astrophys. J. 810, 131 (2015)

    ADS  Google Scholar 

  • A. Baldi, in 15 Years of Science with Chandra, 18–21 November, 2014, Boston, MA (2014). Posters from the Chandra Science Symposium, id. P8, P8

    Google Scholar 

  • A.S. Baldi, M. De Petris, F. Sembolini et al., Mon. Not. R. Astron. Soc. 465, 2584 (2017)

    ADS  Google Scholar 

  • A.S. Baldi, M. De Petris, F. Sembolini et al., Mon. Not. R. Astron. Soc. 479, 4028 (2018)

    ADS  Google Scholar 

  • K. Basu, Y.-Y. Zhang, M.W. Sommer et al., Astron. Astrophys. 519, A29 (2010)

    Google Scholar 

  • K. Basu, M. Sommer, J. Erler et al., Astrophys. J. Lett. 829, L23 (2016)

    ADS  Google Scholar 

  • N. Battaglia, J.R. Bond, C. Pfrommer, J.L. Sievers, D. Sijacki, Astrophys. J. 725, 91 (2010)

    ADS  Google Scholar 

  • N. Battaglia, J.R. Bond, C. Pfrommer, J.L. Sievers, Astrophys. J. 758, 74 (2012a)

    ADS  Google Scholar 

  • N. Battaglia, J.R. Bond, C. Pfrommer, J.L. Sievers, Astrophys. J. 758, 75 (2012b)

    ADS  Google Scholar 

  • N. Battaglia, J.R. Bond, C. Pfrommer, J.L. Sievers, Astrophys. J. 806, 43 (2015a)

    ADS  Google Scholar 

  • N. Battaglia, J.C. Hill, N. Murray, Astrophys. J. 812, 154 (2015b)

    ADS  Google Scholar 

  • E.S. Battistelli, M. De Petris, L. Lamagna et al., Astrophys. J. Lett. 580, L101 (2002)

    ADS  Google Scholar 

  • E.S. Battistelli, M. De Petris, L. Lamagna et al., Astrophys. J. Lett. 598, L75 (2003)

    ADS  Google Scholar 

  • B.A. Benson, S.E. Church, P.A.R. Ade et al., Astrophys. J. 592, 674 (2003)

    ADS  Google Scholar 

  • B.A. Benson, P.A.R. Ade, Z. Ahmed et al., in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. Proc. SPIE, vol. 9153 (2014), p. 91531P

    Google Scholar 

  • M. Béthermin, H. Dole, G. Lagache, D. Le Borgne, A. Penin, Astron. Astrophys. 529, A4 (2011)

    ADS  Google Scholar 

  • M. Birkinshaw, Mon. Not. R. Astron. Soc. 187, 847 (1979)

    ADS  Google Scholar 

  • M. Birkinshaw, Phys. Rep. 310, 97 (1999)

    ADS  Google Scholar 

  • M. Birkinshaw, S.F. Gull, K.J.E. Northover, Nature 275, 40 (1978)

    ADS  Google Scholar 

  • M. Birkinshaw, S.F. Gull, H. Hardebeck, Nature 309, 34 (1984)

    ADS  Google Scholar 

  • E.L. Blanton, T.E. Clarke, C.L. Sarazin, S.W. Randall, B.R. McNamara, Proc. Natl. Acad. Sci. 107, 7174 (2010)

    ADS  Google Scholar 

  • E.L. Blanton, S.W. Randall, T.E. Clarke et al., Astrophys. J. 737, 99 (2011)

    ADS  Google Scholar 

  • S. Bocquet, A. Saro, J.J. Mohr et al., Astrophys. J. 799, 214 (2015)

    ADS  Google Scholar 

  • B. Bolliet, B. Comis, E. Komatsu, J.F. Macías-Pérez, Mon. Not. R. Astron. Soc. 477, 4957 (2018)

    ADS  Google Scholar 

  • A. Bonafede, M. Brüggen, D. Rafferty et al., Mon. Not. R. Astron. Soc. 478, 2927 (2018)

    ADS  Google Scholar 

  • M. Bonamente, M.K. Joy, J.E. Carlstrom, E.D. Reese, S.J. LaRoque, Astrophys. J. 614, 56 (2004)

    ADS  Google Scholar 

  • M. Bonamente, M.K. Joy, S.J. LaRoque et al., Astrophys. J. 647, 25 (2006)

    ADS  Google Scholar 

  • M. Bonamente, N. Hasler, E. Bulbul et al., New J. Phys. 14, 025010 (2012)

    ADS  Google Scholar 

  • J.R. Bond, G. Efstathiou, Astrophys. J. Lett. 285, L45 (1984)

    ADS  Google Scholar 

  • B.C.J. Borguet, N. Arav, D. Edmonds, C. Chamberlain, C. Benn, Astrophys. J. 762, 49 (2013)

    ADS  Google Scholar 

  • A. Botteon, F. Gastaldello, G. Brunetti, R. Kale, Mon. Not. R. Astron. Soc. 463, 1534 (2016)

    ADS  Google Scholar 

  • H. Bourdin, P. Mazzotta, A. Kozmanyan, C. Jones, A. Vikhlinin, Astrophys. J. 843, 72 (2017)

    ADS  Google Scholar 

  • H. Bradt, W. Mayer, S. Naranan, S. Rappaport, G. Spada, Astrophys. J. Lett. 150, L199 (1967)

    ADS  Google Scholar 

  • J.N. Bregman, B. Otte, J.A. Irwin et al., Astrophys. J. 699, 1765 (2009)

    ADS  Google Scholar 

  • S. Bryan, J. Austermann, D. Ferrusca et al., in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX. Proc. SPIE, vol. 10708 (SPIE, Bellingham, 2018), p. 107080J

    Google Scholar 

  • G.E. Bulbul, N. Hasler, M. Bonamente, M. Joy, D. Marrone, A. Miller, T. Mroczkowski, Astron. Astrophys. 533, A6 (2011). 9 pp.

    ADS  Google Scholar 

  • E.F. Bunn, Phys. Rev. D 73, 123517 (2006)

    ADS  Google Scholar 

  • E.T. Byram, T.A. Chubb, H. Friedman, Science 152, 66 (1966)

    ADS  Google Scholar 

  • J.E. Carlstrom, M. Joy, L. Grego, Astrophys. J. Lett. 456, L75 (1996)

    ADS  Google Scholar 

  • J.E. Carlstrom, G.P. Holder, E.D. Reese, Annu. Rev. Astron. Astrophys. 40, 643 (2002)

    ADS  Google Scholar 

  • A. Catalano, M. Calvo, N. Ponthieu et al., Astron. Astrophys. 569, A9 (2014)

    Google Scholar 

  • A. Catalano, R. Adam, P.A.R. Ade et al., J. Low Temp. Phys. 193, 916 (2018)

    ADS  Google Scholar 

  • A. Cavaliere, R. Fusco-Femiano, Astron. Astrophys. 49, 137 (1976)

    ADS  Google Scholar 

  • A. Cavaliere, R. Fusco-Femiano, Astron. Astrophys. 70, 677 (1978)

    ADS  Google Scholar 

  • A. Cavaliere, L. Danese, G. de Zotti, Astron. Astrophys. 75, 322 (1979)

    ADS  Google Scholar 

  • R. Cen, J.P. Ostriker, Astrophys. J. 514, 1 (1999)

    ADS  Google Scholar 

  • R. Cen, M. Safarzadeh, Astrophys. J. Lett. 809, L32 (2015)

    ADS  Google Scholar 

  • A. Challinor, A. Lasenby, Astrophys. J. 499, 1 (1998)

    ADS  Google Scholar 

  • A.D. Challinor, M.T. Ford, A.N. Lasenby, Mon. Not. R. Astron. Soc. 312, 159 (2000)

    ADS  Google Scholar 

  • S.C. Chapman, R.J. Ivison, I.G. Roseboom et al., Mon. Not. R. Astron. Soc. 409, L13 (2010)

    ADS  Google Scholar 

  • G. Chartas, W.N. Brandt, S.C. Gallagher, D. Proga, Astron. J. 133, 1849 (2007)

    ADS  Google Scholar 

  • S. Chatterjee, A. Kosowsky, Astrophys. J. Lett. 661, L113 (2007)

    ADS  Google Scholar 

  • S. Chatterjee, T. Di Matteo, A. Kosowsky, I. Pelupessy, Mon. Not. R. Astron. Soc. 390, 535 (2008)

    ADS  Google Scholar 

  • S. Chatterjee, S. Ho, J.A. Newman, A. Kosowsky, Astrophys. J. 720, 299 (2010)

    ADS  Google Scholar 

  • J. Chluba, Diploma Thesis. University of Göttingen, 1 (2001)

  • J. Chluba, Mon. Not. R. Astron. Soc. 443, 1881 (2014)

    ADS  Google Scholar 

  • J. Chluba, L. Dai, Mon. Not. R. Astron. Soc. 438, 1324 (2014)

    ADS  Google Scholar 

  • J. Chluba, K. Mannheim, Astron. Astrophys. 396, 419 (2002)

    ADS  Google Scholar 

  • J. Chluba, G. Hütsi, R.A. Sunyaev, Astron. Astrophys. 434, 811 (2005)

    ADS  Google Scholar 

  • J. Chluba, R. Khatri, R.A. Sunyaev, Mon. Not. R. Astron. Soc. 425, 1129 (2012a)

    ADS  Google Scholar 

  • J. Chluba, D. Nagai, S. Sazonov, K. Nelson, Mon. Not. R. Astron. Soc. 426, 510 (2012b)

    ADS  Google Scholar 

  • J. Chluba, E. Switzer, K. Nelson, D. Nagai, Mon. Not. R. Astron. Soc. 430, 3054 (2013)

    ADS  Google Scholar 

  • J. Chluba, L. Dai, M. Kamionkowski, Mon. Not. R. Astron. Soc. 437, 67 (2014)

    ADS  Google Scholar 

  • E. Churazov, A. Vikhlinin, I. Zhuravleva et al., Mon. Not. R. Astron. Soc. 421, 1123 (2012)

    ADS  Google Scholar 

  • E. Churazov, A. Vikhlinin, R. Sunyaev, Mon. Not. R. Astron. Soc. 450, 1984 (2015)

    ADS  Google Scholar 

  • E. Churazov, P. Arevalo, W. Forman et al., Mon. Not. R. Astron. Soc. 463, 1057 (2016)

    ADS  Google Scholar 

  • K. Coble, M. Bonamente, J.E. Carlstrom et al., Astron. J. 134, 897 (2007)

    ADS  Google Scholar 

  • S. Colafrancesco, Astron. Astrophys. 422, L23 (2004)

    ADS  Google Scholar 

  • S. Colafrancesco, P. Marchegiani, E. Palladino, Astron. Astrophys. 397, 27 (2003)

    ADS  Google Scholar 

  • S. Colafrancesco, S. Profumo, P. Ullio, Astron. Astrophys. 455, 21 (2006)

    ADS  Google Scholar 

  • S. Cole, N. Kaiser, Mon. Not. R. Astron. Soc. 233, 637 (1988)

    ADS  Google Scholar 

  • J.J. Condon, S.M. Ransom, Essential Radio Astronomy (2016)

    Google Scholar 

  • A. Cooray, X. Chen, Astrophys. J. 573, 43 (2002)

    ADS  Google Scholar 

  • A.R. Cooray, L. Grego, W.L. Holzapfel, M. Joy, J.E. Carlstrom, Astron. J. 115, 1388 (1998)

    ADS  Google Scholar 

  • D. Crichton, M.B. Gralla, K. Hall et al., Mon. Not. R. Astron. Soc. 458, 1478 (2016)

    ADS  Google Scholar 

  • A.T. Crites, J.J. Bock, C.M. Bradford et al., in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. Proc. SPIE, vol. 9153 (SPIE, Bellingham, 2014), p. 91531W

    Google Scholar 

  • D.J. Croton, V. Springel, S.D.M. White et al., Mon. Not. R. Astron. Soc. 365, 11 (2006)

    ADS  Google Scholar 

  • C. De Breuck, Site Considerations for AtLAST (2018)

    Google Scholar 

  • E. De Filippis, M. Sereno, M.W. Bautz, G. Longo, Astrophys. J. 625, 108 (2005)

    ADS  Google Scholar 

  • A. de Graaff, Y.-C. Cai, C. Heymans, J.A. Peacock, arXiv:1709.10378 (2017)

  • T. de Haan, B.A. Benson, L.E. Bleem et al., Astrophys. J. 832, 95 (2016)

    ADS  Google Scholar 

  • M. de Kool, N. Arav, R.H. Becker et al., Astrophys. J. 548, 609 (2001)

    ADS  Google Scholar 

  • G. de Zotti, M. Massardi, M. Negrello, J. Wall, Astron. Astrophys. Rev. 18, 1 (2010)

    ADS  Google Scholar 

  • J. Delabrouille, P. de Bernardis, F.R. Bouchet et al., J. Cosmol. Astropart. Phys. 4, 014 (2018)

    ADS  Google Scholar 

  • F.-X. Désert, A. Benoit, S. Gaertner et al., New Astron. 3, 655 (1998)

    ADS  Google Scholar 

  • L. Di Mascolo, E. Churazov, T. Mroczkowski, arXiv:1812.01034 (2018)

  • T. Di Matteo, J. Colberg, V. Springel, L. Hernquist, D. Sijacki, Astrophys. J. 676, 33 (2008)

    ADS  Google Scholar 

  • S.R. Dicker, P.M. Korngut, B.S. Mason et al., in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV. Proc. SPIE, vol. 7020 (SPIE, Bellingham, 2008), p. 702005

    Google Scholar 

  • J.M. Diego, P. Mazzotta, J. Silk, Astrophys. J. Lett. 597, L1 (2003)

    ADS  Google Scholar 

  • K. Dolag, E. Komatsu, R. Sunyaev, Mon. Not. R. Astron. Soc. 463, 1797 (2016)

    ADS  Google Scholar 

  • A.D. Dolgov, S.H. Hansen, S. Pastor, D.V. Semikoz, Astrophys. J. 554, 74 (2001)

    ADS  Google Scholar 

  • D. Eckert, S. Ettori, S. Molendi, F. Vazza, S. Paltani, Astron. Astrophys. 551, A23 (2013a)

    ADS  Google Scholar 

  • D. Eckert, S. Molendi, F. Vazza, S. Ettori, S. Paltani, Astron. Astrophys. 551, A22 (2013b)

    ADS  Google Scholar 

  • D. Eckert, M. Roncarelli, S. Ettori et al., Mon. Not. R. Astron. Soc. 447, 2198 (2015)

    ADS  Google Scholar 

  • D. Eckert, S. Ettori, E. Pointecouteau et al., Astron. Nachr. 338, 293 (2017a)

    ADS  Google Scholar 

  • D. Eckert, M. Gaspari, F. Vazza et al., Astrophys. J. Lett. 843, L29 (2017b)

    ADS  Google Scholar 

  • D. Eckert, V. Ghirardini, S. Ettori et al., Astron. Astrophys. 621, A40 (2019)

    Google Scholar 

  • K. Ehlert, C. Pfrommer, R. Weinberger, R. Pakmor, V. Springel, arXiv:1812.06982 (2018a)

  • K. Ehlert, R. Weinberger, C. Pfrommer, R. Pakmor, V. Springel, Mon. Not. R. Astron. Soc. 481, 2878 (2018b)

    ADS  Google Scholar 

  • T.A. Enßlin, C.R. Kaiser, Astron. Astrophys. 360, 417 (2000)

    ADS  Google Scholar 

  • J. Erler, K. Basu, M. Trasatti, U. Klein, F. Bertoldi, Mon. Not. R. Astron. Soc. 447, 2497 (2015)

    ADS  Google Scholar 

  • J. Erler, K. Basu, J. Chluba, F. Bertoldi, Mon. Not. R. Astron. Soc. 476, 3360 (2018)

    ADS  Google Scholar 

  • S. Ettori, A.C. Fabian, Mon. Not. R. Astron. Soc. Lett. 369(1), L42–L46 (2006)

    ADS  Google Scholar 

  • S. Ettori, V. Ghirardini, D. Eckert et al., Astron. Astrophys. 621, A39 (2019)

    Google Scholar 

  • R. Fabbri, Astrophys. Space Sci. 77, 529 (1981)

    ADS  Google Scholar 

  • R. Fabbri, F. Melchiorri, V. Natale, Astrophys. Space Sci. 59, 223 (1978)

    ADS  Google Scholar 

  • A.C. Fabian, Annu. Rev. Astron. Astrophys. 50, 455 (2012)

    ADS  Google Scholar 

  • A.C. Fabian, J.S. Sanders, G.B. Taylor et al., Mon. Not. R. Astron. Soc. 366, 417 (2006)

    ADS  Google Scholar 

  • Z. Fan, Y. Wu, Astrophys. J. 598, 713 (2003)

    ADS  Google Scholar 

  • D. Fargion, A. Salis, Phys. Usp. 41, 823 (1998)

    ADS  Google Scholar 

  • D. Fargion, R.V. Konoplich, A. Salis, Z. Phys. C, Part. Fields 74, 571 (1997)

    Google Scholar 

  • L. Feretti, G. Giovannini, F. Govoni, M. Murgia, Astron. Astrophys. Rev. 20, 54 (2012)

    ADS  Google Scholar 

  • D.P. Finkbeiner, M. Davis, D.J. Schlegel, Astrophys. J. 524, 867 (1999)

    ADS  Google Scholar 

  • D.J. Fixsen, E.S. Cheng, J.M. Gales et al., Astrophys. J. 473, 576 (1996)

    ADS  Google Scholar 

  • D.T. Frayer, arXiv:1706.02726 (2017)

  • Y. Fujita, Y. Ohira, Astrophys. J. 746, 53 (2012)

    ADS  Google Scholar 

  • J. Gaskin, F. Özel, A. Vikhlinin, in Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave. Proc. SPIE, vol. 9904 (SPIE, Bellingham, 2016), p. 99040N

    Google Scholar 

  • M. Gaspari, E. Churazov, Astron. Astrophys. 559, A78 (2013)

    ADS  Google Scholar 

  • M. Gaspari, C. Melioli, F. Brighenti, A. D’Ercole, Mon. Not. R. Astron. Soc. 411, 349 (2011)

    ADS  Google Scholar 

  • M. Gaspari, M. Ruszkowski, P. Sharma, Astrophys. J. 746, 94 (2012)

    ADS  Google Scholar 

  • M. Gaspari, E. Churazov, D. Nagai, E.T. Lau, I. Zhuravleva, Astron. Astrophys. 569, A67 (2014)

    ADS  Google Scholar 

  • V. Ghirardini, S. Ettori, S. Amodeo, R. Capasso, M. Sereno, Astron. Astrophys. 604, A100 (2017)

    ADS  Google Scholar 

  • V. Ghirardini, S. Ettori, D. Eckert et al., Astron. Astrophys. 614, A7 (2018)

    Google Scholar 

  • V. Ghirardini, D. Eckert, S. Ettori et al., Astron. Astrophys. 621, A41 (2019)

    Google Scholar 

  • M. Gibilisco, Astrophys. Space Sci. 249, 189 (1997)

    ADS  Google Scholar 

  • J. Glenn, J.J. Bock, G. Chattopadhyay et al., in Advanced Technology MMW, Radio, and Terahertz Telescopes, ed. by T.G. Phillips. Proc. SPIE, vol. 3357 (1998), pp. 326–334

    Google Scholar 

  • J. Glenn, A. Conley, M. Béthermin et al., Mon. Not. R. Astron. Soc. 409, 109 (2010)

    ADS  Google Scholar 

  • R. Gopal, S. Roychowdhury, J. Cosmol. Astropart. Phys. 6, 11 (2010)

    ADS  Google Scholar 

  • K. Grainge, M. Jones, G. Pooley, R. Saunders, A. Edge, Mon. Not. R. Astron. Soc. 265, L57 (1993)

    ADS  Google Scholar 

  • M.B. Gralla, D. Crichton, T.A. Marriage et al., Mon. Not. R. Astron. Soc. 445, 460 (2014)

    ADS  Google Scholar 

  • G.L. Granato, G. De Zotti, L. Silva, A. Bressan, L. Danese, Astrophys. J. 600, 580 (2004)

    ADS  Google Scholar 

  • J.P. Greco, J.C. Hill, D.N. Spergel, N. Battaglia, Astrophys. J. 808, 151 (2015)

    ADS  Google Scholar 

  • S.F. Gull, K.J.E. Northover, Nature 263, 572 (1976)

    ADS  Google Scholar 

  • F. Guo, S.P. Oh, M. Ruszkowski, Astrophys. J. 688, 859 (2008)

    ADS  Google Scholar 

  • X. Guo, L. Sironi, R. Narayan, Astrophys. J. 858, 95 (2018)

    ADS  Google Scholar 

  • E.J. Hallman, B.W. O’Shea, J.O. Burns et al., Astrophys. J. 671, 27 (2007)

    ADS  Google Scholar 

  • N. Hand, J.W. Appel, N. Battaglia et al., Astrophys. J. 736, 39 (2011)

    ADS  Google Scholar 

  • N. Hand, G.E. Addison, E. Aubourg et al., Phys. Rev. Lett. 109, 041101 (2012)

    ADS  Google Scholar 

  • S.H. Hansen, Mon. Not. R. Astron. Soc. 351, L5 (2004)

    ADS  Google Scholar 

  • S.H. Hansen, S. Pastor, D.V. Semikoz, Astrophys. J. Lett. 573, L69 (2002a)

    ADS  Google Scholar 

  • S.H. Hansen, S. Pastor, D.V. Semikoz, Astrophys. J. Lett. 573, L69 (2002b)

    ADS  Google Scholar 

  • H.L. Helfer, Astrophys. J. 117, 177 (1953)

    ADS  MathSciNet  Google Scholar 

  • C. Hernández-Monteagudo, Y.-Z. Ma, F.S. Kitaura et al., Phys. Rev. Lett. 115, 191301 (2015)

    ADS  Google Scholar 

  • J.C. Hill, E. Pajer, Phys. Rev. D 88, 063526 (2013)

    ADS  Google Scholar 

  • J.C. Hill, N. Battaglia, J. Chluba et al., Phys. Rev. Lett. 115, 261301 (2015)

    ADS  Google Scholar 

  • M. Hilton, M. Hasselfield, C. Sifón et al., Astrophys. J. Suppl. Ser. 235, 20 (2018)

    ADS  Google Scholar 

  • W.L. Holzapfel, P.A.R. Ade, S.E. Church et al., Astrophys. J. 481, 35 (1997)

    ADS  Google Scholar 

  • W. Hu, N. Sugiyama, Astrophys. J. 444, 489 (1995)

    ADS  Google Scholar 

  • J.P. Hughes, M. Birkinshaw, Astrophys. J. 501, 1 (1998)

    ADS  Google Scholar 

  • G. Hurier, Astron. Astrophys. 596, A61 (2016a)

    ADS  Google Scholar 

  • G. Hurier, Astron. Astrophys. 596, A61 (2016b)

    ADS  Google Scholar 

  • G. Hurier, R. Adam, U. Keshet, arXiv:1712.05762 (2017)

  • N.A. Inogamov, R.A. Sunyaev, Astron. Lett. 29, 791 (2003)

    ADS  Google Scholar 

  • N. Itoh, S. Nozawa, Astron. Astrophys. 417, 827 (2004)

    ADS  Google Scholar 

  • N. Itoh, Y. Kohyama, S. Nozawa, Astrophys. J. 502, 7 (1998)

    ADS  Google Scholar 

  • N. Itoh, S. Nozawa, Y. Kohyama, Astrophys. J. 533, 588 (2000)

    ADS  Google Scholar 

  • N. Itoh, Y. Kawana, S. Nozawa, Y. Kohyama, Mon. Not. R. Astron. Soc. 327, 567 (2001)

    ADS  Google Scholar 

  • J.M. Jauch, F. Rohrlich, The Theory of Photons and Electrons (Springer, Berlin, 1976)

    Google Scholar 

  • M. Jones, R. Saunders, P. Alexander et al., Nature 365, 320 (1993)

    ADS  Google Scholar 

  • M.E. Jones, R. Saunders, J.C. Baker et al., Astrophys. J. Lett. 479, L1 (1997)

    ADS  Google Scholar 

  • M. Kamionkowski, A. Loeb, Phys. Rev. D 56, 4511 (1997)

    ADS  Google Scholar 

  • M. Kamionkowski, A. Kosowsky, A. Stebbins, Phys. Rev. D 55, 7368 (1997)

    ADS  Google Scholar 

  • S.T. Kay, M.W. Peel, C.J. Short et al., Mon. Not. R. Astron. Soc. 422, 1999 (2012)

    ADS  Google Scholar 

  • I. Khabibullin, S. Komarov, E. Churazov, A. Schekochihin, Mon. Not. R. Astron. Soc. 474, 2389 (2018)

    ADS  Google Scholar 

  • R. Khatri, M. Gaspari, Mon. Not. R. Astron. Soc. 463, 655 (2016)

    ADS  Google Scholar 

  • T. Kitayama, Prog. Theor. Exp. Phys. 2014, 06B111 (2014)

    Google Scholar 

  • T. Kitayama, E. Komatsu, N. Ota et al., Publ. Astron. Soc. Jpn. 56, 17 (2004)

    ADS  Google Scholar 

  • T. Kitayama, S. Ueda, S. Takakuwa et al., Publ. Astron. Soc. Jpn. 68, 88 (2016)

    ADS  Google Scholar 

  • P.M. Koch, P. Jetzer, D. Puy, New Astron. 8, 1 (2003)

    ADS  Google Scholar 

  • A. Kogut, D.J. Fixsen, D.T. Chuss et al., J. Cosmol. Astropart. Phys. 7, 25 (2011)

    ADS  Google Scholar 

  • A. Kogut, J. Chluba, D.J. Fixsen, S. Meyer, D. Spergel, in Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave. Proc. SPIE, vol. 9904 (SPIE, Bellingham, 2016), p. 99040W

    Google Scholar 

  • E. Komatsu, U. Seljak, Mon. Not. R. Astron. Soc. 336, 1256 (2002)

    ADS  Google Scholar 

  • E. Komatsu, T. Kitayama, Y. Suto et al., Astrophys. J. Lett. 516, L1 (1999)

    ADS  Google Scholar 

  • E. Komatsu, H. Matsuo, T. Kitayama et al., Publ. Astron. Soc. Jpn. 53, 57 (2001)

    ADS  Google Scholar 

  • A. Kompaneets, Sov. Phys. JETP 31, 876 (1956)

    Google Scholar 

  • P.M. Korngut, S.R. Dicker, E.D. Reese et al., Astrophys. J. 734, 10 (2011)

    ADS  Google Scholar 

  • E. Krause, E. Pierpaoli, K. Dolag, S. Borgani, Mon. Not. R. Astron. Soc. 419, 1766 (2012)

    ADS  Google Scholar 

  • A.V. Kravtsov, A. Vikhlinin, D. Nagai, Astrophys. J. 650, 128 (2006)

    ADS  Google Scholar 

  • G. Lagache, in IAU Symposium, ed. by V. Jelić, T. van der Hulst. IAU Symposium, vol. 333 (2018), pp. 228–233

    Google Scholar 

  • G. Lake, R.B. Partridge, Nature 270, 502 (1977)

    ADS  Google Scholar 

  • J.M. Lamarre, M. Giard, E. Pointecouteau et al., Astrophys. J. Lett. 507, L5 (1998)

    ADS  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1959)

    Google Scholar 

  • S.J. LaRoque, M. Bonamente, J.E. Carlstrom et al., Astrophys. J. 652, 917 (2006)

    ADS  Google Scholar 

  • E.T. Lau, A.V. Kravtsov, D. Nagai, Astrophys. J. 705, 1129 (2009)

    ADS  Google Scholar 

  • E.T. Lau, D. Nagai, C. Avestruz, K. Nelson, A. Vikhlinin, Astrophys. J. 806, 68 (2015)

    ADS  Google Scholar 

  • G. Lavaux, J.M. Diego, H. Mathis, J. Silk, Mon. Not. R. Astron. Soc. 347, 729 (2004)

    ADS  Google Scholar 

  • O.P. Lay, N.W. Halverson, Astrophys. J. 543, 787 (2000)

    ADS  Google Scholar 

  • Y. Li, G.L. Bryan, M. Ruszkowski et al., Astrophys. J. 811, 73 (2015)

    ADS  Google Scholar 

  • M. Limousin, A. Morandi, M. Sereno et al., Space Sci. Rev. 177, 155 (2013)

    ADS  Google Scholar 

  • K.-Y. Lin, C.-T. Li, P.T.P. Ho et al., Astrophys. J. 694, 1629 (2009)

    ADS  Google Scholar 

  • R.R. Lindner, A.J. Baker, J.P. Hughes et al., Astrophys. J. 786, 49 (2014)

    ADS  Google Scholar 

  • G. Luzzi, M. Shimon, L. Lamagna et al., Astrophys. J. 705, 1122 (2009)

    ADS  Google Scholar 

  • C.-J. Ma, H. Ebeling, E. Barrett, Astrophys. J. Lett. 693, L56 (2009)

    ADS  Google Scholar 

  • R. Makiya, S. Ando, E. Komatsu, Mon. Not. R. Astron. Soc. 480, 3928 (2018)

    ADS  Google Scholar 

  • S. Malu, A. Datta, S. Colafrancesco et al., Sci. Rep. 7, 16918 (2017)

    ADS  Google Scholar 

  • A. Marconi, L.K. Hunt, Astrophys. J. Lett. 589, L21 (2003)

    ADS  Google Scholar 

  • M. Markevitch, A. Vikhlinin, Phys. Rep. 443, 1 (2007)

    ADS  Google Scholar 

  • S. Masi, P. Ade, P. de Bernardis et al., Mem. Soc. Astron. Ital. 74, 96 (2003)

    ADS  Google Scholar 

  • B.S. Mason, S.R. Dicker, P.M. Korngut et al., Astrophys. J. 716, 739 (2010)

    ADS  Google Scholar 

  • J.C. Mather, E.S. Cheng, D.A. Cottingham et al., Astrophys. J. 420, 439 (1994)

    ADS  Google Scholar 

  • B.F. Mathiesen, A.E. Evrard, Astrophys. J. 546, 100 (2001)

    ADS  Google Scholar 

  • B. Mathiesen, A.E. Evrard, J.J. Mohr, Astrophys. J. Lett. 520, L21 (1999)

    ADS  Google Scholar 

  • M. Maturi, L. Moscardini, P. Mazzotta, K. Dolag, G. Tormen, Astron. Astrophys. 475, 71 (2007)

    ADS  Google Scholar 

  • P. Mazzotta, E. Rasia, L. Moscardini, G. Tormen, Mon. Not. R. Astron. Soc. 354, 10 (2004)

    ADS  Google Scholar 

  • I.G. McCarthy, A.M.C. Le Brun, J. Schaye, G.P. Holder, Mon. Not. R. Astron. Soc. 440, 3645 (2014)

    ADS  Google Scholar 

  • B.R. McNamara, P.E.J. Nulsen, Annu. Rev. Astron. Astrophys. 45, 117 (2007)

    ADS  Google Scholar 

  • B.R. McNamara, P.E.J. Nulsen, New J. Phys. 14, 055023 (2012)

    ADS  Google Scholar 

  • J.-B. Melin, J.G. Bartlett, Z.-Y. Cai et al., Astron. Astrophys. 617, A75 (2018a)

    Google Scholar 

  • J.-B. Melin, A. Bonaldi, M. Remazeilles et al., J. Cosmol. Astropart. Phys. 4, 019 (2018b)

    ADS  Google Scholar 

  • F. Menanteau, J. González, J.-B. Juin et al., Astrophys. J. 723, 1523 (2010)

    ADS  Google Scholar 

  • J. Meyers, P.D. Meerburg, A. van Engelen, N. Battaglia, Phys. Rev. D 97, 103505 (2018)

    ADS  Google Scholar 

  • A. Mittal, F. de Bernardis, M.D. Niemack, J. Cosmol. Astropart. Phys. 2, 032 (2018)

    ADS  Google Scholar 

  • A.T. Moffet, M. Birkinshaw, Astron. J. 98, 1148 (1989)

    ADS  Google Scholar 

  • S.M. Molnar, M. Birkinshaw, Astrophys. J. 523, 78 (1999)

    ADS  Google Scholar 

  • S.M. Molnar, N. Hearn, Z. Haiman et al., Astrophys. J. 696, 1640 (2009)

    ADS  Google Scholar 

  • S.M. Molnar, N.C. Hearn, J.G. Stadel, Astrophys. J. 748, 45 (2012)

    ADS  Google Scholar 

  • A. Morandi, D. Nagai, W. Cui, Mon. Not. R. Astron. Soc. 431, 1240 (2013)

    ADS  Google Scholar 

  • P.M. Motl, E.J. Hallman, J.O. Burns, M.L. Norman, Astrophys. J. Lett. 623, L63 (2005)

    ADS  Google Scholar 

  • T. Mroczkowski, M. Bonamente, J.E. Carlstrom et al., Astrophys. J. 694, 1034 (2009)

    ADS  Google Scholar 

  • T. Mroczkowski, S. Dicker, J. Sayers et al., Astrophys. J. 761, 47 (2012)

    ADS  Google Scholar 

  • S. Muchovej, T. Mroczkowski, J.E. Carlstrom et al., Astrophys. J. 663, 708 (2007)

    ADS  Google Scholar 

  • J.B. Muñoz, A. Loeb, arXiv:1809.04074 (2018)

  • D. Nagai, Astrophys. J. 650, 538 (2006)

    ADS  Google Scholar 

  • D. Nagai, E.T. Lau, Astrophys. J. Lett. 731, L10 (2011)

    ADS  Google Scholar 

  • D. Nagai, A.V. Kravtsov, A. Kosowsky, Astrophys. J. 587, 524 (2003)

    ADS  Google Scholar 

  • D. Nagai, A. Vikhlinin, A.V. Kravtsov, Astrophys. J. 655, 98 (2007)

    ADS  Google Scholar 

  • K. Nandra, D. Barret, X. Barcons et al., arXiv:1306.2307 (2013)

  • P. Natarajan, S. Sigurdsson, Mon. Not. R. Astron. Soc. 302, 288 (1999)

    ADS  Google Scholar 

  • J.F. Navarro, C.S. Frenk, S.D.M. White, Astrophys. J. 462, 563 (1996)

    ADS  Google Scholar 

  • K. Nelson, E.T. Lau, D. Nagai, Astrophys. J. 792, 25 (2014)

    ADS  Google Scholar 

  • F. Nicastro, S. Mathur, M. Elvis, Science 319, 55 (2008)

    ADS  Google Scholar 

  • M. Nord, K. Basu, F. Pacaud et al., Astron. Astrophys. 506, 623 (2009)

    ADS  Google Scholar 

  • S. Nozawa, N. Itoh, Y. Kohyama, Astrophys. J. 508, 17 (1998)

    ADS  Google Scholar 

  • S. Nozawa, N. Itoh, Y. Kawana, Y. Kohyama, Astrophys. J. 536, 31 (2000)

    ADS  Google Scholar 

  • S. Nozawa, N. Itoh, Y. Kohyama, Astron. Astrophys. 440, 39 (2005)

    ADS  Google Scholar 

  • S. Nozawa et al., Nuovo Cimento B 121, 487 (2006)

    ADS  Google Scholar 

  • S. Nozawa, Y. Kohyama, N. Itoh, Phys. Rev. D 79, 123007 (2009)

    ADS  Google Scholar 

  • M. Olamaie, M.P. Hobson, K.J.B. Grainge, Mon. Not. R. Astron. Soc. 430, 1344 (2013)

    ADS  Google Scholar 

  • S. Padin, Appl. Opt. 53, 4431 (2014)

    ADS  Google Scholar 

  • Y.N. Pariiskii, Sov. Astron. 16, 1048 (1973)

    ADS  Google Scholar 

  • P.J.E. Peebles, J.T. Yu, Astrophys. J. 162, 815 (1970)

    ADS  Google Scholar 

  • F. Peng, D. Nagai, Astrophys. J. Lett. 705(1), L58–L61 (2009)

    ADS  Google Scholar 

  • A.A. Penzias, R.W. Wilson, Astrophys. J. 142, 419 (1965)

    ADS  Google Scholar 

  • C. Pfrommer, Astrophys. J. 779, 10 (2013)

    ADS  Google Scholar 

  • C. Pfrommer, T.A. Enßlin, C.L. Sarazin, Astron. Astrophys. 430, 799 (2005)

    ADS  Google Scholar 

  • R. Piffaretti, R. Valdarnini, Astron. Astrophys. 491, 71 (2008)

    ADS  Google Scholar 

  • T. Plagge, B.A. Benson, P.A.R. Ade et al., Astrophys. J. 716, 1118 (2010)

    ADS  Google Scholar 

  • T.J. Plagge, D.P. Marrone, Z. Abdulla et al., Astrophys. J. 770, 112 (2013)

    ADS  Google Scholar 

  • E. Pointecouteau, M. Giard, D. Barret, Astron. Astrophys. 336, 44 (1998)

    ADS  Google Scholar 

  • E. Pointecouteau, M. Giard, A. Benoit et al., Astrophys. J. Lett. 519, L115 (1999)

    ADS  Google Scholar 

  • E. Pointecouteau, M. Giard, A. Benoit et al., Astrophys. J. 552, 42 (2001)

    ADS  Google Scholar 

  • G.B. Poole, A. Babul, I.G. McCarthy et al., Mon. Not. R. Astron. Soc. 380, 437 (2007)

    ADS  Google Scholar 

  • J. Portsmouth, Phys. Rev. D 70, 063504 (2004)

    ADS  Google Scholar 

  • P. Predehl, Astron. Nachr. 338, 159 (2017)

    ADS  Google Scholar 

  • P. Predehl, R. Andritschke, V. Babyshkin et al., in Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray. Proc. SPIE, vol. 9905 (SPIE, Bellingham, 2016), p. 99051K

    Google Scholar 

  • D.A. Prokhorov, S. Colafrancesco, Mon. Not. R. Astron. Soc. 424, L49 (2012)

    ADS  Google Scholar 

  • D.A. Prokhorov, A. Moraghan, V. Antonuccio-Delogu, J. Silk, Mon. Not. R. Astron. Soc. 425, 1753 (2012)

    ADS  Google Scholar 

  • E. Puchwein, M. Bartelmann, Astron. Astrophys. 455, 791 (2006)

    ADS  Google Scholar 

  • D. Puy, L. Grenacher, P. Jetzer, M. Signore, Astron. Astrophys. 363, 415 (2000)

    ADS  Google Scholar 

  • M.E. Ramos-Ceja, K. Basu, F. Pacaud, F. Bertoldi, Astron. Astrophys. 583, A111 (2015)

    ADS  Google Scholar 

  • E. Rasia, E.T. Lau, S. Borgani et al., Astrophys. J. 791, 96 (2014)

    ADS  Google Scholar 

  • E.D. Reese, J.E. Carlstrom, M. Joy et al., Astrophys. J. 581, 53 (2002)

    ADS  Google Scholar 

  • C.L. Reichardt, L. Shaw, O. Zahn et al., Astrophys. J. 755, 70 (2012)

    ADS  Google Scholar 

  • M. Remazeilles, A.J. Banday, C. Baccigalupi et al., J. Cosmol. Astropart. Phys. 4, 023 (2018)

    ADS  Google Scholar 

  • M. Remazeilles, B. Bolliet, A. Rotti, J. Chluba, Mon. Not. R. Astron. Soc. 483, 3459 (2019)

    ADS  Google Scholar 

  • Y. Rephaeli, Astrophys. J. 241, 858 (1980)

    ADS  Google Scholar 

  • Y. Rephaeli, Annu. Rev. Astron. Astrophys. 33, 541 (1995a)

    ADS  Google Scholar 

  • Y. Rephaeli, Astrophys. J. 445, 33 (1995b)

    ADS  Google Scholar 

  • P.L. Richards, J. Appl. Phys. 76(1), 1–24 (1994)

    ADS  Google Scholar 

  • E.A. Richards, E.B. Fomalont, K.I. Kellermann, R.B. Partridge, R.A. Windhorst, Astron. J. 113, 1475 (1997)

    ADS  Google Scholar 

  • C.E. Romero, B.S. Mason, J. Sayers et al., Astrophys. J. 807, 121 (2015)

    ADS  Google Scholar 

  • C.E. Romero, B.S. Mason, J. Sayers et al., Astrophys. J. 838, 86 (2017)

    ADS  Google Scholar 

  • C. Romero, M. McWilliam, J.-F. Macías-Pérez et al., Astron. Astrophys. 612, A39 (2018)

    Google Scholar 

  • I.G. Roseboom, S.J. Oliver, M. Kunz et al., Mon. Not. R. Astron. Soc. 409, 48 (2010)

    ADS  Google Scholar 

  • M. Rossetti, F. Gastaldello, G. Ferioli et al., Mon. Not. R. Astron. Soc. 457, 4515 (2016)

    ADS  Google Scholar 

  • J.J. Ruan, T.R. Quinn, A. Babul, Mon. Not. R. Astron. Soc. 432, 3508 (2013)

    ADS  Google Scholar 

  • J.J. Ruan, M. McQuinn, S.F. Anderson, Astrophys. J. 802, 135 (2015)

    ADS  Google Scholar 

  • F. Ruppin, R. Adam, B. Comis et al., Astron. Astrophys. 597, A110 (2017)

    Google Scholar 

  • F. Ruppin, F. Mayet, G.W. Pratt et al., Astron. Astrophys. 615, A112 (2018)

    Google Scholar 

  • M. Ruszkowski, H.-Y.K. Yang, C.S. Reynolds, Astrophys. J. 844, 13 (2017)

    ADS  Google Scholar 

  • G.B. Rybicki, A.P. Lightman, Radiative Processes in Astrophysics (Wiley-Interscience, New York, 1979), 393 pp.

    Google Scholar 

  • L. Salvati, M. Douspis, N. Aghanim, Astron. Astrophys. 614, A13 (2018)

    ADS  Google Scholar 

  • C.L. Sarazin, Rev. Mod. Phys. 58, 1 (1986)

    ADS  Google Scholar 

  • C.L. Sarazin, A. Finoguenov, D.R. Wik, T.E. Clarke, arXiv:1606.07433 (2016)

  • J. Sayers, S.R. Golwala, P.A.R. Ade et al., Astrophys. J. 708, 1674 (2010)

    ADS  Google Scholar 

  • J. Sayers, T. Mroczkowski, M. Zemcov et al., Astrophys. J. 778, 52 (2013a)

    ADS  Google Scholar 

  • J. Sayers, N.G. Czakon, A. Mantz et al., Astrophys. J. 768, 177 (2013b)

    ADS  Google Scholar 

  • J. Sayers, S.R. Golwala, A.B. Mantz et al., Astrophys. J. 832, 26 (2016a)

    ADS  Google Scholar 

  • J. Sayers, M. Zemcov, J. Glenn et al., Astrophys. J. 820, 101 (2016b)

    ADS  Google Scholar 

  • J. Sayers, A. Montaña, T. Mroczkowski et al., arXiv:1812.06926 (2018)

  • S.Y. Sazonov, R.A. Sunyaev, Astrophys. J. 508, 1 (1998)

    ADS  Google Scholar 

  • S.Y. Sazonov, R.A. Sunyaev, Mon. Not. R. Astron. Soc. 310, 765 (1999)

    ADS  Google Scholar 

  • S.Y. Sazonov, R.A. Sunyaev, Astrophys. J. 543, 28 (2000)

    ADS  Google Scholar 

  • E. Scannapieco, S.P. Oh, Astrophys. J. 608, 62 (2004)

    ADS  Google Scholar 

  • E. Scannapieco, R.J. Thacker, H.M.P. Couchman, Astrophys. J. 678, 674 (2008)

    ADS  Google Scholar 

  • J. Schaye, C. Dalla Vecchia, C.M. Booth et al., Mon. Not. R. Astron. Soc. 402, 1536 (2010)

    ADS  Google Scholar 

  • A. Schillaci, G. D’Alessandro, P. de Bernardis et al., Astron. Astrophys. 565, A125 (2014)

    Google Scholar 

  • S. Schindler, L. Guzzo, H. Ebeling et al., Astron. Astrophys. 299, L9 (1995)

    ADS  Google Scholar 

  • P. Schuecker, A. Finoguenov, F. Miniati, H. Böhringer, U.G. Briel, Astron. Astrophys. 426, 387 (2004)

    ADS  Google Scholar 

  • D. Schwan, F. Bertoldi, S. Cho et al., New Astron. Rev. 47, 933 (2003)

    ADS  Google Scholar 

  • L.I. Sedov, J. Appl. Math. Mech. 10, 241 (1946)

    Google Scholar 

  • L.I. Sedov, Similarity and Dimensional Methods in Mechanics (Academic Press, New York, 1959)

    MATH  Google Scholar 

  • U. Seljak, M. Zaldarriaga, Phys. Rev. Lett. 78, 2054 (1997)

    ADS  Google Scholar 

  • M. Sereno, S. Ettori, A. Baldi, Mon. Not. R. Astron. Soc. 419, 2646 (2012)

    ADS  Google Scholar 

  • L.D. Shaw, D. Nagai, S. Bhattacharya, E.T. Lau, Astrophys. J. 725, 1452 (2010)

    ADS  Google Scholar 

  • M. Shimon, Y. Rephaeli, Astrophys. J. 575, 12 (2002)

    ADS  Google Scholar 

  • M. Shimon, Y. Rephaeli, New Astron. 9, 69 (2004)

    ADS  Google Scholar 

  • M. Shimon, Y. Rephaeli, B.W. O’Shea, M.L. Norman, Mon. Not. R. Astron. Soc. 368, 511 (2006)

    ADS  Google Scholar 

  • M. Shimon, Y. Rephaeli, S. Sadeh, B. Keating, Mon. Not. R. Astron. Soc. 399, 2088 (2009)

    ADS  Google Scholar 

  • J.A. Shitanishi, E. Pierpaoli, J. Sayers et al., Mon. Not. R. Astron. Soc. 481, 749 (2018)

    ADS  Google Scholar 

  • J.M. Shull, B.D. Smith, C.W. Danforth, Astrophys. J. 759, 23 (2012)

    ADS  Google Scholar 

  • S.R. Siegel, J. Sayers, A. Mahdavi et al., Astrophys. J. 861, 71 (2018)

    ADS  Google Scholar 

  • J. Silk, S.D.M. White, Astrophys. J. Lett. 226, L103 (1978)

    ADS  Google Scholar 

  • A. Simionescu, S.W. Allen, A. Mantz et al., Science 331, 1576 (2011)

    ADS  Google Scholar 

  • A.V. Smirnov, A.M. Baryshev, S.V. Pilipenko et al., in Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave. Proc. SPIE, vol. 8442 (SPIE, Bellingham, 2012), p. 84424C

    Google Scholar 

  • A. Smirnov, S. Pilipenko, E. Golubev et al., in 42nd COSPAR Scientific Assembly. COSPAR Meeting, vol. 42 (2018), p. E4.2–12–18

    Google Scholar 

  • D.J.B. Smith, C.C. Hayward, M.J. Jarvis, C. Simpson, Mon. Not. R. Astron. Soc. 471, 2453 (2017)

    ADS  Google Scholar 

  • B. Soergel, T. Giannantonio, G. Efstathiou, E. Puchwein, D. Sijacki, Mon. Not. R. Astron. Soc. 468(1), 577–596 (2017)

    ADS  Google Scholar 

  • A. Spacek, E. Scannapieco, S. Cohen, B. Joshi, P. Mauskopf, Astrophys. J. 819, 128 (2016)

    ADS  Google Scholar 

  • A. Spacek, E. Scannapieco, S. Cohen, B. Joshi, P. Mauskopf, Astrophys. J. 834, 102 (2017)

    ADS  Google Scholar 

  • A. Spacek, M.L.A. Richardson, E. Scannapieco et al., Astrophys. J. 865, 109 (2018)

    ADS  Google Scholar 

  • G.J. Stacey, M. Aravena, K. Basu et al., in Ground-based and Airborne Telescopes VII. Proc. SPIE, vol. 10700 (SPIE, Bellingham, 2018), p. 107001M

    Google Scholar 

  • Z. Staniszewski, P.A.R. Ade, K.A. Aird et al., Astrophys. J. 701, 32 (2009)

    ADS  Google Scholar 

  • A. Stebbins astro-ph/9709065 (1997)

  • R.A. Sunyaev, Sov. Astron. Lett. 8, 175 (1982)

    ADS  Google Scholar 

  • R.A. Sunyaev, Y.B. Zeldovich, Astrophys. Space Sci. 7, 3 (1970)

    ADS  Google Scholar 

  • R.A. Sunyaev, Y.B. Zel’dovich, Comments Astrophys. Space Phys. 4, 173 (1972)

    ADS  Google Scholar 

  • R.A. Sunyaev, I.B. Zeldovich, Annu. Rev. Astron. Astrophys. 18, 537 (1980a)

    ADS  Google Scholar 

  • R.A. Sunyaev, I.B. Zeldovich, Mon. Not. R. Astron. Soc. 190, 413 (1980b)

    ADS  Google Scholar 

  • R.A. Sunyaev, I.B. Zeldovich, Astrophys. Space Phys. Rev. 1, 1 (1981)

    ADS  Google Scholar 

  • R.A. Sunyaev, M.L. Norman, G.L. Bryan, Astron. Lett. 29, 783 (2003)

    ADS  Google Scholar 

  • H. Tanimura, N. Aghanim, M. Douspis, A. Beelen, V. Bonjean, arXiv:1805.04555 (2018)

  • H. Tanimura, G. Hinshaw, I.G. McCarthy et al., Mon. Not. R. Astron. Soc. 483, 223 (2019)

    ADS  Google Scholar 

  • M. Tashiro, H. Maejima, K. Toda et al., in Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray. Proc. SPIE, vol. 10699 (SPIE, Bellingham, 2018), p. 1069922

    Google Scholar 

  • C. Tchernin, D. Eckert, S. Ettori et al., Astron. Astrophys. 595, A42 (2016)

    Google Scholar 

  • R.J. Thacker, E. Scannapieco, H.M.P. Couchman, Astrophys. J. 653, 86 (2006)

    ADS  Google Scholar 

  • A.R. Thompson, J.M. Moran, G.W. Swenson Jr., Interferometry and Synthesis in Radio Astronomy, 3rd edn. (2017)

    Google Scholar 

  • H. Trac, P. Bode, J.P. Ostriker, Astrophys. J. 727, 94 (2011)

    ADS  Google Scholar 

  • T. Treu, R.S. Ellis, T.X. Liao, P.G. van Dokkum, Astrophys. J. Lett. 622, L5 (2005)

    ADS  Google Scholar 

  • S. Ueda, T. Kitayama, M. Oguri et al., Astrophys. J. 866, 48 (2018)

    ADS  Google Scholar 

  • K. Umetsu, M. Sereno, E. Medezinski et al., Astrophys. J. 806, 207 (2015)

    ADS  Google Scholar 

  • L. Van Waerbeke, G. Hinshaw, N. Murray, Phys. Rev. D 89, 023508 (2014)

    ADS  Google Scholar 

  • R.J. van Weeren, G.A. Ogrean, C. Jones et al., Astrophys. J. 835, 197 (2017)

    ADS  Google Scholar 

  • A.N. Vantyghem, B.R. McNamara, H.R. Russell et al., Mon. Not. R. Astron. Soc. 442, 3192 (2014)

    ADS  Google Scholar 

  • E.M. Vavagiakis, Z. Ahmed, A. Ali, et al., in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX. Proc. SPIE, vol. 10708 (SPIE, Bellingham, 2018), p. 107081U

    Google Scholar 

  • F. Vazza, D. Eckert, A. Simionescu, M. Brüggen, S. Ettori, Mon. Not. R. Astron. Soc. 429, 799 (2013)

    ADS  Google Scholar 

  • A. Vikhlinin, Astrophys. J. 640, 710 (2006)

    ADS  Google Scholar 

  • G.M. Voit, A.E. Evrard, G.L. Bryan, Astrophys. J. Lett. 548, L123 (2001)

    ADS  Google Scholar 

  • S.A. Walker, J.S. Sanders, A.C. Fabian, Mon. Not. R. Astron. Soc. 453, 3699 (2015)

    ADS  Google Scholar 

  • S.A. Walker, J.S. Sanders, A.C. Fabian, Mon. Not. R. Astron. Soc. 481, 1718 (2018)

    ADS  Google Scholar 

  • S.A. Walker, A. Simionescu, D. Nagai et al., Space Sci. Rev. 215, 7 (2019)

    ADS  Google Scholar 

  • S.D.M. White, G. Efstathiou, C.S. Frenk, Mon. Not. R. Astron. Soc. 262, 1023 (1993)

    ADS  Google Scholar 

  • M. White, L. Hernquist, V. Springel, Astrophys. J. 579, 16 (2002)

    ADS  Google Scholar 

  • J. Wiener, S.P. Oh, F. Guo, Mon. Not. R. Astron. Soc. 434, 2209 (2013)

    ADS  Google Scholar 

  • D.R. Wik, C.L. Sarazin, P.M. Ricker, S.W. Randall, Astrophys. J. 680, 17 (2008)

    ADS  Google Scholar 

  • T.M. Wilbanks, P.A.R. Ade, M.L. Fischer, W.L. Holzapfel, A.E. Lange, Astrophys. J. Lett. 427, L75 (1994)

    ADS  Google Scholar 

  • E.L. Wright, Astrophys. J. 232, 348 (1979)

    ADS  Google Scholar 

  • M. Yamada, Y. Fujita, Astrophys. J. Lett. 553, L145 (2001)

    ADS  Google Scholar 

  • M. Yamada, N. Sugiyama, J. Silk, Astrophys. J. 522, 66 (1999)

    ADS  Google Scholar 

  • H.-Y.K. Yang, M. Gaspari, C. Marlow, Astrophys. J. 871(1), 6 (2019). 16 pp.

    ADS  Google Scholar 

  • S. Yasini, E. Pierpaoli, Phys. Rev. D 94, 023513 (2016)

    ADS  Google Scholar 

  • A.H. Young, T. Mroczkowski, C. Romero et al., Astrophys. J. 809, 185 (2015)

    ADS  Google Scholar 

  • L. Yu, K. Nelson, D. Nagai, Astrophys. J. 807, 12 (2015)

    ADS  Google Scholar 

  • S. Zaroubi, G. Squires, Y. Hoffman, J. Silk, Astrophys. J. Lett. 500, L87 (1998)

    ADS  Google Scholar 

  • Y.B. Zeldovich, R.A. Sunyaev, Astrophys. Space Sci. 4, 301 (1969)

    ADS  Google Scholar 

  • Y.B. Zeldovich, A.F. Illarionov, R.A. Sunyaev, Sov. Phys. JETP 35, 643 (1972)

    ADS  Google Scholar 

  • M. Zemcov, C. Borys, M. Halpern, P. Mauskopf, D. Scott, Mon. Not. R. Astron. Soc. 376, 1073 (2007)

    ADS  Google Scholar 

  • M. Zemcov, M. Rex, T.D. Rawle et al., Astron. Astrophys. 518, L16 (2010)

    ADS  Google Scholar 

  • M. Zemcov, J. Aguirre, J. Bock et al., Astrophys. J. 749, 114 (2012)

    ADS  Google Scholar 

  • M. Zemcov, A. Blain, A. Cooray et al., Astrophys. J. Lett. 769, L31 (2013)

    ADS  Google Scholar 

  • P. Zhang, A. Stebbins, Phys. Rev. Lett. 107, 041301 (2011)

    ADS  Google Scholar 

  • C. Zhang, Q. Yu, Y. Lu, Astrophys. J. 796, 138 (2014)

    ADS  Google Scholar 

  • I. Zhuravleva, E. Churazov, A. Kravtsov et al., Mon. Not. R. Astron. Soc. 428, 3274 (2013)

    ADS  Google Scholar 

  • I. Zhuravleva, E.M. Churazov, A.A. Schekochihin et al., Astrophys. J. Lett. 788, L13 (2014a)

    ADS  Google Scholar 

  • I. Zhuravleva, E. Churazov, A.A. Schekochihin et al., Nature 515, 85 (2014b)

    ADS  Google Scholar 

  • I. Zhuravleva, E. Churazov, P. Arévalo et al., Mon. Not. R. Astron. Soc. 458, 2902 (2016)

    ADS  Google Scholar 

  • I. Zhuravleva, S.W. Allen, A. Mantz, N. Werner, Astrophys. J. 865, 53 (2018)

    ADS  Google Scholar 

  • J.T.L. Zwart, R.W. Barker, P. Biddulph et al., Mon. Not. R. Astron. Soc. 391, 1545 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank ISSI for the opportunity to provide this invited review. T.M. is supported for scientific activities by ESO’s Directorate for Science. D.N. acknowledges Yale University for granting a triennial leave and the Max-Planck-Institut für Astrophysik for hospitality when this work was carried out. J.C. is supported by the Royal Society as a Royal Society University Research Fellow at the University of Manchester, U.K. R.A. acknowledges support from Spanish Ministerio de Economía and Competitividad (MINECO) through grant number AYA2015-66211-C2-2. K.B. acknowledges partial funding from the Transregio programme TRR33 of the Deutsche Forschungsgemeinschaft (DFG). A.T.C. is supported by the National Science Foundation Astronomy and Astrophysics Postdoctoral Fellowship under Grant No. 1602677. F.M., L.P., J.F.M.P., and F.R. acknowledge funding from the French ANR under the contract ANR-15-CE31-0017 and from the ENIGMASS LabEx.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Mroczkowski.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Clusters of Galaxies: Physics and Cosmology

Edited by Andrei Bykov, Jelle Kaastra, Marcus Brüggen, Maxim Markevitch, Maurizio Falanga and Frederik Bernard Stefan Paerels

Appendix

Appendix

This appendix covers some of the practical aspects common to observations of the SZ effect. What follows are observational considerations like beam size, beam solid angle, and how to compare sensitivity in common units like \(\mbox{Jy}/\mbox{beam}\), \(\upmu\mbox{K}\), and \(\upmu\mbox{K}_{\mbox{ CMB}}\mbox{-arcmin}\).

1.1 A.1 Beam Size

After frequency and sensitivity, the primary observational considerations are resolution and scales recovered. The scales recovered differ for observations with an interferometric array and for photometric measurements with a bolometric array on a single dish, and are considered in Sect. 5.1 and Sect. 5.2, respectively.

The full width at half maximum \(\theta_{\mbox{ FWHM}}\) for the main beam of a diffraction limited telescope can be approximated as a Gaussian,

$$ \theta_{\mbox{ FWHM}} \approx1.22 \frac{\lambda}{D}, $$
(18)

for wavelength \(\lambda\) and dish diameter \(D\). Any power outside of this main beam, such as that due to ‘side lobes’ (see e.g. Thompson et al. 2017), is often referred to as the ‘error beam,’ and can often be characterised with a wider Gaussian of lower amplitude. In practice, \(\theta_{\mbox{ FWHM}}\) is often slightly larger due to under-illumination of the primary and imperfect focusing. The solid angle \(\varOmega_{\mbox{ bm}}\) subtended by a beam with \(\theta_{\mbox{ FWHM}}\) is

$$ \varOmega_{\mbox{ bm}} = \frac{\pi(\theta_{\mbox{ FWHM}}/2)^{2}}{ \ln(2)}. $$
(19)

For instance, the 100-m Green Bank Telescope operating at 90 GHz (3.3 mm) would have a diffraction limited FWHM of \(8.38^{\prime\prime}\) and a corresponding beam volume \(\varOmega_{\mbox{ bm}} = 80\) square arcseconds; however, in practice the under-illumination yields a main beam which, if fitted by single Gaussian would have \(\theta_{\mathrm{FWHM}} \approx9.5^{\prime\prime}\). Surface imperfections create an error beam, such that the total beam volume is better estimated as \(\varOmega_{\mbox{ bm}} = 120~\mbox{square arcseconds}\).

1.2 A.2 Surface Brightness

The surface brightness \(S_{\nu}\) in units of flux density per beam (in \(\mbox{Jy}/\mbox{bm}\)) is related to intensity \(\Delta I_{\nu}\) (Eqs. (2), (7), & (9)) by integrating over the beam solid angle:

$$ \Delta S_{\nu}= \int \Delta I_{\nu}\, {\mathrm{d}}\varOmega= \langle \Delta I_{\nu}\rangle\, \varOmega_{\mbox{ bm}}. $$
(20)

Generically, one can convert between intensity \({\Delta I}\) and a change in the CMB temperature \({\Delta T_{\mbox{ CMB}}}\) using the derivative of the blackbody function. The ratio is

$$ \frac{\Delta I}{\Delta T_{\mbox{ CMB}}} = \frac{I_{0}}{T _{\mbox{ CMB}}} \frac{x^{4} {\mathrm{e}^{x}} }{({\mathrm{e} ^{x}}-1)^{2}}, $$
(21)

where the primary CMB intensity normalisation \(I_{0}\) was defined in Eq. (3).

1.3 A.3 CMB Survey Noise

The RMS noise in maps made using arcminute-resolution CMB instruments, such as those from ACT and SPT, are often compared in units of \(\upmu\mbox{K}_{\mbox{ CMB}}\mbox{-arcmin}\), defined as the RMS of the CMB temperature fluctuations \(\Delta T_{\mbox{ CMB}}\) within a map created with pixels that each subtend a solid angle of \(1~\mbox{arcmin}^{2}\). To convert this figure to the RMS of CMB temperature fluctuations within a given instrument’s beam, one would divide by the square root of the beam solid angle in square arcminutes (Eq. (19)). For example, a map made from an instrument with \(\varOmega_{\mbox{ bm}} = 120\) square arcseconds (\(0.033~\mbox{arcmin}^{2}\)) with an RMS noise of \(10~\upmu\mbox{K}_{\mbox{ CMB}}\) per beam would correspond to \(1.8~\upmu\mbox{K}_{\mbox{ CMB}}\mbox{-arcmin}\). This conversion assumes the noise properties in the maps are Gaussian and uncorrelated on the scales being binned, which is a simplification that is not generically applicable.

1.4 A.4 Rayleigh-Jeans Brightness Temperature

Many instruments report sensitivities in Rayleigh-Jeans brightness temperature

$$ \Delta T_{\mathrm{b}} \equiv\Delta I_{\nu} \lambda^{2} / 2 k _{\mbox{ B}}, $$
(22)

which at \(\nu> 40\mbox{ GHz}\) can diverge significantly from the temperature decrement in the CMB, \(\Delta T\), in units of \(K_{ \mbox{ CMB}}\). This relation can also be expressed in surface brightness units (e.g. using Eq. (20)), as

$$ \Delta S_{\nu}= 2 k_{\mbox{ B}}\Delta T_{\mathrm{b}} \varOmega_{\mbox{ bm}} / \lambda^{2}. $$
(23)

Brightness temperature can be trivially converted to units more directly applicable to CMB and SZ measurements. Following Finkbeiner et al. (1999), this conversion, called the ‘Planck correction factor’, is

$$ \frac{\Delta T_{\mbox{ CMB}}}{\Delta T_{\mathrm{b}}} = \frac{( {\mathrm{e}^{x}}-1)^{2}}{x^{2} {\mathrm{e}^{x}}}, $$
(24)

where \(x\) is defined as it was for Eq. (2). In Table 2, we provide computations of the ratio of \(\Delta T_{\mbox{ CMB}}/T_{\mathrm{b}}\) for a few representative frequencies.

Table 2 Table correction factors for converting surface brightness temperature \(T_{\mathrm{b}}\) to \(\Delta T_{\mbox{ CMB}}\) and the classical (non-relativistic) tSZ functions \(g(x)\) and \(f(x)\) in Eqs. (2) and (4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mroczkowski, T., Nagai, D., Basu, K. et al. Astrophysics with the Spatially and Spectrally Resolved Sunyaev-Zeldovich Effects. Space Sci Rev 215, 17 (2019). https://doi.org/10.1007/s11214-019-0581-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-019-0581-2

Keywords

Navigation