Skip to main content
Log in

The GOES-16 Spacecraft Science Magnetometer

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Since their inception in the 1970s, the NOAA Geostationary Operational Environmental Satellite (GOES) system has monitored the sources of space weather on the sun and the effects of space weather at Earth. These observations are important for providing forecasts, warnings and alerts to many customers, including satellite operators, the power utilities, and NASA’s human activities in space. The GOES magnetometer provides observations of the geomagnetic field, which can be the first indication that significant space weather has reached Earth. In addition, the magnetic field observations are used to identify and forecast the severity of the space weather activity. This paper reviews the capabilities of the GOES-16 magnetometer (MAG) and presents initial post-launch calibration/validation results including issues found in the data. The GOES-16 MAG requirements and capabilities are similar to those for previously flown instruments, measuring three components of the geomagnetic field but with an improved sampling rate of 10 samples/second. The MAG data are low-pass filtered with a 2.5 Hz cutoff compared to the 0.5 Hz cutoff of previous GOES magnetometers. The MAG is composed of two magnetometers, an inboard (closer to spacecraft bus) and outboard (on tip of boom) magnetometer. Presented are the science and instrument requirements, ground and initial on-orbit instrument calibration and data validation. The on-orbit analysis found magnetic contamination along with temperature dependency effects that resulted in unexpected instrument noise and decreased accuracy, with the issues generally more significant on the inboard magnetometer. The outboard sensor was used for initial analysis of MAG performance. Preliminary comparison, excluding arcjet firing periods, between the outboard magnetometer and the GOES-14 magnetometer found a statistical difference of 5 nT at \(3\sigma \) for the total field. This comparison does not consider inaccuracies in the GOES-14 magnetometer. Future studies will focus on optimizing the outboard sensor performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

Download references

Acknowledgements

The MAG project is part of the GOES-R flight segment spacecraft contract that NOAA has with NASA and is managed by the NASA GSFC in Maryland. NASA GSFC managed the GOES-16 MAG procurement, testing, spacecraft integration and post-launch engineering tests. The NOAA NCEI space weather group in Boulder, Colorado has the responsibility of providing MAG instrument scientists and calibration/validation support along with MAG higher level product development. The University of Colorado, through a cooperative agreement with NOAA, provides most of the scientific space weather expertise for the NOAA NCEI GOES-R mission work. Additional collaboration on the MAG includes the Massachusetts Institute of Technology Lincoln Laboratory (MIT-LL) in Lexington Massachusetts, which provides technical support to the flight program such as data analysis and engineering interpretation of scientific requirements. Additional MAG science subject matter expertise, along with historical perspective and in particular higher level observational requirements support were provided by the NOAA SWPC.

We wish to acknowledge and thank the GOES-R Series Program Office. We also wish to thank the members of the NOAA NCEI GOES-R space weather group, which is part of the GOES-R Calibration Working Group (CWG) for their support to the NCEI MAG group. Individually, thanks go to Dr. Bill Denig the former head of the NCEI space weather group for his support. We also wish to thank, for their support throughout the MAG project, Pam Sullivan and Alexander Krimchansky who at the time of manuscript write up were the GOES-R NASA flight project manager and mission systems manager, respectively. Also thanks go to Dr. Delano Carter at NASA GSFC for engineering support during the GOES-16 MAG project. We also thank the former GOES-R project scientist Dr. Steve Goodman for supporting our efforts.

The views, opinions, and findings contained in this report are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, or other U.S. Government position, policy, or decision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Loto’aniu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loto’aniu, T.M., Redmon, R.J., Califf, S. et al. The GOES-16 Spacecraft Science Magnetometer. Space Sci Rev 215, 32 (2019). https://doi.org/10.1007/s11214-019-0600-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-019-0600-3

Keywords

Navigation