Skip to main content
Log in

Mercury’s Interior Structure, Rotation, and Tides

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

This review addresses the deep interior structure of Mercury. Mercury is thought to consist of similar chemical reservoirs (core, mantle, crust) as the other terrestrial planets, but with a relatively much larger core. Constraints on Mercury’s composition and internal structure are reviewed, and possible interior models are described. Large advances in our knowledge of Mercury’s interior are not only expected from imaging of characteristic surface features but particularly from geodetic observations of the gravity field, the rotation, and the tides of Mercury. The low-degree gravity field of Mercury gives information on the differences of the principal moments of inertia, which are a measure of the mass concentration toward the center of the planet. Mercury’s unique rotation presents several clues to the deep interior. From observations of the mean obliquity of Mercury and the low-degree gravity data, the moments of inertia can be obtained, and deviations from the mean rotation speed (librations) offer an exciting possibility to determine the moment of inertia of the mantle. Due to its proximity to the Sun, Mercury has the largest tides of the Solar System planets. Since tides are sensitive to the existence and location of liquid layers, tidal observations are ideally suited to study the physical state and size of the core of Mercury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • O.L. Anderson, in Earth’s Core, Dynamics, Structure, Rotation, ed. by V. Dehant, K.C. Creager, S. Karato, S. Zatman. Geodynamics Series, vol. 31 (American Geophysical Union, Washington, 2002)

    Google Scholar 

  • J.D. Anderson, G. Colombo, P.B. Esposito, E.L. Lau, G.B. Trager, Icarus 71, 337–349 (1987)

    Article  ADS  Google Scholar 

  • J.D. Anderson, R.F. Jurgens, E.L. Lau, M.A. Slade, G. Schubert, Icarus 124, 690–697 (1996)

    Article  ADS  Google Scholar 

  • J.R. Baumgardner, O.L. Anderson, Adv. Space Res. 1, 159–176 (1981)

    Article  ADS  Google Scholar 

  • V.V. Beletskii, Celest. Mech. 6, 356–378 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Benz et al., Space Sci. Rev. (2007, this issue)

  • R. Boehler, Annu. Rev. Earth Planet. Sci. 24, 15–40 (1996)

    Article  ADS  Google Scholar 

  • P. Bretagnon, G. Francou, Astron. Astrophys. 202, 309–315 (1988)

    ADS  MATH  Google Scholar 

  • Breuer, et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9228-9

    Google Scholar 

  • G. Carpentier, F. Roosbeek, Celest. Mech. Dyn. Astron. 86, 223–236 (2003)

    Article  MATH  ADS  Google Scholar 

  • G.D. Cassini, De l’Origine et du Progrès de l’Astronomie, et de son usage dans la Géographie et dans la Navigation (Imprimerie royale, Paris, 1693)

    Google Scholar 

  • U.R. Christensen, Nature 444, 1056–1058 (2006). doi:10.1038/nature05342

    Article  ADS  Google Scholar 

  • U.R. Christensen, C. Koch, M. Hilchenbach, Determining Mercury’s tidal Love number h with laser altimetry. General Assembly of the European Geosciences Union, Vienna, 02-07/04/2006, abstract EGU06-A-05711, 2006

  • G. Colombo, Nature 208, 575 (1965)

    Article  ADS  Google Scholar 

  • G. Colombo, Astron. J. 71, 891–896 (1966)

    Article  ADS  Google Scholar 

  • G. Colombo, I.I. Shapiro, Astrophys. J. 145, 296–307 (1966)

    Article  ADS  Google Scholar 

  • V. Conzelmann, T. Spohn, Bull. Am. Astron. Soc. 31, 1102 (1999)

    ADS  Google Scholar 

  • A.C.M. Correia, J. Laskar, Nature 429, 848–850 (2004)

    Article  ADS  Google Scholar 

  • S. D’Hoedt, A. Lemaitre, in Transits of Venus: New Views of the Solar System and Galaxy, ed. by D.W. Kurtz. Proceedings of IAU Colloquium, vol. 196 (Cambridge University Press, Cambridge, 2005), pp. 263–270.

    Google Scholar 

  • A.M. Dziewonski, D.L. Anderson, Phys. Earth Planet. Inter. 25, 297–356 (1981)

    Article  ADS  Google Scholar 

  • Y. Fei, C.T. Prewitt, H. Mao, C.M. Bertka, Science 268, 1892–1894 (1995)

    Article  ADS  Google Scholar 

  • Y. Fei, C.M. Bertka, L.W. Finger, Science 275, 1621–1623 (1997)

    Article  Google Scholar 

  • Y. Fei, J. Li, C.M. Bertka, C.T. Prewitt, Am. Mineral. 85, 1830–1833 (2000)

    Google Scholar 

  • G.A. Gaetani, T.L. Grove, Geochim. Cosmochim. Acta 61(9), 1829–1846 (1997)

    Article  ADS  Google Scholar 

  • G. Giampieri, A. Balogh, Planet. Space Sci. 50, 757–762 (2002)

    Article  ADS  Google Scholar 

  • P. Goldreich, S. Peale, Astron. J. 71, 425–438 (1966)

    Article  ADS  Google Scholar 

  • H. Harder, G. Schubert, Icarus 151, 118–122 (2001)

    Article  ADS  Google Scholar 

  • S.A. Hauck II, A.J. Dombard, R.J. Phillips, S.C. Solomon, Earth Planet. Sci. Lett. 222, 713–728 (2004)

    Article  ADS  Google Scholar 

  • W.A. Heiskanen, H. Moritz, Physical Geodesy (W.H. Freeman, San Francisco, 1967)

    Google Scholar 

  • R.S. Hixson, M.A. Winkler, M.L. Hodgdon, Phys. Rev. B 42(10), 6485–6491 (1990)

    Article  ADS  Google Scholar 

  • I.V. Holin, Radiofizika 31, 515 (1988). English translation: I.V. Kholin, Radiophys. Quant. Elec. 31, 371 (1988)

    ADS  Google Scholar 

  • I.V. Holin, Radiofizika 35, 433 (1992). English translation: I.V. Kholin, Radiophys. Quant. Elec. 35, 284 (1992)

    ADS  Google Scholar 

  • I.V. Holin, Sol. Syst. Res. 38, 449 (2004)

    Article  ADS  Google Scholar 

  • R. Jeanloz, D.L. Mitchell, A.L. Sprague, I. de Pater, Science 268, 1455–1457 (1995)

    Article  ADS  Google Scholar 

  • H. Jeffreys, Mon. Not. R. Astron. Soc. Geophys. Suppl. 1, 371–383 (1926)

    Google Scholar 

  • R. Jehn, C. Corral, G. Giampieri, Planet. Space Sci. 52, 727–732 (2004)

    Article  ADS  Google Scholar 

  • K.P. Klaasen, Icarus 28, 469–478 (1976)

    Article  ADS  Google Scholar 

  • A.S. Konopliv, W.B. Banerdt, W.L. Sjogren, Icarus 139, 3–18 (1999)

    Article  ADS  Google Scholar 

  • J. Laskar, Astron. Astrophys. 287, L9–L12 (1994)

    ADS  Google Scholar 

  • J.S. Lewis, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (The University of Arizona Press, Tucson, 1988)

    Google Scholar 

  • J. Li, Y. Fei, H.K. Mao, K. Hirose, S.R. Shieh, Earth Planet. Sci. Lett. 193, 509–514 (2001)

    Article  ADS  Google Scholar 

  • J. Longhi, E. Knittle, J.R. Holloway, H. Wänke, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (The University of Arizona Press, Tucson, 1992), pp. 184–208

    Google Scholar 

  • J. Margot, S.J. Peale, R.F. Jurgens, M.A. Slade, I.V. Holin, Earth-based measurements of planetary rotational states. American Geophysical Union, Fall Meeting 2004, abstract G33A-02, 2004

  • J. Margot, S.J. Peale, R.F. Jurgens, M.A. Slade, I.V. Holin, Observational proof that Mercury occupies a Cassini state. American Astronomical Society DPS meeting 38, 49.05, 2006

    Google Scholar 

  • J.L. Margot, S.J. Peale, R.F. Jurgens, M.A. Slade, I.V. Holin, Science 316, 710–714 (2007). doi:10.1126/science.1140514

    Article  ADS  Google Scholar 

  • A. Milani, A. Rossi, D. Vokrouhlicky, D. Villani, C. Bonnano, Planet. Space Sci. 49, 1579–1596 (2001)

    Article  ADS  Google Scholar 

  • F. Nimmo, Geophys. Res. Lett. 29(5) (2002). doi:10.1029/2001GL013883

  • F. Nimmo, T.R. Watters, Geophys. Res. Lett. 31, L02701 (2004). doi:10.1029/2003GL018847

    Article  Google Scholar 

  • S.J. Peale, Astron. J. 74, 483–489 (1969)

    Article  ADS  Google Scholar 

  • S.J. Peale, Icarus 17, 168–173 (1972)

    Article  ADS  Google Scholar 

  • S.J. Peale, Astron. J. 79, 722–744 (1974)

    Article  ADS  Google Scholar 

  • S.J. Peale, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (Univ. of Arizona Press, Tucson, 1988), pp. 461–493

    Google Scholar 

  • S.J. Peale, Icarus 178, 4–18 (2005)

    Article  ADS  Google Scholar 

  • S.J. Peale, Icarus 181, 338–347 (2006)

    Article  ADS  Google Scholar 

  • S.J. Peale, R.J. Phillips, S.C. Solomon, D.E. Smith, M.T. Zuber, Meteor. Planet. Sci. 37, 1269–1283 (2002)

    ADS  Google Scholar 

  • S.J. Peale, M. Yseboodt, J.L. Margot, Icarus 187, 365–373 (2007)

    Article  ADS  Google Scholar 

  • G.H. Pettengill, R.B. Dyce, Nature 206, 1240 (1965)

    Article  ADS  Google Scholar 

  • G. Pfyffer, N. Rambaux, A. Rivoldini, T. Van Hoolst, V. Dehant, Determination of libration amplitudes from orbit. Abstract P0031; EPSC2006-A-00568, European Planetary Science Congress 2006, 18–22/9/2006, Berlin, Germany

  • J.-P. Poirier, Phys. Earth Planet. Int. 85, 319–337 (1994)

    Article  ADS  Google Scholar 

  • N. Rambaux, E. Bois, Astron. Astrophys. 413, 381–393 (2004)

    Article  ADS  Google Scholar 

  • N. Rambaux, T. Van Hoolst, V. Dehant, E. Bois, Astron. Astrophys. 468, 711–719 (2007)

    Article  ADS  Google Scholar 

  • M.S. Robinson, G.J. Taylor, Meteorit. Planet. Sci. 36, 841–847 (2001)

    Article  ADS  Google Scholar 

  • C. Sanloup, F. Guyot, P. Gillet, Y. Fei, J. Geophys. Res. 107(B11), 2272 (2002). doi:10.1029/2001JB000808

    Article  ADS  Google Scholar 

  • G. Schubert, M.N. Ross, D.J. Stevenson, T. Spohn, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (Univ. of Arizona Press, Tucson, 1988), pp. 429–460

    Google Scholar 

  • R.W. Siegfried, S.C. Solomon, Icarus 23, 192–205 (1974)

    Article  ADS  Google Scholar 

  • F. Sohl, T. Spohn, J. Geophys. Res. 102, 1613–1635 (1997)

    Article  ADS  Google Scholar 

  • S.C. Solomon, 20 co-authors, Planet. Space Sci. 49, 1445–1465 (2001)

    Article  ADS  Google Scholar 

  • T. Spohn, Icarus 90, 222–236 (1991)

    Article  ADS  Google Scholar 

  • T. Spohn, F. Sohl, K. Wieczerkowski, V. Conzelmann, Planet. Space Sci. 49, 1561–1570 (2001)

    Article  ADS  Google Scholar 

  • A.L. Sprague, R.W.H. Kozlowski, F.C. Witteborn, D.P. Cruikshank, D. Wooden, Icarus 109, 156–167 (1994)

    Article  ADS  Google Scholar 

  • A.L. Sprague et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9221-3

    MATH  Google Scholar 

  • F.D. Stacey, Geophys. Surv. 3, 175–204 (1977)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Earth Planet. Sci. Lett. 82, 114–120 (1987)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, T. Spohn, G. Schubert, Icarus 54, 466–489 (1983)

    Article  ADS  Google Scholar 

  • R.G. Strom, N.J. Trask, J.E. Guest, J. Geophys. Res. 80, 2478 (1975)

    ADS  Google Scholar 

  • G.I. Taylor, E.R.F. Scott, in Treatise on Geochemistry, vol. 1, ed. by A.M. Davis (Elsevier, Amsterdam, 2005), pp. 477–485

  • T. Van Hoolst, C. Jacobs, J. Geophys. Res. 108(E11), 5121 (2003). doi:10.1029/2003JE002126

    Article  Google Scholar 

  • T. Van Hoolst, in Treatise on Geophysics, vol. 10 (Elsevier, 2007, in press)

  • W.R. Ward, Astron. J. 80, 64–70 (1975)

    Article  ADS  Google Scholar 

  • J.T. Wasson, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (Univ. of Arizona Press, Tucson, 1988), pp. 692–708

    Google Scholar 

  • G.W. Wetherill, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 670–691

    Google Scholar 

  • Wicht et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9280-5

    Google Scholar 

  • M. Wieczorek, in Treatise on Geophysics, vol. 10 (2007, in press)

  • Q. Williams, R. Jeanloz, J. Geophys. Res. 95, 19299–19310 (1990)

    ADS  Google Scholar 

  • J.A. Wood, D.L. Anderson, W.R. Buck, W.M. Kaula, E. Anders, G.J. Consolmagno, J.W. Morgan, A.E. Ringwood, E. Stolper, H. Wänke, in Basaltic Volcanism on the Terrestrial Planets, ed. by B.V.S. Project (Pergamon, New York, 1981), pp. 633–699

    Google Scholar 

  • X. Wu, P.L. Bender, G.W. Rosborough, J. Geophys. Res. 100, 1515–1525 (1995)

    Article  ADS  Google Scholar 

  • M. Yseboodt, J.-L. Margot, Icarus 181, 327–337 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Van Hoolst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Hoolst, T., Sohl, F., Holin, I. et al. Mercury’s Interior Structure, Rotation, and Tides. Space Sci Rev 132, 203–227 (2007). https://doi.org/10.1007/s11214-007-9202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-007-9202-6

Keywords

Navigation