Skip to main content
Log in

Lateral Zonality of the East Sikhote-Alin Volcanic Belt: Geodynamic Regime in the Late Cretaceous

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The East Sikhote Alin volcanic belt (~1500 km long) is commonly regarded as a tectonomagmatic structure formed in the Late Cretaceous in a subduction environment, which was followed by the destruction of the oceanic slab and active asthenospheric diapirism in the Cenozoic. However, the nature of the lateral zonality of the Late Cretaceous volcanic complexes, which is distinctly expressed in a number of geological and metallogenic parameters, remains poorly studied. In this paper, this issue is considered on the example of the poorly studied Late Cretaceous Bolbinsk Formation of northern Sikhote Alin. Analysis of the published geological information in combination with geochronological, trace-element, and isotopic data indicates that the structure was developed in a non-subduction geodynamic setting. The predominance of magnesian (Mg# = 26–40) adakites (La/Yb = 19–34) and high-niobium basalts and low lead (Δ8/4Pb = 30–46) and high neodymium (143Nd/144Nd 0.51279–0.51281) isotopic ratios suggest an elevated permeability of the subducted slab and injection of a “hot” oceanic asthenosphere into the mantle wedge. Consequently, the lateral geological, geochemical, and metallogenic zonality of the East Sikhote Alin volcanogenic belt was formed at the early stages of its evolution as a result of the specific configuration of the Late Cretaceous continental margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Geology of USSR, Ed. by A. V. Sidorenko (Nedra, 1966), vol. 18, pp. 287–291 [in Russian].

    Google Scholar 

  2. Deep Structure of the Amur Region: DSS Data (Nauka, Moscow, 1976) [in Russian].

  3. V. V. Golozubov, Tectonics of the Jurassic and Lower Cretaceous Complexes of the Northwestern Pacific Framing (Dal’nauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  4. N. A. Goryachev, S. M. Radionov, V. V. Ratkin, V. I. Shpikerman, R. A. Eremin, A. A. Sidorov, and V. V. Naumova, “Metallogenic belts and ore districts of East Russia,” Geodynamics and Magmatism of East Russia, Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2006), Vol. 2, рр. 779–854 [in Russian].

    Google Scholar 

  5. A. N. Didenko, M. Yu. Nosyrev, B. F. Shevchenko, and G. Z. Gil’manova, “Thermal structure of Sikhote Alin and adjacent areas based on spectral analysis of the anomalous magnetic field,” Dokl. Earth Sci. 477 (1), 1368–1372 (2017).

    Article  Google Scholar 

  6. L. P. Zonenshain, M. I. Kuz’min, and L. M. Natal’in, Tectonics of Lithospheric Plates of the USSR Territory (Nedra, Moscow, 1990), Vol. 2 [in Russian].

    Google Scholar 

  7. E. P. Izokh, “Transverse zoning of the Sikhote Alin structure,” Geol. Geofiz., No. 1, 32–44 (1966).

  8. A. V. Kudymov, I. P. Voinova, A. I. Tikhomirova, and A. N. Didenko, “Geology, geochemistry, and paleomagnetism of rocks of the Utitsa Formation, North Sikhote Alin,” Russ. J. Pac. Geol. 9 (5), 323–337 (2015).

    Article  Google Scholar 

  9. L. I. Krasnyi and Yun’Byao Pen, Geological Map of the Amur Region and Adjacent Territories (VSEGEI, Moscow, 1998) [in Russian].

  10. P. V. Markevich, V. P. Konovalov, A. I. Malinovskii, and A. N. Filippov, Lower Cretaceous Sediments of Sikhote-Alin (Dal’nauka, Vladivostok, 2000) [in Russian].

    Google Scholar 

  11. Yu. A. Martynov, A. A. Chashchin, V. P. Simonenko, and A. Yu. Martynov, “Maestrichtian–Danian andesite series of the eastern Sikhote Alin: mineralogy, geochemistry, and petrogenetic aspects,” Petrology 15 (3), 275–295 (2007).

    Article  Google Scholar 

  12. N. N. Mel’nikov, “Errors of the double spiking technique in the isotopic analysis of common lead,” Geochem. Int. 43 12, 1228–1234 (2005).

    Google Scholar 

  13. V. A. Mikhailov, Magmatism of Volcanotectonic Structures of Southern Sikhote Alin Volcanic Belt (DVO RAN SSSR, Vladivostok, 1989) [in Russian].

    Google Scholar 

  14. B. N. Natal’in and Ch. B. Borukaev, “Mesozoic structures of the southern Far East,” Geotektonika, No. 1, 84–97 (1991).

    Google Scholar 

  15. Parfenov, L.M., Continental Margins and Island Arcs of Northeastern Asian Mesozoides (Nauka, Novosibirsk, 1984).

    Google Scholar 

  16. A. B. Perepelov, M. Yu. Puzankov, A. A. Chashchin, A. V. Ivanov, S. V. Palesskii, and Yu. D. Shcherbakov, “NEB-type basaltic volcanism in the island-arc system of Kamchatka: origin and paleogeodynamic consequence,” Proceedings of 4th All-Russian Scientific-Practical Conference on Metallogeny of Northeast Asia (2013), pp. 282–285.

  17. A. M. Petrishchevskii, Statistical Gravity Model of Far East Lithosphere (Dal’nauka, Vladivostok, 1988) [in Russian].

    Google Scholar 

  18. Petrografic Code of Russia. Magmatic, Metamorphic, and Impact Rocks (VSEGEI, St. Petersburg, 2009) [in Russian].

  19. V. M. Savatenkov, I. M. Morozova, and L. K. Levskii, “Behavior of the Sm–Nd, Rb–Sr, K–Ar, and U–Pb isotopic systems during alkaline metasomatism: fenites in the outer-contact zone of an ultramafic–alkaline intrusion,” Geochem. Int. 42 (10), 899–920 (2004).

    Google Scholar 

  20. V. P. Simanenko, “Late Mesozoic volcanic arcs of Eastern Sikhote-Alin and Sakhalin,” Tikhookean. Geol., No. 1, 7–13 (1986).

  21. V. P. Simanenko, “Lower Cretaceous basalt–andesite association of the northern Sikhote-Alin,” Tikhookean. Geol., No. 6, 86–95 (1990).

  22. V. P. Simanenko and A. I. Khanchuk, “Cenomanian volcanism of the Eastern Sikhote-Alin Volcanic Belt: Geochemical Features,” Geochem. Int. 41 (8), 787–898 (2003).

    Google Scholar 

  23. V. I. Sukhov, “Geological position, structure, and metallogeny of Late Cretaceous and Cenozoic effusive–extrusive complexes of the Lower Amur region,” Sov. Geol., No. 4, 45–56 (1967).

  24. A. I. Freidin and Yu. Ya. Lifshits, Geological Map of the USSR. 1 : 200 000. M-54-VII. (Gosgeoltekhizdat, Leningrad, 1957) [in Russian].

  25. A. I. Khanchuk, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (Moscow, 1993).

  26. A. A. Chashchin, V. P. Nechaev, E. V. Nechaeva, and M. G. Blokhin, “Discovery of Eocene adakites in Primor’e,” Dokl. Earth Sci., 438 (2), 744–749 (2011).

    Article  Google Scholar 

  27. A. Aguillon-Robles, T. Caimus, H. Bellon, R. C. Maury, J. Cotton, J. Bourgois, and F. Michaund, “Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: indicators of East Pacific Rise subduction below southern Baja California,” Geology 29 (6), 531–534 (2001).

    Article  Google Scholar 

  28. M. P. Atherton and N. Petford, “Generation of sodium-rich magmas from newly underplated basaltic crust,” Nature 362 (6416), 144–146 (1993).

    Article  Google Scholar 

  29. S. Y. Budnitskiy, A. V. Ignatiev, and T. A. Velivetskaya, “Method for measurement of argon isotopes in helium flow for K/Ar geochronology,” Mineral. Mag. 77 (5), 788 (2013).

    Google Scholar 

  30. P. R. Castillo, S. J. Rigby, and R. U. Solidum, “Origin of high field strength element enrichment in volcanic arcs: geochemical evidence from the Sulu Arc, southern Philippines,” Lithos 97 (3–4), 271–288 (2007).

    Article  Google Scholar 

  31. M. J. Defant and M. S. Drummond, “Derivation of some modern arc magmas by melting of young subducted lithosphere,” Nature 347 (6294), 662–665 (1990).

    Article  Google Scholar 

  32. M. J. Defant, T. E. Jackson, M. S. Drummond, J. Z. Deboer, H. Bellon, M. D. Feigenson, R. C. Maury, and R. H. Stewart, “The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview,” J. Geol. Soc. 149 (4), 569–579 (1992).

    Article  Google Scholar 

  33. M. J. Defant and M. S. Drummond, “Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc,” Geololgy 21 (6), 547–550 (1993).

    Article  Google Scholar 

  34. M. S. Drummond, M. J. Defant, and P. K. Kepezhinskas, “The petrogenesis of slab derived trondhjemite–tonalite–dacite/adakite magmas,” Trans. R. Soc. Edinb., Earth Sci. 87 (1–2), 205–216 (1996).

    Google Scholar 

  35. D. Engebretson, A. Cox, and R. G. Gordon, “Relative motions between oceanic and continental plates in the Northern Pacific Basin,” Spec. Pap. Geol. Soc. Am. 206, 1–159 (1985).

    Google Scholar 

  36. T. J. Falloon, L. V. Danyushevsky, A. Ariskin, D. H. Green, and C. E. Ford, “The application of olivine geothermometry to infer crystallization temperatures of parental liquids: implications for the temperature of MORB magmas,” Chem. Geol. 241 (3–4), 207–233 (2007).

    Article  Google Scholar 

  37. A. R. Goss, S. M. Kay, and C. Mpodozis, “Andean adakite-like high-Mg andesites on the northern margin of the Chilean–Pampean flat-slab (27–28.5°S) associated with frontal arc migration and fore-arc subduction erosion,” J. Petrol. 54 (11), 2193–2234 (2013).

    Article  Google Scholar 

  38. C. J. Hawkesworth, S. P. Turner, F. McDermott, D. W. Peate, and P. van Calsteren, “U-Th isotopes in arc magmas: implications for element transfer from the subducted crust,” Science 276 (5312), 551–555 (1997).

    Article  Google Scholar 

  39. K. Johnson, C. G. Barnes, and C. A. Miler, “Petrology, geochemistry, and genesis of high-altonalite and trondhjemites of the Cornucopia Stock, Blue Mountains, Northeastern Oregon,” J. Petrol. 38 (11), 1585–1611 (1997).

    Article  Google Scholar 

  40. R. W. Kay, “Aleutian magnesian andesites: melts from subducted Pacific Ocean Crust,” J. Volcanol. Geotherm. Res. 4 (1−2), 117–132 (1978).

    Article  Google Scholar 

  41. R. W. Kay and S. M. Kay, “Delamination and delamination magmatism,” Tectonophysics 219 (1–3), 177–189 (1993).

    Article  Google Scholar 

  42. P. Kepezhinskas, F. McDermott, M. J. Defant, A. Hochstaedter, M. S. Drummond, C. J. Hawkes-worth, A. Koloskov, R. C. Maury, and H. Bellon, “Trace element and Sr−Nd−Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis,” Geochim. Cosmochim. Acta 61 (3), 577–600 (1997).

    Article  Google Scholar 

  43. V. Levin, N. Shapiro, J. Park, and M. Ritzwoller, “Seismic evidence for catastrophic slab loss beneath Kamchatka,” Nature 418 (15), 763–767 (2002).

    Article  Google Scholar 

  44. V. Levin, D. Droznin, J. Park, and E. Gordeev, “Detailed mapping of seismic anisotropy with local shear waves in southeastern Kamchatka,” Geophys. J. Int. 158 (3), 1009–1023 (2004).

    Article  Google Scholar 

  45. W. H. MacLean, “Mass change calculations in altered rock series,” Mineral. Deposita 25 (1), 44–49 (1990).

    Article  Google Scholar 

  46. C. G. Macpherson, K. K. Chiang, R. Hall, G. M. No-well, P. R. Castillo, and M. F. Thirlwall, “Plio-Pleistocene intra-plate magmatism from the southern Sulu Arc, Semporna Peninsula, Sabah, Borneo: implications for high-Nb basalt in subduction zones,” J. Volcanol. Geotherm. Res. 190 (1–2), 25–38 (2010).

    Article  Google Scholar 

  47. H. Martin, “Adakitic magmas: modern analogues of Archaean granitoids,” Lithos 46 (3), 411–429 (1999).

    Article  Google Scholar 

  48. H. Martin, R. H. Smithies, R. Rapp, J. F. Moyen, and D. Champion, “An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution,” Lithos 79 (1–2), 1–24 (2005).

    Article  Google Scholar 

  49. Yu. A. Martynov, A. I. Khanchuk, A. V. Grebennikov, A. A. Chashchin, and V. K. Popov, “Late Mesozoic and Cenozoic volcanism of the East Sikhote-Alin Area (Russian Far East): a new synthesis of geological and petrological data,” Gondwana Res. 47, 358–371 (2017).

    Article  Google Scholar 

  50. A. Miyashiro, Metamorphism and Metamorphic Belts (Allen & Unwin, London, 1973).

    Book  Google Scholar 

  51. R. J. Muir, S. D. Weaver, J. D. Bradshaw, G. N. Eby, and J. A. Evans, “Geochemistry of the Cretaceous Separaton Plint Batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere,” J. Geol. Soc. 152 (4), 689–701 (1995).

    Article  Google Scholar 

  52. O. Müntener, P. B. Kelemen, and T. L. Grove, “The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study,” Contrib. Mineral. Petrol. 141 (6), 643–658 (2001).

    Article  Google Scholar 

  53. N. Petford and M. Atherton, “Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru,” J. Petrol. 37 (6), 1491–1521 (1996).

    Article  Google Scholar 

  54. G. Prouteau and B. Scaillet, “Experimental constraints on the origin of the 1991 Pinatubo dacite,” J. Petrol. 44 (12), 2203–2241 (2003).

    Article  Google Scholar 

  55. R. P. Rapp and E. B. Watson, “Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling,” J. Petrol. 36 (4), 891932 (1995).

    Article  Google Scholar 

  56. R. P. Rapp, E. B. Watson, and C. F. Miller, “Partial melting of amphibolite/eclogite and the origin of Archaean trondhjemites and tonalites,” Precambrian Res. 51 (1–4), 1–25 (1991).

    Article  Google Scholar 

  57. J. Ribeiro, R. Maury, and M. Gregoire, “Are adakites slab melts or high-pressure fractionated mantle melts?’’ J. Petrol. 57 (5), 839–862 (2016).

    Article  Google Scholar 

  58. F. G. Sajona, R. C. Naury, M. Pubellier, J. Leterrier, H. Bellon, and J. Cotton, “Magmatic source enrichment by slab-derived melts in a young post-collision setting, Central Mindanao (Philippines),” Lithos 54 (3–4), 173–206 (2000).

    Article  Google Scholar 

  59. C. Sen and T. Dunn, “Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites,” Contrib. Mineral. Petrol. 117 (4), 394–409 (1994).

    Article  Google Scholar 

  60. K. P. Skjerlie and A. E. Patino Douce, “The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa: implications for melting in thickened continental crust and for subduction-zone processes,” J. Petrol. 43 (2), 291–314 (2002).

    Article  Google Scholar 

  61. W. Springer and H. A. Seek, “Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas,” Contrib. Mineral. Petrol. 127 (1–2), 3045 (1997).

    Article  Google Scholar 

  62. R. H. Steiger and E. Jager, “Subcommission on geochronology: convention on the use of decay constants in geo- and cosmology,” Earth Planet. Sci. Lett. 36 (3), 359–361 (1977).

    Article  Google Scholar 

  63. C. R. Stern and R. Kilian, “Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Austral Volcanic Zone,” Contrib. Mineral. Petrol. 123 (3), 263–281 (1996).

    Article  Google Scholar 

  64. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes,” Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. London Spec. Publ. 42 (1), 313–345 (1989).

  65. M. Van Dongen, R. F. Weinberg, and A. G. Tomkins, “REE–Y, Ti, and P remobilization in magmatic rocks by hydrothermal alteration during Cu–Au deposit formation,” Econ. Geol. 105 (4), 763–776 (2010).

    Article  Google Scholar 

  66. Q. Wang, D. A. Wyman, J. F. Xu, Y. S. Wan, C. F. Li, F. Zi, Z. Q. Jiang, H. N. Qiu, Z. Y. Chu, Z. H. Zhao, and Y. H. Dong, “Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang Terrane (Central Tibet): evidence for metasomatism by slab derived melts in the mantle wedge,” Contrib. Mineral. Petrol. 155 (4), 473–490 (2008).

    Article  Google Scholar 

  67. J. Winchester and P. Floyd, “Geochemical discrimination of different magma series and their differentiation products using immobile elements,” Chem. Geol. 20, 325–343 (1977).

  68. L. Q. Xia, X. Y. Xu, Z. C. Xia, X. M. Li, Z. P. Ma, and L. S. Wang, “Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, Northwestern China,” Geol. Soc. Am. Bull. 116 (3), 419–433 (2004).

    Article  Google Scholar 

  69. G. M. Yogodzinski, O. N. Volynets, A. V. Koloskov, N. I. Seliverstov, and V. V. Matvenkov, “Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, Far Western Aleutians,” J. Petrol. 35 (1), 163–204 (1994).

    Article  Google Scholar 

  70. G. M. Yogodzhinski, J. M. Lees, T. G. Churlkova, F. Dorondor, G. Woerner, and N. Volynets, “Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges,” Nature 409 (6819), 500–504 (2001).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-05-00041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Martynov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Recommended for publishing by A.I. Khanchuk

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynov, A.Y., Golozubov, V.V., Martynov, Y.A. et al. Lateral Zonality of the East Sikhote-Alin Volcanic Belt: Geodynamic Regime in the Late Cretaceous. Russ. J. of Pac. Geol. 13, 265–282 (2019). https://doi.org/10.1134/S1819714019030060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714019030060

Keywords:

Navigation