Skip to main content
Log in

Degradation of physicomechanical properties of epoxy nanocomposites with carbon nanotubes upon heat and humidity aging

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The dependence of the physicomechanical properties of epoxy nanocomposites subjected to heat and humidity aging on the type of covalently functionalized carbon nanotubes and on the uniformity of their distribution in the epoxy matrix was studied. Two types of carbon nanotubes were used: those modified with carboxy and amide groups. The elastic modulus, bending deflection, and ultimate bending strength for the initial epoxy nanocomposites with carbon nanotubes and for those subjected to heat and humidity aging were determined. The epoxy binders modified with carboxylated carbon nanotubes are more resistant to the action of aging factors. The presence of aggregates of carboxylated carbon nanotubes in the epoxy matrix positively influences the preservation of physicomechanical properties of the composite subjected to heat and humidity aging. Microscopic examination revealed structural features of the epoxy nanocomposite and their effect on the resistance of the composite to the heat and humidity aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rakov, E.G., Russ. Chem. Rev., 2013, vol. 82, no. 1, pp. 27–47.

    Article  Google Scholar 

  2. Kablov, E.N., Aviats. Mater. Tekhnol., 2015, no. 1 (34), pp. 3–33.

    Google Scholar 

  3. Kablov, E.N., Kondrashov, S.V., and Yurkov, G.Yu., Ross. Nanotekhnol., 2013, vol. 8, nos. 3–4, pp. 28–42.

    Google Scholar 

  4. Irzhak, V.I., Russ. Chem. Rev., 2011, vol. 80, no. 8, pp. 787–806.

    Article  CAS  Google Scholar 

  5. Fan-Long, J. and Soo-Jin, P., Carbon Lett., 2011, vol. 12, no. 2, pp. 57–69.

    Article  Google Scholar 

  6. Bauhofer, W. and Kovacs, J.Z., Composites Sci. Technol., 2009, vol. 69, pp. 1486–1498.

    Article  CAS  Google Scholar 

  7. Grossiord, N., Loos, J., van Laake, L., et al., Adv. Funct. Mater., 2008, vol. 18, pp. 3226–3234.

    Article  CAS  Google Scholar 

  8. Polymer–Carbon Nanotube Composites. Preparation, Properties and Applications, McNally, T. and Potschke, P., Eds., Woodhead, 2011, p. 805.

  9. Lubineau, G. and Rahaman, A., Carbon, 2012, vol. 50, pp. 2377–2395.

    Article  CAS  Google Scholar 

  10. Prusty, R.K., Rathore, D.K., Shukia, M.J., and Ray, B.Ch., Composites, Part B: Engineering, 2015, vol. 83, pp. 166–174.

    Article  CAS  Google Scholar 

  11. Guadagno, L., De Vivo, B., Di Bartolomeo, A., et al., Carbon, 2011, vol. 49, pp. 1919–1930.

    Article  CAS  Google Scholar 

  12. Starkova, O., Buschhorn, S.T., Mannov, E., et al., Eur. Polym. J., 2013, vol. 49, no. 8, pp. 2138–2148.

    Article  CAS  Google Scholar 

  13. Marakhovskii, P.S., Kondrashov, S.V., D’yachkova, T.P., et al., Perspekt. Mater., 2015, no. 6, pp. 48–56.

    Google Scholar 

  14. Bol’shakov, V.A., Kondrashov, S.V., Merkulova, Yu.I., et al., Aviats. Mater. Tekhnol., 2015, no. 2 (35), pp. 61–66.

    Google Scholar 

  15. Filistovich, D.V., Startsev, O.V., and Suranov, A.Ya., Prib. Tekh. Eksp., 2003, no. 4, pp. 163–164.

    Google Scholar 

  16. Ma, P.-Ch., Siddiqui, N.A., Marom, G., and Kim, J.-K., Composites, Part A, 2010, vol. 41, pp. 1345–1367.

    Article  Google Scholar 

  17. Makhon’kov, A.Yu. and Startsev, O.V., Materialovedenie, 2013, no. 7, pp. 47–52.

    Google Scholar 

  18. D’yachkova, T.P. and Druzhinina, V.N., Sovrem. Probl. Nauki Obraz.: Elektronn. Zh., 2014, no. 6, URL: http://www.science-education.ru/120-15853 (addressed July 5, 2016).

    Google Scholar 

  19. Startsev, O.V., Aging of aviation polymer materials in a warm humid climate, Doctoral Dissertation (in the form of scientific report), Moscow: All-Union Inst. of Aviation Materials, 1990.

    Google Scholar 

  20. Perepechko, I.I., Akusticheskie metody issledovaniya polimerov (Acoustic Methods for Studying Polymers), Moscow: Khimiya, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Shashkeev.

Additional information

Original Russian Text © S.V. Kondrashov, Yu.I. Merkulova, P.S. Marakhovskii, T.P. D’yachkova, K.A. Shashkeev, O.V. Popkov, O.V. Startsev, M.V. Molokov, E.V. Kurshev, G.Yu. Yurkov, 2017, published in Zhurnal Prikladnoi Khimii, 2017, Vol. 90, No. 5, pp. 657−665.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrashov, S.V., Merkulova, Y.I., Marakhovskii, P.S. et al. Degradation of physicomechanical properties of epoxy nanocomposites with carbon nanotubes upon heat and humidity aging. Russ J Appl Chem 90, 788–796 (2017). https://doi.org/10.1134/S1070427217050202

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217050202

Navigation