Skip to main content
Log in

Superheterodyne amplification of electromagnetic waves of optical and terahertz bands in gallium nitride films

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Superheterodyne amplification of electromagnetic waves of optical and terahertz bands in the case of three-wave interaction in n-GaN films with the space change wave of millimeter band amplified due to negative differential resistance is studied. It is shown that amplification of the space change wave in n-GaN films may be achieved on higher frequencies f ≤ 500 GHz than when using GaAs. The case of three-wave resonant interaction of two counter-propagating waves with the space charge wave is considered for the waveguide on based on GaN film on dielectric substrate. It is shown that gain of electromagnetic waves of optical band may reach 20–40 dB on the waveguide lengths of up to 100 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Arnone, C. M. Ciesla, A. Corchia, et al., “Applications of terahertz (THz) technology to medical imaging,” Proc. SPIE 3828, 209 (1999).

    Article  Google Scholar 

  2. R. Kohler, A. Trediucci, F. Beltram, et al., “Terahertz semiconductor-heterostructure laser,” Nature 417, 156 (2002).

    Article  Google Scholar 

  3. E. R. Mueller, J. Fontanella, R. Henschke, “Stabilized, integrated, far-infrared laser system for NASA/Goddard Space Flight Center,” in Proc. of 11th Int. Symp. “Space Terahertz Technology,” May 1–3, 2000, Ann Arbor, MI (MI, 2000), p. 6.

  4. E. R. Mueller and J. Waldman, “Power and spatial mode measurements of sideband generated, spatially filtered, submillimeter radiation,” IEEE Trans. Microwave Theory Tech. 42, No. 10, 1891 (Oct. 1994).

    Google Scholar 

  5. M. Rochat, L. Ajili, H. Willenberg, et al., “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381 (2002).

    Article  Google Scholar 

  6. P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microwave Theory Tech. 50, No. 3, 910 (March 2002).

    Article  Google Scholar 

  7. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on LO-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015 (2003).

    Article  Google Scholar 

  8. A. A. Barybin, “Electrodynamic concepts of wave interactions in thin-film semiconductor structures,” Pt. I and II, Advances Electronics Electron Phys. 44, (1977); 45 (1978).

  9. A. A. Barybin, Waves in Thin-Film Semiconductor Structures with Hot Electrons (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  10. S. Koshevaya, V. Grimalsky, J. Escobedo-Alatorre, and M. Tecpoyotl-Torres, “Superheterodyne amplification of sub-millimeter electromagnetic waves in an n-GaAs film,” Microelectron. J. 34, No. 4, 231 (2003).

    Article  Google Scholar 

  11. À. L. Kalapusha and N. Ya. Kotsarenko, “Acoustic-electronic parameter amplification of IR and visible electromagnetic waves in planar optical waveguides,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 26(5), 71 (1983); Radioelectron. Commun. Syst. 26(5), 68 (1983).

    Google Scholar 

  12. M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN (Wiley-Interscience, New York, 2001).

    Google Scholar 

  13. V. Siklitsky, “GaN — Gallium Nitride,” http://www.ioffe.ru/SVA/NSM/Semicond/GaN/.

  14. S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: processing, defects, and devices,” J. Appl. Phys. 86, No. 1, 1 (1999).

    Article  Google Scholar 

  15. S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III-nitrides: growth, characterization, and properties,” J. Appl. Phys. 87, No. 3, 965 (2000).

    Article  Google Scholar 

  16. V. Gruzhinskis, P. Shiktorov, E. Starikov, and J. H. Zhao, “Comparative study of 200–300 GHz microwave power generation in GaN TEDs by the Monte Carlo technique,” Semicond. Sci. Tech. 16, No. 8, 798 (2001).

    Article  Google Scholar 

  17. G. E. Chaika, V. N. Malnev, and M. I. Panfilov, “Interaction of light with space charge waves,” Proc. SPIE. 2795, 279 (1996).

    Article  Google Scholar 

  18. D. G. Sannikov and D. I. Semetsov, “Waveguide interaction of light with amplifying SCW,” FTT 49, No. 3, 468 (2007).

    Google Scholar 

  19. D. Markuse, Theory of Dielectric Optical Waveguides (Academic Press, New York-London, 1974; Mir, Moscow, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Grimalsky, S.V. Koshevaya, Yu.G. Rapoport, 2011, published in Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2011, Vol. 54, No. 8, pp. 3–12.

Work was supported by CONACyT, Mexico.

About this article

Cite this article

Grimalsky, V.V., Koshevaya, S.V. & Rapoport, Y.G. Superheterodyne amplification of electromagnetic waves of optical and terahertz bands in gallium nitride films. Radioelectron.Commun.Syst. 54, 401–410 (2011). https://doi.org/10.3103/S0735272711080012

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272711080012

Keywords

Navigation