Skip to main content
Log in

Amplification of optical phonons in narrow band semiconductors at low temperatures

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Terahertz radiation generation by using the natural modes of solid body has been investigated. The numerical simulation of instability of terahertz range optical phonons in semiconductor structures with quantum wells during the drift of two-dimensional electron gas was performed. The main obstacle of implementing the specified instability is the heating of electron gas during its drift. That is why the investigations were performed for low temperatures T < 77 K, and the electron gas was assumed to be degenerate. Due to the existing closed cycle microcoolers and also the feedback implementation, it is possible to experimentally observe the generation of optical phonons. The numerical simulation involved the use of both kinematic and hydrodynamic approaches. It has been shown that the kinetic approach is more adequate, while the hydrodynamic one leads to overestimated values of instability increments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, No. 3, 910 (2002). DOI: 10.1109/22.989974.

    Article  Google Scholar 

  2. Rudeger Kohler, Alessandro Tredicucci, Fabio Beltram, Harvey E. Beere, Edmund H. Linfield, A. Giles Davies, David A. Ritchie, Rita C. Iotti, Fausto Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156 (2002). DOI: 10.1038/417156a.

    Article  Google Scholar 

  3. P. Y. Yu, M. Cardona, Fundamentals of Semiconductors. Physics and Materials Properties (Springer, New York, 2010).

    Book  Google Scholar 

  4. W. Liang, K. T. Tsen, Otto F. Sankey, S. M. Komirenko, K. W. Kim, V. A. Kochelap, Meng-Chyi Wu, Chong-Long Ho, Wen-Jeng Ho, H. Morkoc, “Observation of optical phonon instability induced by drifting electrons in semiconductor nanostructures,” Appl. Phys. Lett. 82, No. 12, 1968 (2003). DOI: 10.1063/1.1563730.

    Article  Google Scholar 

  5. A. M. Fedorchenko and N. Ya. Kotsarenko, Absolute and Convective Instability in Plasma and Solid Bodies (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  6. S. V. Koshevaya, V. V. Grimalsky, A. Garcia-B., M. F. Diaz-A., “Amplification of hypersonic by GaAs crystals,” Ukr. J. Phys. 51, No. 6, 593 (2006), http://ujp.bitp.kiev.ua/files/journals/51/6/510610p.pdf.

    Google Scholar 

  7. S. V. Koshevaya, B. N. Emelyanenkov, L. G. Gassanov, M. Yu. Omelyanenko, “Physical foundations of integrated circuits of a MM range design,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 25(10), 5 (1982) [Radioelectron. Commun. Syst. 25(10), 1 (1982)].

    Google Scholar 

  8. S. Datta, Electronic Transport in Mesoscopic Systems (CUP, Cambidge, 1999).

    Google Scholar 

  9. I. A. Kvasnikov, Statistical Physics, Vol. 2 (Editorial URSS, Moscow, 2002) [in Russian].

    Google Scholar 

  10. D. K. Ferry, S. M. Goodnick, and J. Bird, Transport in Nanostructures (CUP, Cambridge, 2009).

    Book  Google Scholar 

  11. A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vyssh. Shkola, Moscow, 1990) [in Russian].

    Google Scholar 

  12. A. S. Kondrat’ev and A. E. Kuchma, Lectures on the Theory of Quantum Liquids (Izdat. LGU, Leningrad, 1989) [in Russian].

    Google Scholar 

  13. E. M. Lifshits and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  14. Yu. Pozhela, Physics of Fast Transistors (Mokslas, Vilnius, 1989) [in Russian].

    Google Scholar 

  15. A. Kossevich, The Crystal Lattice. Phonons, Solitons, Dislocations (Wiley-VCH, Berlin, 1999).

    Book  MATH  Google Scholar 

  16. A. Ya. Shik, L. G. Bakueva, S. F. Musikhin, S. A. Rykov, Physics of Low-Dimensional Systems (Nauka, St. Petersburg, 2001) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Grimalsky.

Additional information

Original Russian Text © C. Castrejon-M., V.V. Grimalsky, S.V. Koshevaya, M. Tecpoyotl-T., 2014, published in Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2014, Vol. 57, No. 2, pp. 20–28.

This study was partially supported by SEP-CONACyT (Mexico).

About this article

Cite this article

Castrejon-M, C., Grimalsky, V.V., Koshevaya, S.V. et al. Amplification of optical phonons in narrow band semiconductors at low temperatures. Radioelectron.Commun.Syst. 57, 70–77 (2014). https://doi.org/10.3103/S0735272714020022

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272714020022

Keywords

Navigation