Skip to main content

Advertisement

Log in

Environmental Impacts of Heavy Metal Discharges from a Smelter in Deûle-canal Sediments (Northern France): Concentration Levels and Chemical Fractionation

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Heavy metal pollution in sediments derived from the Deûle canal and sampled at different sites not far from a smelting plant has been examined in the present work in order to identify the sources of these metals and to assess the sediment environmental quality. The total concentrations of lead, zinc, cadmium, thallium, indium and tin in the samples were determined using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Our investigations have revealed that metal pollution is readily apparent in the studied sediments, with metals contents largely exceeding those measured in the background soils: maximum values are obtained for sediments collected near the industrial zone. The chemical forms of Pb, Zn, Cd, Tl, In and Sn in these sediments have also been studied using a sequential extraction method in order to evaluate their possible mobility, bioavailability and toxicity in this aquatic environment. Overall, the averaged fractionation of Pb and Zn is dominated, in a decreasing order, by the easily reducible, oxidizable and carbonate fractions. The importance of oxidizable phase (which is assumed to be composed mainly of organic matter and sulphides) in the Pb and Zn fractionations has been confirmed by the detection of X-ray diffraction peaks ascribed to galena (PbS) and wurtzite (ZnS) in contaminated sediment samples. Anthropogenic Tl, In, and Cd are mainly retained in Fe–Mn oxides/hydroxides, whereas anthropogenic Sn predominates in aluminosilicates/clays. We suspect that elevated percentage levels of Pb, Zn, Cd and In in the reducible fraction constitute a particular potential risk to this aquatic environment in case early diagenetic phenomena (that are observed in the sedimentary material) and physical disturbances (that occur in the water column) both take place strongly in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Agnieszka, S., & Wieslaw, Z. (2002). Application of sequential extraction and the ICP-AES method for study of the partitioning of metals in fly ashes. Microchemical Journal, 72, 9–16.

    Article  Google Scholar 

  • Ajay, S. O., & van-Loon, G. W. (1989). Studies on redistribution during the analytical fractionation of metals in sediments. Science of the Total Environment, 87/88, 171–187.

    Article  Google Scholar 

  • Baffi, F., Ianni, C., Soggia, F., & Maggi, E. (1998). Evaluation of the acetate buffer attack of a sequential extraction scheme for marine particulate metal speciation studies by scanning electron microscopy with energy dispersive X-ray analysis. Analytica Chimica Acta, 360, 27–34.

    Article  CAS  Google Scholar 

  • Baruah, N. K., Kotoky, P., Bhattcharyya, K. G., & Borah, G. C. (1996). Metal speciation in Jhanji River sediments. Science of the Total Environment, 193, 1–12.

    Article  CAS  Google Scholar 

  • Belzile, N., Lecomte, P., & Tessier, A. (1989). Testing readsorption of trace elements during partial chemical extractions of bottom sediments. Environmental Science and Technology, 23, 1015–1020.

    Article  CAS  Google Scholar 

  • Billon, G., Ouddane, B., & Boughriet, A. (2001a). Artefacts in the speciation of sulfides in anoxic sediments. Analyst, 126, 1805–1809.

    Article  CAS  Google Scholar 

  • Billon, G., Ouddane, B., Laureyns, J., & Boughriet, A. (2001b). Chemistry of metal sulfides in anoxic sediments. Physical Chemistry Chemical Physics, 3, 3586–3592.

    Article  CAS  Google Scholar 

  • Borovec, Z., Tolar, V., & Mraz, L. (1993). Distribution of some metals in sediments of the central part of the Labe (Elbe) River, Czech Republic. Ambio, 22, 200–205.

    Google Scholar 

  • Bryan, G. W., & Langston, W. J. (1992). Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries – A review. Environmental Pollution, 76, 87–131.

    Article  Google Scholar 

  • Calmano, W., & Forstner, U. (1983). Chemical extraction of heavy metals in polluted river sediments in central Europe. Science of the Total Environment, 28, 77–90.

    Article  CAS  Google Scholar 

  • Campanella, L., Dorazio, D., Petronio, B. M., & Pietrantonio, E. (1995). Proposal for a metal speciation study in sediments. Analytica Chimica Acta, 309, 387–393.

    Article  CAS  Google Scholar 

  • Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M., & Berner, R. A. (1986). The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology, 54, 149–155.

    Article  CAS  Google Scholar 

  • Comber, S. D. W., Gunn, A. M., & Whalley, C. (1995). Comparison of the partitioning of trace metals in the Humber and Mersey estuaries. Marine Pollution Bulletin, 30, 851–860.

    Article  CAS  Google Scholar 

  • Cornwell, J. C., & Morse, J. W. (1987). The characterization of iron sulfide minerals in anoxic marine sediments. Marine Chemistry, 22, 193–206.

    Article  CAS  Google Scholar 

  • Fiedler, H. D., Lopez-Sanchez, J. F., Rubio, R., Rauret, G., Quevauviller, P., & Ure, A. M. (1994). Study of the stability of extractable trace metal contents in a river sediment using sequential extraction. Analyst, 119, 1109–1114.

    Article  CAS  Google Scholar 

  • Flores-Rodriguez, J., Bussy, A. L., & Thévenot, D. R. (1994). Toxic metals in urban runoff: Physico-chemical mobility assessment using speciation schemes. Water Science and Technology, 29(1–2), 83–93.

    CAS  Google Scholar 

  • Galvez-Cloutier, R., & Dubé, J. S. (1997). An evaluation of fresh water sediments contamination: The Lachine Canal sediment case, Montreal, Canada. Part II: Heavy metal particulate speciation study. Water, Air and Soil Pollution, 102, 281–302.

    Article  Google Scholar 

  • Gibson, M. J., & Farmer, J. G. (1986). Multi-step sequential chemical extraction of heavy metals from urban soils. Environmental Pollution Bulletin, 11, 117–135.

    Article  CAS  Google Scholar 

  • Gomez-Ariza, J. L., Giraldez, I., Sanchez-Rodas, D., & Moralesm, E. (2000). Metal sequential extraction procedure optimized for heavily polluted and iron oxide rich sediments. Analytica Chimica Acta, 414, 151–164.

    Article  CAS  Google Scholar 

  • Ho, D., & Evans, G. J. (1997). Operational speciation of cadmium, copper, lead and zinc in the NIST standard reference materials 2710 and 2711 (Montana soil) by the BCR sequential extraction procedure and flame atomic absorption spectrometry. Analytical Communications, 34, 363–364.

    Article  CAS  Google Scholar 

  • Ianni, C., Magi, E., Rivaro, P., & Ruggieri, N. (2000). Trace metals in Adriatic coastal sediments: Distribution and speciation pattern. Toxicology and Environmental Chemistry, 78, 73–92.

    Article  CAS  Google Scholar 

  • Jones, B., & Turki, A. (1997). Distribution and speciation of heavy metals in superficial sediments from the Tees estuary, north-east England. Marine Pollution Bulletin, 34(10), 768–779.

    Article  CAS  Google Scholar 

  • Jordao, C. P., & Hickless, G. (1989). Chemical associations of Zn, Cd, Pb and Cu in soils and sediments determined by the sequential extraction technique. Environmental Technology Letters, 10, 743–752.

    CAS  Google Scholar 

  • Kersten, M., & Forstner, U. (1986). Chemical fraction of heavy metals in anoxic estuarine and coastal sediments. Water Science and Technology, 18, 121–130.

    CAS  Google Scholar 

  • Klavins, M., Briede, A., Rodinov, V., Kokorite, I., Parele, E., & Klavina, I. (2000). Heavy metals in rivers of Latvia. Science of the Total Environment, 262, 175–183.

    Article  CAS  Google Scholar 

  • Korfali, S. I., & Davies, B. E. (2004). Speciation of metals in sediment and water in a river underlain by limestone: Role of carbonate species for purification capacity of rivers. Advances in Environmental Research, 8, 599–612.

    Article  CAS  Google Scholar 

  • Li, X. D., Shen, Z. G., Wai, O. W. H., & Li, Y. S. (2001). Chemical forms of Pb, Zn, and Cu in the sediment profiles of the Pearl River Estuary. Marine Pollution Bulletin, 42, 215–223.

    Article  CAS  Google Scholar 

  • Lopez-Sanchez, J. F., Sahukilo, A., Fiedler, H. D., Rubio, R., Rauret, G., Muntau, H., et al. (1998). CRM 601, a stable material for its extractable content of heavy metals. Analyst, 123, 1675–1677.

    Article  CAS  Google Scholar 

  • Martin, R., Sanchez, D. M., & Gutierrez, A. M. (1998). Sequential extraction of U, Th, Ce, La and some heavy metals in sediments from Ortigas River, Spain. Talanta, 46, 1115–1121.

    Article  CAS  Google Scholar 

  • Ngiam, L.-S., & Lim, P.-E. (2001). Speciation patterns of heavy metals in tropical estuarine anoxic and oxidized sediments by different sequential extraction schemes. Science of the Total Environment, 275, 253–261.

    Article  Google Scholar 

  • Nilsson, O., & Sternbeck, J. (1999). A mechanistic model for calcite growth using surface speciation. Geochimica et Cosmochimica Acta, 63, 217–255.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1998). History, production, and uses of thallium. In J. O. Nriagu (Ed.), Thallium in the environment (pp. 7–8). New York: Wiley.

    Google Scholar 

  • Nriagu, J. O., & Coker, R. D. (1980). Trace metals in humic and fulvic acids from lake Ontario sediments. Environmental Science and Technology, 4, 443–446.

    Article  Google Scholar 

  • Pardo, R. E., Perez-Barrado, L., & Vega, M. (1990). Determination and speciation of heavy metals in sediments of the Pisuerga river. Water Research, 24(3), 373–379.

    Article  CAS  Google Scholar 

  • Prieto, G. (1998). Geochemistry of heavy metals derived from gold-bearing sulphide minerals in the Marmato District (Colombia). Journal of Geochemical Exploration, 64, 215–222.

    Article  CAS  Google Scholar 

  • Quevauviller, P., Rauret, G., Lopez-Sanchez, J. F., Rubio, R., Ume, A., & Muntau, H. (1997). The certification of the EDTA-extractable contents (mass fractions) of Cd, Cr, Ni, Pb and Zn in sediment following a three-step sequential extraction procedure. CRM 601. EUR 17554 EN, European Commission/bcr information, Bruxelles.

  • Ramirez, M., Massolo, S., Soggia, F., & Magi, E. (2005). Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Marine Pollution Bulletin, 50, 62–72.

    Article  CAS  Google Scholar 

  • Ramos, L., Hernandez, L. M., & Gonzalez, M. J. (1994). Sequential fraction of copper, lead, cadmium and zinc in soils from or near Donana National Park. Journal of Environmental Quality, 23, 50–57.

    Article  CAS  Google Scholar 

  • Ranu, G., Tandon, S. N., Mathur, R. P., & Singh, O. V. (1993). Speciation of metals in Yamuna river sediments. Science of the Total Environment, 136, 229–242.

    Article  Google Scholar 

  • Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

    Article  CAS  Google Scholar 

  • Reeder, R. J. (1996). Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochimica et Cosmochimica Acta, 60, 1543–1552.

    Article  CAS  Google Scholar 

  • Ryssen, R. V., Leermakers, M., & Baeyens, W. (1999). The mobilization potential of trace metals in aquatic sediments as a tool for sediment quality classification. Environmental Science & Policy, 2, 75–86.

    Article  Google Scholar 

  • Salomons, W. (1993). Adoption of common schemes for single and sequential extractions of trace metals in soil and sediments. International Journal of Environmental Analytical Chemistry, 51, 3–4.

    Google Scholar 

  • Schwarz-Schampera, U., & Herzig, P. M. (2002). Indium: Geology, mineralogy, and economics (p. 257). Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Sterckeman, T., Douay, F., Proix, N., & Fourrier, H. (2000). Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environmental Pollution, 107, 377–389.

    Article  CAS  Google Scholar 

  • Sterckeman, T., Douay, F., Proix, N., Fourrier, H., & Perdrix, E. (2002). Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water, Air and Soil Pollution, 135, 173–194.

    Article  CAS  Google Scholar 

  • Tessier, A., & Campbell, P. G. C. (1988). Comment on the testing of the accuracy of an extraction procedure for determinating the partitioning of trace metals in sediments. Analytical Chemistry, 60, 1475–1476.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1980). Trace metal speciation in the Yamaska and St. François rivers (Quebec). Canadian Journal of Earth Sciences, 17, 90–105.

    CAS  Google Scholar 

  • Tu, Q., Shan, X., & Ni, Z. (1994). Evaluation of a sequential extraction procedure for the fractionation of amorphous iron and manganese oxides and organic matter in soils. Science of the Total Environment, 151, 159–165.

    Article  CAS  Google Scholar 

  • Ure, A. M., Quevauviller, P., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in solids and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51, 135–151.

    CAS  Google Scholar 

  • Usero, J., Gamero, M., Morillo, J., & Gracia, I. (1998). Comparative study of three sequential extraction procedures for metals in marine sediments. Environment International, 24, 478–496.

    Article  Google Scholar 

  • Yang, C., Chen, Y., Peng, P., Li, C., Chang, X., & Xie, C. (2005). Distribution of natural and anthropogenic thallium in the soils in an industrial pyrite slag disposing area. Science of the Total Environment, 341, 159–172.

    Article  CAS  Google Scholar 

  • Zdenek, B. (1996). Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure. Science of the Total Environment, 177, 237–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel Boughriet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boughriet, A., Proix, N., Billon, G. et al. Environmental Impacts of Heavy Metal Discharges from a Smelter in Deûle-canal Sediments (Northern France): Concentration Levels and Chemical Fractionation. Water Air Soil Pollut 180, 83–95 (2007). https://doi.org/10.1007/s11270-006-9252-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-006-9252-5

Keywords

Navigation