Skip to main content
Log in

TiO2 and SiO2 Nanoparticles Combined with Surfactants Mitigate the Toxicity of Cd2+ to Wheat Seedlings

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Engineered nanoparticles (NPs) could be coated by surfactants and modify the bioavailability and toxicity of heavy metals. In this study, the single and combined effect of sodium dodecyl benzene sulfonate (SDBS) and NPs on the toxicities of Cd2+ to wheat seedlings was investigated by a root elongation, and the underlying influence mechanism was further discussed. The results showed that the presence of SDBS improved the Cd2+ adsorption capacity of TiO2 and SiO2 NPs. The reaction of SDBS and TiO2 and SiO2NPs could increase TiO2 and SiO2 NPs dispersion stability and produced more available adsorption sites. The adsorption coefficients of Cd2+ on TiO2 and SiO2 NPs were enhanced from 3.84 to 4.52 mg/g and from 4.51 to 7.16 mg/g after SDBS coating. Both SDBS-coated TiO2 and SDBS-coated SiO2 NPs reduced Cd2+ phytotoxicity. The presence of bare TiO2 and SiO2 NPs at 1000 mg/L promoted root length of the wheat seedlings by 31.2% and 39.3%; however, SDBS-coated TiO2 and SiO2 NPs increased the root length by 41.2% and 51.4%, which demonstrated that SDBS-coated NPs had a much better effect on reducing the toxicity of Cd2+ than bare NPs. The results indicated the mitigation of Cd2+ toxicity was due to a decrease in bioavailable soluble Cd2+ which was adsorbed by NPs through electrostatic attraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aghajani, A., & Soleymani, A. (2017). Effects of nano-fertilization on growth and yield of bean (Phaseolus vulgaris L.) under water deficit conditions. Current Nanoscience, 13, 194–201.

    Article  CAS  Google Scholar 

  • Bonanno, G., Borg, J. A., & Di Martino, V. (2017). Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: a comparative assessment. Science of the Total Environment, 576, 796–806.

    Article  CAS  Google Scholar 

  • Choi, J., Chan, S., Joo, H., Yang, H., & Ko, F. K. (2016). Three-dimensional (3D) palladium-zinc oxide nanowire nanofiber as photo-catalyst for water treatment. Water Research, 101, 362–369.

    Article  CAS  Google Scholar 

  • Esro, M., Kolosov, O., Jones, P. J., Milne, W. I., & Adamopoulos, G. (2017). Structural and electrical characterization of SiO2 gate dielectrics deposited from solutions at moderate temperatures in air. ACS Applied Materials & Interfaces, 9, 529–536.

    Article  CAS  Google Scholar 

  • Ghosh, M., Bandyopadhyay, M., & Mukherjee, A. (2010). Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere, 81, 1253–1262.

    Article  CAS  Google Scholar 

  • Godinez, I. G., & Darnault, C. J. G. (2011). Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Water Research, 45, 839–851.

    Article  CAS  Google Scholar 

  • Gomes, J. F., Leal, I., Bednarczyk, K., Gmurek, M., Stelmachowski, M., Diak, M., Emília Quinta-Ferreira, M., Costa, R., Quinta-Ferreira, R. M., & Martins, R. C. (2017). Photocatalytic ozonation using doped TiO2 catalysts for the removal of parabens in water. Science of the Total Environment, 609, 329–340.

    Article  CAS  Google Scholar 

  • Gu, C., & Bai, Y. (2018). Heavy metal leaching and plant uptake in mudflat soils amended with sewage sludge. Environmental Science and Pollution Research, 25, 31031–31039.

    Article  CAS  Google Scholar 

  • Hu, J., Wang, D., Wang, J., & Wang, J. (2012). Toxicity of lead on Ceriodaphnia dubia in the presence of nano-CeO2 and nano-TiO2. Chemosphere, 89, 536–541.

    Article  CAS  Google Scholar 

  • Kattiparambil Manoharan, R., & Sankaran, S. (2018). Photocatalytic degradation of organic pollutant aldicarb by non-metal-doped nanotitania: synthesis and characterization. Environmental Science and Pollution Research, 25, 20510–20517.

    Article  CAS  Google Scholar 

  • Kollmeier, M., Felle, H. H., & Horst, W. J. (2000). Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiology, 122, 945–956.

    Article  CAS  Google Scholar 

  • Konate, A., He, X., Zhang, Z., Ma, Y., Zhang, P., Alugongo, G. M., & Rui, Y. (2017). Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability, 9, 790.

    Article  Google Scholar 

  • Kumar, R., Gopal, R., & Sharma, Y. K. (2018). Influence of cadmium and phosphorus enhance absorption and membrane damage in wheat seedlings grown in nutrient medium. Journal of Plant Nutrition, 41, 793–805.

    Article  CAS  Google Scholar 

  • Liu, L., Gao, B., Wu, L., Sun, Y., & Zhou, Z. (2015). Effects of surfactant type and concentration on graphene retention and transport in saturated porous media. Chemical Engineering Journal, 262, 1187–1191.

    Article  CAS  Google Scholar 

  • Lu, C., Zhang, C., Wen, J., Wu, G., & Tao, M. (2002). Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168–171.

    CAS  Google Scholar 

  • Mandal, A., Kar, S., & Kumar, S. (2016). The synergistic effect of a mixed surfactant (Tween 80 and SDBS) on wettability alteration of the oil wet quartz surface. Journal of Dispersion Science and Technology, 37, 1268–1276.

    Article  CAS  Google Scholar 

  • Mastronardi, E., Tsae, P., Zhang, X., Monreal, C., & DeRosa, M. C. (2015). Strategic role of nanotechnology in fertilizers: potential and limitations. In M. Rai, C. Ribeiro, L. Mattoso, & N. Duran (Eds.), Nanotechnologies in food and agriculture (pp. 25–67). Cham: Springer International Publishing.

    Google Scholar 

  • Muhammad, S., Iqbal, M. Z., & Mohammad, A. (2008). Effect of lead and cadmium on germination and seedling growth of Leucaena leucocephala. Journal of Applied Sciences & Environmental Management, 12.

  • Nuno, M., Pesce, G. L., Bowen, C. R., Xenophontos, P., & Ball, R. J. (2015). Environmental performance of nano-structured Ca(OH)2/TiO2 photocatalytic coatings for buildings. Building and Environment, 92, 734–742.

    Article  Google Scholar 

  • Okazaki, M., Kimura, S. D., Kikuchi, T., Igura, M., Hattori, T., & Abe, T. (2008). Suppressive effects of magnesium oxide materials on cadmium uptake and accumulation into rice grains: I: characteristics of magnesium oxide materials for cadmium sorption. Journal of Hazardous Materials, 154, 287–293.

    Article  CAS  Google Scholar 

  • Park, C. M., Heo, J., Her, N., Chu, K. H., Jang, M., & Yoon, Y. (2016). Modeling the effects of surfactant, hardness, and natural organic matter on deposition and mobility of silver nanoparticles in saturated porous media. Water Research, 103, 38–47.

    Article  CAS  Google Scholar 

  • Saberi, M., Tarnian, F., Davari, A., Ebrahimzadeh, A., & Ansari nik, H. (2013). Comparing cadmium and copper sulfate effects on seed germination and seedling initial growth properties in two range species. InternationalJournal of Agriculture and Crop Sciences, 5, 997–1001.

    Google Scholar 

  • Servin, A. D., Castillo-Michel, H., Hernandez-Viezcas, J. A., Diaz, B. C., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2012). Synchrotron micro-XRE and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environmental Science & Technology, 46, 7637–7643.

    Article  CAS  Google Scholar 

  • Solís-Casados, D. A., Escobar-Alarcón, L., Arrieta-Castañeda, A., & Haro-Poniatowski, E. (2016). Bismuth–titanium oxide nanopowders prepared by sol–gel method for photocatalytic applications. Materials Chemistry & Physics, 172, 11–19.

    Article  Google Scholar 

  • Torre, C. D., Balbi, T., Grassi, G., Frenzilli, G., Bernardeschi, M., Smerilli, A., Guidi, P., Canesi, L., Nigro, M., & Monaci, F. (2015). Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. Journal of Hazardous Materials, 297, 92–100.

    Article  Google Scholar 

  • Wang, M., Chen, L., Chen, S., & Ma, Y. (2012). Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotoxicology and Environmental Safety, 79, 48–54.

    Article  CAS  Google Scholar 

  • Wang, D., Lin, Z., Yao, Z., & Yu, H. (2014). Surfactants present complex joint effects on the toxicities of metal oxide nanoparticles. Chemosphere, 108, 70–75.

    Article  CAS  Google Scholar 

  • Wang, Y., Peng, C., Fang, H., Sun, L., Zhang, H., Feng, J., Duan, D., Liu, T., & Shi, J. (2015). Mitigation of Cu(II) phytotoxicity to rice (Oryza sativa) in the presence of TiO2 and CeO2 nanoparticles combined with humic acid. Environmental Toxicology and Chemistry, 34, 1588–1596.

    Article  CAS  Google Scholar 

  • Wang, S., Liu, Z., Wang, W., & You, H. (2017). Fate and transformation of nanoparticles (NPs) in municipal wastewater treatment systems and effects of NPs on the biological treatment of wastewater: a review. RSC Advances, 7, 37065–37075.

    Article  CAS  Google Scholar 

  • Wei, X., Pan, J., Wang, S., Mei, J., Zheng, Y., Cui, C. & Li, C. (2017). CdS modified Cu2O octahedral nano-heterojunction and its photocatalytic application. Journal of Materials Science Materials in Electronics, 1-6.

  • Yang, K., Lin, D. H., & Xing, B. S. (2009). Interactions of humic acid with nanosized inorganic oxides. Langmuir, 25, 3571–3576.

    Article  CAS  Google Scholar 

  • Yang, W.-W., Wang, Y., Huang, B., Wang, N.-X., Wei, Z.-B., Luo, J., Miao, A.-J., & Yang, L.-Y. (2014). TiO2 nanoparticles act as a carrier of Cd bioaccumulation in the ciliate Tetrahymena thermophila. Environmental Science & Technology, 48, 7568–7575.

    Article  CAS  Google Scholar 

  • Zhang, Y. (2007). Effects of surfactants on environmental chemical behaviors of heavy metals in soil-plant systems(pp.71–75). Doctoral thesis. College of Resources & Environement, Hunan Agricultural University.

  • Zhang, Y., Liao, B. H., Zeng, Q. R., Min, Z., & Ming, L. (2008). Surfactant linear alkylbenzene sulfonate effect on soil Cd fractions and Cd distribution in soybean plants in a pot experiment. Pedosphere, 18, 242–247.

    Article  CAS  Google Scholar 

  • Zhang, X., Lei, J., Feng, J., & Xie, S. (2014). Toxic effects of nSiO2 on three species of green algae. Environmental Science & Technology.

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Nos. 41601514, 41471392), Shanghai Natural Science Foundation (No. 19ZR1459300), Interdisciplinarity Fund of Peak Discipline from Shanghai Municipal Education Commission (Nos. 0200121005/053, 2019010202), and State Key Laboratory of Petroleum Pollution Control (No. PPC2016019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Duan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, C., Shen, H., Duan, Y. et al. TiO2 and SiO2 Nanoparticles Combined with Surfactants Mitigate the Toxicity of Cd2+ to Wheat Seedlings. Water Air Soil Pollut 230, 232 (2019). https://doi.org/10.1007/s11270-019-4297-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4297-4

Keywords

Navigation