Skip to main content

Advertisement

Log in

Multivariate Statistical and GIS-Based Approach for the Identification of Mn and Ni Concentrations and Spatial Variability in Soils of a Humid Mediterranean Environment: La Rioja, Spain

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The goal of the present work was to increase our knowledge on the behavior of manganese and nickel in soil within a Mediterranean environment. The study assessed the concentration levels of Mn and Ni (heavy metals selected for their essential role in the development of plants) in 250 soil horizon samples within 125 soil profiles of undisturbed soils in La Rioja (Spain). The study was undertaken to investigate and predict Mn and Ni concentrations on a regional scale. The analysis of spatial distribution of the elements was found to be affected by the nature of bedrock and, to a lesser extent, the anthropogenic origin. The variation of vertical distributions can be related, first, to natural sources—mainly the bed rocks—and, second, to soil processes. The geographical distribution of soil Mn is important to agriculture, nutrition, and health. Soil Mn and Ni maps of the area were elaborated, using geostatistics and geographic information systems. Mapping of geographical distributions will be useful in future research to determine regional patterns of Mn and Ni bioavailability, Mn and Ni deficiencies, and the possible consequences of land disposal of Mn- and Ni-laden wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adriano, D.C. (1992). Trace elements in the terrestrial environment. Springer, New York, Berlin, Heidelberg, Tokyo, 533 p.

  • Alloway, B.J. (1997). The mobilisation of trace elements in soils. In Prost R. (Ed), Contaminated soils. Proceedings of the Third International Conference on the Biogeochemistry of Trace Elements. Paris, 15–19 May 1995 (pp. 133–146). Paris: INRA.

  • Alonso, J. I. (1998). Estudio del Contenido y Distribución de los Metales Pesados en Suelos de Navarra (Cadmio, Cobre, Manganeso, Níquel, Plomo y Cinc). Doctoral These: Universidad de Navarra, Pamplona.

    Google Scholar 

  • Aubert, H. and Pinta, M. (1977). Trace elements in soils. Elsevier, Amsterdam, 395 pp.

  • Azimi, S., Ludwig, A., Thévenot, D. R., & Colin, J. L. (2003). Trace metals determination in total atmospheric deposition in rural and urban areas. The Science of the Total Environment, 308, 247–256.

    Article  CAS  Google Scholar 

  • Boluda, R., Andreu, V., Pons, V., & Sanchez, J. (1988). Contenido de Metales Pesados (Cd, Co, Cr, Cu, Ni, Pb y Zn) en Suelos de la Comarca La Plana de Requena-Utiel (Valencia). Anales de Edafología y Agrobiología, 47(11–12), 1485–1502.

    Google Scholar 

  • Casas Sainz, A. M., Gil Imaz, A., & Múñoz Jiménez, A. (2001). La Rioja, Geología y Paísaje. Zubía, 13, 11–40.

    Google Scholar 

  • Conde P., Martín Rubí J.A., De La Horra J. and Jiménez Ballesta R. (2009). Trace element contents in different soils of a semiarid Mediterranean environment: Castilla-La Mancha, Spain. Fresenius Environmental Bulletin 18, 5b:858–867.

  • Corwing, D. L., & Wagenet, R. J. (1996). Applications of GIS to the modeling of nonpoint pollutants in the vadose zone: a conference overview. Journal of Environmental Quality, 25, 403–411.

    Article  Google Scholar 

  • Dai, J., Becquer, T., Rouiller, J. H., Reversat, G., Bernhard-Reversat, F., & Lavelle, P. (2004). Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb, Cu-, and Cd-contaminated soils. Applied Soil Ecology, 25, 99–109.

    Article  Google Scholar 

  • De Nicola, F., Maisto, G., & Alfami, A. (2003). Assessment of nutritional status and trace element contamination of holm oak woodlands through analyses of leaves and surrounding soils. The Science of the Total Environment, 311, 191–203.

    Article  Google Scholar 

  • De Vivo, B., Boni, M., Marcello, A., Di Bonito, M., & Russo, A. (1997). Baseline geochemical mapping of Sardinia (Italy). Journal of Geochemical Exploration, 60, 77–90.

    Article  Google Scholar 

  • Derome, J., & Lindroos, A. J. (1998). Copper and nickel mobility in Podzolic forest soil subjected to heavy metal and sulfur deposition in Western Finland. Chemosphere, 36(4–5), 1131–1136.

    Article  CAS  Google Scholar 

  • Directiva 92/43/CE relativa a la Conservación de los Hábitats Naturales y de la Fauna y Flora Silvestres.

  • Donisa, C., Mocanu, R., Steinnes, E., & Vasu, A. (2000). Heavy metal pollution by atmospheric transport in natural soils from the northern part of eastern Carpatians. Water, Air, and Soil Pollution, 120, 347–358.

    Article  CAS  Google Scholar 

  • Esnaola, M. V., Bermond, A., & Millán, E. (2000). Optimization of DTPA and calcium chloride extractants for assessing extractable metal fraction in polluted soils. Communications in Soil Science and Plant Analysis, 31(2), 13–29.

    Article  CAS  Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114, 313–324.

    Article  CAS  Google Scholar 

  • FAO, ISRIC, ISSS. (2006). World reference base for soil resources. A framework for international classification, correlation and communication. World soil resources reports 103. 132 pp. Rome.

  • Fernández, P., Vilanova, R., & Grimalt, J. O. (1999). Sediment fluxes of polycyclic aromatic hydrocarbons in European high altitude mountain lakes. Environmental Science & Technology, 33, 3716–3722.

    Article  Google Scholar 

  • Ferreira, A., Inácio, M. M., Morgado, L., Batista, M. J., Ferreira, L., Pereira, V., et al. (2001). Low-density geochemical mapping in Portugal. Applied Geochemistry, 16, 1323–1331.

    Article  CAS  Google Scholar 

  • García Ruiz, J. M. (1994). Historia Geológica y la Estructura del Relieve de La Rioja. En Enciclopedia de La Rioja. Volumen I. Geografia Fisica. García Ruiz, J. M. y Arnáez Vadillo, J. (ed.), Caja de Ahorros de La Rioja, Logroño, pp. 39–49.

  • Guvenç, N., Alagha, O., & Tuncel, G. (2003). Investigation of soil in Anatalya, Turkey. Environment International, 29, 631–640.

    Article  Google Scholar 

  • Kabata Pendías A. (1995). Agricultural problems related to excessive trace metal contents of soils. In W. Salomons, U.Forstner, P.Mader (Eds.), Heavy metals (pp. 3–18). Springer: Berlin Heidelberg.

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed., p. 365). Boca Raton: CRC Press.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed., p. 413). Boca Raton: CRC Press.

    Google Scholar 

  • Kogelmann, W. J., & Sharpe, W. E. (2006). Soil acidity and manganese in declining and nondeclining sugar maple stands in Pennsylvania. Journal of Environmental Quality, 35, 433–441.

    Article  CAS  Google Scholar 

  • Koptsik, F. L., Nedbaev, G. N., Koptsik, N. P., & Pavlyuk, S. V. (1998). Heavy metal pollution of forest soils by atmospheric emissions of Pechenganikel smelter. Eurasian Soil Science, 31(8), 421–428.

    Google Scholar 

  • Li, C., Kang, S., Wang, W., Ajmone-Marsan, F., & Zhang, Q. (2008). Heavy metals and rare earth elements (REEs) in soil from the Nam Co Basin, Tibetan Plateau. Environmental Geology, 53(7), 1433–1440.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norwel, W. A. (1978). Development of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42(3), 421–428.

    Article  CAS  Google Scholar 

  • Morselli, L., Brusori, B., Passarini, F., Gataleta, L., Marchionni, M., Aromolo, R., et al. (2004). Heavy metals monitoring at a mediterranean natural ecosystem of Central Italy. Trends in different environmental matrixes. Environmental International, 30, 173–181.

    Article  CAS  Google Scholar 

  • Navas, A., & Machin, J. (2002). Spatial distribution of heavy metal and arsenic in soils of Aragon (northeast Spain): controlling factors and environmental implications. Applied Geochemistry, 17, 961–973.

    Article  CAS  Google Scholar 

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139.

    Article  CAS  Google Scholar 

  • Nuñez Olivera, E., & Martínez Abaigar, J. (1991). El clima de La Rioja. Gobierno de La Rioja, Logroño: Análisis de Precipitaciones y Temperaturas.

    Google Scholar 

  • Ozores-Hamton, M., Schaffer, B., & Bryan, H. (1994). Nutrient concentrations, growth and yield of tomato and squash in municipal solid waste amended soil. HortScience, 29, 785–788.

    Google Scholar 

  • Pacyna, J. M.; Münch, J. and Axenfeld, F. (1991). Atmospheric transport: large scale transport, models. European inventory of trace metals emissions to the atmosphere. In Vernet, J.P. (Ed.), Heavy metals in the environment (pp. 1–20). Elsevier: Versoix.

  • Proctor, J., & Baker, A. J. M. (1994). The importance of Ni for plant growth in Ultramafic (Serpentine) soils. In Ross S.M. (Ed.), Toxic metals in soil-plant systems (pp. 417–432). Chichester: Wiley.

    Google Scholar 

  • Robinson, T. P., & Matternicht, G. (2006). Testing the performance of spatial interpolation techniques for mapping soil properties. Computers and Electronics in Agriculture, 50, 97–108.

    Article  Google Scholar 

  • Rodríguez, J. A., Nanos, N., Grau, J. M., Gil, L., & López-Arias, M. (2008). Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere, 70, 1085–1096.

    Article  Google Scholar 

  • Salminen, R., & Gregorauskiené, V. (2000). Considerations regarding the definition of a geochemical baseline of elements in the surficial materials in areas differing in basic geology. Applied Geochemistry, 15, 647–653.

    Article  CAS  Google Scholar 

  • Santamaría-Ulecia, J. M. (1995). Evaluación del efecto de la contaminación atmosférica, en el estado fitosanitario de los bosques de Navarra, mediante el empleo de bioindicadores. Doctoral These: Universidad de Navarra.

    Google Scholar 

  • Schwart, A., Wilcke, W., Kobza, J., & Zech, W. (1999). Spatial distribution of soil heavy metal concentrations as indicator of pollution sources at Mount Krizna (Great Fatra, Central Slovakia). Zeitschrift Fur Pflanzenernahrung und Bodenkunde, 162(4), 421–428.

    Article  Google Scholar 

  • Simonetti, A., Gariépy, C., & Carignan, J. (1999). Pb and Sr isotopic compositions of snowpack from Quebec, Canada: inferences on the sources and deposition budgets of atmospheric heavy metals. Geochimica et Cosmochimica Acta, 64(1), 5–20.

    Article  Google Scholar 

  • Taylor, S. R. (1964). The abundance of chemical elements in the continental crust—a new table. Geochimica et Cosmochimica Acta, 28, 1273–1285.

    Article  CAS  Google Scholar 

  • Tüzen, M. (2003). Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchemical Journal, 74, 289–297.

    Article  Google Scholar 

  • Ukonmaanaho, L., Starr, M., Mannio, J., & Ruoho-Airola, T. (2001). Heavy metal budgets for two headwater forested catchments in background areas of Finland. Environmental Pollution, 114, 63–75.

    Article  CAS  Google Scholar 

  • Vasu, K., Sahul-Mameed, A., & Velayurdham, K. T. (1998). Accumulation of plant nutrients and heavy metals in soils neighbouring an industrial area. Indian Journal of Environmental Health, 40(2), 189–196.

    CAS  Google Scholar 

  • Wedepohl, K. H. (1972). Handbook of geochemistry (pp. 227–247). Berlin Heidelberg: Springer.

    Google Scholar 

  • Wedepohl, K. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1232.

    Article  CAS  Google Scholar 

  • Yaron B., Calvet R. and Prost R. (1996). Soil pollution. Processes and dynamics. 311 pp. Springer.

  • Yong, R. N., Mohamed, A. M. O., & Warketing, B. P. (1996). Principles of contaminant transport in soils (p. 327). Amsterdam: Elsevier Science.

    Google Scholar 

  • Zar, J. H. (1996). Biostatistical analysis (3rd ed., p. 256). Nueva Jersey: Prentice Hall International Editions.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimundo Jiménez-Ballesta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iñigo, V., Andrades, M., Alonso-Martirena, J.I. et al. Multivariate Statistical and GIS-Based Approach for the Identification of Mn and Ni Concentrations and Spatial Variability in Soils of a Humid Mediterranean Environment: La Rioja, Spain. Water Air Soil Pollut 222, 271–284 (2011). https://doi.org/10.1007/s11270-011-0822-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0822-9

Keywords

Navigation