Skip to main content
Log in

Effects of carbon source amendment on the anaerobic degradation of 1,1,1-trichloroethane (TCA) in a contaminated aquifer

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

We conducted a 10-month anaerobic microcosm test and a 15-month field test to investigate the effects of carbon source addition on the in-situ 1,1,1-trichloroethane (TCA) degradation in a polluted aquifer at an industrial site near Antwerp, Belgium. In the microcosms TCA decreased from 15000 μ g/L to 1500 μ g/L. 1,1-Dichloroethane (DCA) end-concentrations were about the same as the concentrations at the start of the tests (1500 μ g/L). 1,1-Dichloroethene (DCE) decreased from 1200 μ g/L to 800 μ g/L. Carbon source unamended and amended microcosms showed equal concentration trends. Neither chloroethane (CA) nor vinyl chloride (VC) were produced in the microcosms. In the field test TCA dropped from 15000 μ g/L to below 2000 μ g/L. Upstream, TCA levels remained elevated proving that the C-source injection had stimulated degradation. Sulphate reducing bacteria were stimulated; FeS was produced in the microcosms and aquifer. Dehalococcoides species were stimulated in some microcosms and in the HRC-amended aquifer. Neither sulphate reducers nor Dehalococcoidesspecies are however believed to be responsible for the observed TCA degradation. The carbon source injection however did yield environmental conditions that increased TCA degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlert, R. C. and Enzminger, J. D.: 1992, ‘Anaerobic processes for the dechlorination of 1,1,1-trichloroethane’, J. Environ. Sci. Heal. A 27, 1675–1699.

    Google Scholar 

  • Baker, S. K.: 1999, ‘Rumen methanogens, and inhibition of methanogenesis’, Austral. J. Agr. Res. 50, 1293–1298.

    Article  Google Scholar 

  • Cervini-Silva, J., Kostka, J. E., Larson, R. A., Stucki, J. W. and Wu, J.: 2003, ‘Dehydrochlorination of 1,1,1-trichloroethane and pentachloroethane by microbially reduced ferruginous smectite’, Environ. Toxicol. Chem. 22, 1046–1050.

    Article  PubMed  Google Scholar 

  • Chen, C., Ballapragada, B. S., Puhakka, J. A., Strand, S. E. and Ferguson, J. F.: 1999, ‘Anaerobic transformation of 1,1,1-trichloroethane by municipal digester sludge’, Biodegradation 10, 297–305.

    Article  PubMed  Google Scholar 

  • Clement, T. P., Truex, M. J. and Lee, P.: 2002, ‘A case study for demonstrating the application of US EPA’s monitored natural attenuation screening protocol at a hazardous waste site’, J. Contam. Hydrol. 59, 133–162.

    Article  PubMed  Google Scholar 

  • Davis, J. W., Odom, J. M., DeWeerd, K. A., Stahl, D. A., Fishbain, S. S., West, R. J., Klecka, G. M. and DeCarolis J. G.: 2002, ‘Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: characterization of microbial community structure’, J. Contam. Hydrol. 57, 41–59.

    Article  PubMed  Google Scholar 

  • Doong, R. A. and Chen, T. F.: 1996, ‘Anaerobic degradation of 1,1,1-trichloroethane with the amendment of different substrate and microbial concentrations’, Chemosphere 32, 2003–2014.

    Article  Google Scholar 

  • Doong, R. A. and Wu, Y. W.: 1997, ‘Enhanced biodegradation of 1,1,1-trichloroethane under low biomass conditions’, Chemosphere 34, 1653–1662.

    Article  Google Scholar 

  • Doong, R. A., Wu, S. C. and Chen, T. F.: 1998, ‘Modeling transport and fate of chlorinated hydrocarbons governed by biotic transformation in porous media’, Water Res. 32, 39–46.

    Article  Google Scholar 

  • Duhamel, M., Wehr, S. D., Yu, L., Rizvi, H., Seepersad, D., Dworatzek, S., Cox, E. E. and Edwards, E. A.: 2002, ‘Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride’, Water Res. 36, 4193–4202.

    Article  PubMed  Google Scholar 

  • El Fantroussi, S., Naveau, H. and Agathos S. N.: 1998, ‘Anaerobic Dechlorinating Bacteria’, Biotechnol. Prog. 14, 167–188.

    Article  PubMed  Google Scholar 

  • Fennell, D. E. and Gossett, J. M.: 2003, ‘Microcosms for site-specific evaluation of enhanced biological reductive dehalogenation’, in M. M. Häggblom and I. D. Bossert (eds.), Dehalogenation: Microbial Processes and Environmental Applications, Kluwer Academic, Boston, 2003; pp. 385–420.

    Google Scholar 

  • Ferguson, J. F. and Pietari, J. M. H.: 2000, ‘Anaerobic transformations and bioremediation of chlorinated solvents’, Environ. Pollut. 107, 209–215.

    Article  PubMed  Google Scholar 

  • Gander, J. W., Parkin, G. F. and Scherer, M. M.: 2002, ‘Kinetics of 1,1,1-trichloroethane transformation by iron sulfide and a methanogenic consortium’, Environ. Sci. Technol. 36, 4540– 4546.

    Article  PubMed  Google Scholar 

  • Holliger, C., Regeard, C. and Diekert, G.: 2003, ‘Dehalogenation by anaerobic bacteria’, in M. M. Häggblom and I. D. Bossert (eds.), Dehalogenation: Microbial Processes and Environmental Applications, Kluwer Academic, Boston, 2003; pp. 115–158.

    Google Scholar 

  • Jitnuyanont, P., Sayavedra-Soto, L. A. and Semprini, L.: 2001, ‘Bioaugmentation of butane-utilizing microorganisms to promote cometabolism of 1,1,1-trichloroethane in groundwater microcosms’, Biodegradation 12, 11–22.

    Article  PubMed  Google Scholar 

  • Klein, M., Friedrich, M., Roger, A. J., Hugenholtz, P., Fishbain, S., Abicht, H., Blackall, L. L., Stahl, D. A. and Wagner, M.: 2001, ‘Multiple lateral transfers of dissimilatory sulphite reductase genes between major lineages of sulphate-reducing prokaryotes’, J. Bacteriol. 183, 6028– 6035.

    Article  PubMed  Google Scholar 

  • Koenigsberg, S. S. and Norris, R. D.: 1999, ‘Accelerated bioremediation using slow release compounds’, Selected Batelle Conference Papers 1993–1999, Regenesis Bioremediation Products.

  • Koenigsberg, S. S.: 2000, ‘Accelerated bioremediation of chlorinated compounds in groundwater’, Selected Batelle Conference Papers 1999–2000, Regenesis Bioremediation Products.

  • Ladaa, T. I., Lee, C. M., Coates, J. T. and Falta Jr., R. W.: 2001, ‘Cosolvent effects of alcohols on the Henry’s law constant and aqueous solubility of tetrachloroethylene (PCE)’, Chemosphere 44, 1137–1143.

    Article  PubMed  Google Scholar 

  • Löffler, F. E., Sun, Q., Li, J. R. and Tiedje, J. M.: 2000, ‘16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species’, Appl. Environ. Microbiol. 66, 1369–1374.

    Article  PubMed  Google Scholar 

  • Lookman, R., Bastiaens, L., Borremans, B., Maesen, M., Gemoets, J. and Diels, L.: 2003, ‘Batch-test study on the dechlorination of 1,1,1-trichloroethane (TCA) in contaminated aquifer material by zero-valent iron’, J. Contam. Hydrol. 74, 133–144.

    Article  Google Scholar 

  • Lorah, M. M. and Voytek, M. A.: 2004, ‘Degradation of 1,1,2,2-tetrachloro ethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: Biogeochemical controls and associations with microbial communities’, J. Contam. Hydrol. 70, 117–145.

    Article  PubMed  Google Scholar 

  • Major, D. W., McMaster M. L., Cox E. E., Edwards E. A., Dworatzek S. M., Hendrickson E. R., Starr M. G., Payne J. A. and Buonamici L. W.: 2002, ‘Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethane’, Environ. Sci. Technol. 36, 5106–5116.

    Article  PubMed  Google Scholar 

  • Maymo-Gatell, X., Anguish, T. and Zinder, S. H.: 1999, ‘Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195’, Appl. Environ. Microbiol. 65, 3108–3113.

    PubMed  Google Scholar 

  • Maymo-Gatell, X., Nijenhuis, I. and Zinder S. H.: 2001, ‘Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by “Dehalococcoides ethenogenes”’, Environ. Sci. Technol. 35, 516–521.

    Article  PubMed  Google Scholar 

  • Pérez-Jiménez, J. R., Young, L. Y. and Kerkhof, L. J.: 2001, ‘Molecular characterization of sulphate-reducing bacteria in anaerobic hydrocarbon-degrading consortia and pure cultures using the dissimilatory sulphite reductase (dsr AB) genes’, FEMS Microbiol. Ecol. 35, 145–150.

    Article  PubMed  Google Scholar 

  • Rhee, E. and Speece, R. E.: 2000, ‘Probing of maximal biodegradation rates of methylene chloride, carbon tetrachloride, and 1,1,1-trichloroethane in methanogenic processes’, Environ. Technol. 21, 147–156.

    Google Scholar 

  • Sherwood, J. L., Petersen, J. N. and Skeen, R. S.: 1998, ‘Biodegradation of 1,1,1-trichloroethane by a carbon tetrachloride-degrading denitrifying consortium’, Biotechnol. Bioeng. 59, 393–399.

    Article  PubMed  Google Scholar 

  • Sun, B. L., Griffin, B. M., Ayala-del-Rio, H. L., Hashsham, S. A. and Tiedje, J. M.: 2002, ‘Microbial dehalorespiration with 1,1,1-trichloroethane’, Science 298, 1023–1025.

    Article  PubMed  Google Scholar 

  • Vogel, T. M. and McCarty, P. L.: 1987, ‘Abiotic and biotic transformations of 1,1,1-trichloroethane under methanogenic conditions’, Environ. Sci. Technol. 21, 1208–1213.

    Article  Google Scholar 

  • Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. and Stahl, D. A.: 1998, ‘Phylogeny of dissimilatory sulphite reductases supports an early origin of sulphate respiration’, J. Bacteriol. 180, 2975–2982.

    PubMed  Google Scholar 

  • Wiedmeier, T. H., Swnason, M. A., Moutoux, D. E., Gordon, E. K., Wilson, J. T., Wilson, B. H., Kampbell, D. H., Hass, P. E., Miller, R. N., Hansen, J. E. and Chapelle, F. H.:1998, ‘Technical protocol for evaluating natural attenuation of chlorinated solvents in ground water’, Office of Research and Development, EPA/600/R–98/128.

  • Wing, M. R.: 1997, ‘Apparent first-order kinetics in the transformation of 1,1,1-trichloroethane in groundwater following a transient release’, Chemosphere 34, 771–781.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lookman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lookman, R., Borremans, B., De Ceuster, T. et al. Effects of carbon source amendment on the anaerobic degradation of 1,1,1-trichloroethane (TCA) in a contaminated aquifer. Water Air Soil Pollut 166, 197–216 (2005). https://doi.org/10.1007/s11270-005-6967-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-005-6967-7

Keywords

Navigation