Skip to main content
Log in

Modeling the transport of acidity in soil profiles with front — A dynamic transport model

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

A dynamic transport model, FRONT, that describes the downwards transport of acidity in podzolized forest soils is presented. In this model the downward transport of acidity with the soil solution is counteracted by a production of alkalinity through the weathering of primary minerals and delayed by the adsorption of sulfate and hydrogen ions on iron- and aluminium oxides. The heart of the model is a massbalance equation that describes the transport of bulk acidity/alkalinity. The FRONT model was tested on 23 deep soil profiles situated along three transects in west-to-east direction across Sweden. Using a deposition scenario starting at 1910 the model was able to account for the large regional differences in the present depth of the acid front. Assuming a linearly decreasing deposition until 30% of present deposition is reached in 2010 the model was used to simulate a scenario for profiles in different parts of Sweden. The scenarios indicated that the upper parts of soil profiles that are severely acidified today will recover and assume a new steady-state in 2030. However, for soil profiles that have large stores of adsorbed sulfate in the B horizon the simulations indicate that one can expect an increased acidity in the deep soil layers several decades after the deposition has ceased due to downward transport of acidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertsen, M.: 1977, Dissertation, Kiel.

  • Fuller, R.D., Driscoll, C.T., Lawrence, G.B. and Nodvin, S.C.: 1987, Nature 325, 707–710.

    Google Scholar 

  • Johnson, D.W.: 1980, In: Hutchinson, T.C. and Havas, M. (Eds), “Effects of acid precipitation on terrestrial ecosystems”, pp. 525–535 Plenum Press.

  • Karltun, E.: 1994, Commun. Soil Sci. Plant Anal., 25, 207–214.

    Google Scholar 

  • Karltun, E.: 1995, Swedish Environmental Protection Agency, Report 4427, 76pp.

  • Lövblad, G., Amann, M., Andersen, B., Hovmand, F., Joffre, S., and Pedersen, U.: 1992, Ambio 21, 339–347.

    Google Scholar 

  • McColl, J.G. and Cole, D.W.: 1968, Northwest Sci., 43, 134–140.

    Google Scholar 

  • Olsson, M. and Melkerud, P.A.: 1991, In: Pulkkinen, E. (Ed), “Environmental geochemistry in northern Europe”, Geological Survey of Finland, Special paper no. 9, pp. 69–78.

  • Reuss, J.O. and Johnson, D.W.: 1985, J. Environ. Qual. 14, 26–31.

    Google Scholar 

  • Sverdrup, H. and Warvfinge, P.: 1991, In: Rosén, K. (Ed) “Chemical weathering under field conditions” Dep. Forest Soils, Swedish Univ. of Agr. Sci., Uppsala, pp. 79–118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksson, E., Karltun, E. Modeling the transport of acidity in soil profiles with front — A dynamic transport model. Water Air Soil Pollut 85, 1789–1794 (1995). https://doi.org/10.1007/BF00477239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00477239

Keywords

Navigation